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UNIQUENESS OF POSITIVE SOLUTIONS FOR A FRACTIONAL
DIFFERENTIAL EQUATION VIA A FIXED POINT THEOREM

OF A SUM OPERATOR

CHEN YANG, CHENGBO ZHAI

Abstract. In this work, we study the existence and uniqueness of positive so-
lutions for nonlinear fractional differential equation boundary-value problems.
Our analysis relies on a fixed point theorem of a sum operator. Our results
guarantee the existence of a unique positive solution, and can be applied for
constructing an iterative scheme for obtaining the solution.

1. Introduction

Fractional differential equations arise in many fields, such as physics, mechanics,
chemistry, economics, engineering and biological sciences,etc; see [3, 4, 5, 9, 13, 14,
15, 16, 17, 18] for example. In the recent years, there has been a significant develop-
ment in ordinary and partial differential equations involving fractional derivatives,
see the monographs of Miller and Ross [15], Podlubny [17], Kilbas et al [9], and the
articles [1, 2, 7, 8, 10, 11, 12, 21, 22, 20, 24, 25, 26, 27] and the references therein. In
these papers, many authors have investigated the existence of positive solutions for
nonlinear fractional differential equation boundary value problems. On the other
hand, the uniqueness of positive solutions for nonlinear fractional differential equa-
tion boundary value problems has been studied by some authors, see [22, 25, 26, 27]
for example.

By means of a fixed point theorem for mixed monotone operators, Xu, Jiang and
Yuan [21] considered the existence and the uniqueness of positive solutions for the
following

Dα
0+u(t) = f(t, u(t)), 0 < t < 1, 3 < α ≤ 4,

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.1)

where f(t, u) = q(t)[g(u) + h(u)], g : [0,+∞) → [0,+∞) is continuous and non-
decreasing, h : (0,+∞) → (0,+∞) is continuous and nonincreasing, and q ∈
C((0, 1), (0,+∞)) satisfies∫ 1

0

s2−η(2−α)(1− s)α−2−2ηq(s)ds < +∞, η ∈ (0, 1).
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By a similar method, Zhang [25] studied a unique positive solution for the singular
boundary value problem

Dα
0+u(t) + q(t)f(t, u, u′, . . . , u(n−2)) = 0, 0 < t < 1, n− 1 < α ≤ n, n ≥ 2,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,

(1.2)
where f = g + h and g, h have different monotone properties.

By means of a fixed point theorem for u0 concave operators, Yang and Chen
[22] investigated the existence and uniqueness of positive solutions for the following
boundary value problem

Dα
0+u(t) + f(t, u, u′, . . . , u(n−2)) = 0, 0 < t < 1, n− 1 < α ≤ n, n ≥ 2,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
(1.3)

where f ∈ C([0, 1]× [0,+∞)×Rn−2 → [0,+∞)), f(t, y1, y2, . . . , yn−1) is increasing
for yi ≥ 0, i = 1, 2, . . . n− 1, and f 6≡ 0.

Different from the works mentioned above, we will use a fixed point theorem for
a sum operator to show the existence and uniqueness of positive solutions for the
following fractional equation boundary value problem

Dα
0+u(t) + f(t, u(t)) + g(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = u(1) = 0.
(1.4)

Moreover, we can construct a sequence for approximating the unique solution. It
must be pointed out that the method used in this article can be applied to (1.1)-
(1.3).

2. Preliminaries

For the convenience of the reader, we present here some definitions, lemmas and
basic results that will be used in the proof of our theorem.

Definition 2.1 ([19, Definiton 2.1]). The integral

Iα
0+f(x) =

1
Γ(α)

∫ x

0

f(t)
(x− t)1−α

dt, x > 0

is called the Riemann-Liouville fractional integral of order α, where α > 0 and Γ(α)
denotes the gamma function.

Definition 2.2 ([19, page 36-37]). For a function f(x) given in the interval [0,∞),
the expression

Dα
0+f(x) =

1
Γ(n− α)

( d

dx

)n
∫ x

0

f(t)
(x− t)α−n+1

dt,

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-
Liouville fractional derivative of order α.

Lemma 2.3 ([1]). Given y ∈ C[0, 1] and 1 < α ≤ 2, the boundary-value problem
Dα

0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(2.1)

has a unique solution

u(t) =
∫ 1

0

G(t, s)y(s)ds,
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where

G(t, s) =
1

Γ(α)

{
[t(1− s)]α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

[t(1− s)]α−1
, 0 ≤ t ≤ s ≤ 1,

which is the Green function for this boundary-value problem.

In [7], the authors obtained the following result.

Lemma 2.4. Let 1 < α ≤ 2. Then the Green function G(t, s) in Lemma 2.3
satisfies

α− 1
Γ(α)

h(t)(1− s)α−1s ≤ G(t, s) ≤ 1
Γ(α)

h(t)(1− s)α−2 for t, s ∈ [0, 1],

where h(t) = tα−1(1− t), t ∈ [0, 1].

In the sequel, we present some basic concepts in ordered Banach spaces for
completeness and a fixed-point theorem which we will be used later. For convenience
of readers, we suggest that one refer to [6, 23] for details.

Suppose that (E, ‖·‖) is a real Banach space which is partially ordered by a cone
P ⊂ E; i.e., x ≤ y if and only if y − x ∈ P . If x ≤ y and x 6= y, then we denote
x < y or y > x. By θ we denote the zero element of E. Recall that a non-empty
closed convex set P ⊂ E is a cone if it satisfies (i) x ∈ P, λ ≥ 0 implies λx ∈ P ; (ii)
x ∈ P and −x ∈ P imply x = θ.

Putting P̊ = {x ∈ P : x is an interior point of P}, a cone P is said to be solid
if P̊ is non-empty. Moreover, P is called normal if there exists a constant N > 0
such that, for all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖; in this case N is called
the normality constant of P . We say that an operator A : E → E is increasing if
x ≤ y implies Ax ≤ Ay.

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such
that λx ≤ y ≤ µx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ
and h 6= θ), we denote by Ph the set Ph = {x ∈ E| x ∼ h}. It is easy to see that
Ph ⊂ P .

Definition 2.5. Let D = P or D = P̊ and β be a real number with 0 ≤ β < 1.
An operator A : P → P is said to be β-concave if it satisfies

A(tx) ≥ tβAx,∀ t ∈ (0, 1), x ∈ D.

Notice that the definition of a β-concave operator mentioned above is different from
that in [6], because we need not require the cone to be solid in general.

Definition 2.6. An operator A : E → E is said to be homogeneous if it satisfies

A(λx) = λAx, ∀λ > 0, x ∈ E.

An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx,∀ t ∈ (0, 1), x ∈ P.

In a recent paper Zhai and Anderson [23] considered the sum operator equation

Ax + Bx + Cx = x,

where A is an increasing β-concave operator, B is an increasing sub-homogeneous
operator and C is a homogeneous operator. They established the existence and
uniqueness of positive solutions for the above equation, and when C is a null oper-
ator, they present the following interesting result.
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Lemma 2.7. Let P be a normal cone in a real Banach space E, A : P → P be an
increasing β-concave operator and B : P → P be an increasing sub-homogeneous
operator. Assume that

(i) there is h > θ such that Ah ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ0 > 0 such that Ax ≥ δ0Bx, for all x ∈ P .

Then the operator equation Ax+Bx = x has a unique solution x∗ in Ph. Moreover,
constructing successively the sequence yn = Ayn−1 + Byn−1, n = 1, 2, . . . for any
initial value y0 ∈ Ph, we have yn → x∗ as n →∞.

3. Existence and uniqueness of positive solutions for (1.4)

In this section, we apply Lemma 2.7 to study problem (1.4) and we obtain a
new result on the existence and uniqueness of positive solutions. The method used
here is new to the literature and so is the existence and uniqueness result to the
fractional differential equations.

In our considerations we will work in the Banach space C[0, 1] = {x : [0, 1] →
R is continuous} with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Note that
this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Set P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is clear that P
is a normal cone in C[0, 1] and the normality constant is 1. Our main result is
summarized in the following theorem using the following assumptions:

(H1) f, g : [0, 1] × [0,+∞) → [0,+∞) are continuous and increasing respect to
the second argument, g(t, 0) 6≡ 0;

(H2) g(t, λx) ≥ λg(t, x) for λ ∈ (0, 1), t ∈ [0, 1], x ∈ [0,+∞), and there exists
a constant β ∈ (0, 1) such that f(t, λx) ≥ λβf(t, x), for all t ∈ [0, 1],
λ ∈ (0, 1), x ∈ [0,+∞);

(H3) there exists a constant δ0 > 0 such that f(t, x) ≥ δ0g(t, x), t ∈ [0, 1], x ≥ 0.

Theorem 3.1. Under assumptions (H1)–(H3), problem (1.4) has a unique positive
solution u∗ in Ph, where h(t) = tα−1(1 − t), t ∈ [0, 1]. Moreover, for any initial
value u0 ∈ Ph, the sequence

un+1(t) =
∫ 1

0

G(t, s)f(s, un(s))ds +
∫ 1

0

G(t, s)g(s, un(s))ds, n = 0, 1, 2, . . .

satisfies un(t) → u∗(t) as n →∞.

Proof. From [1], problem (1.4) has the integral formulation

u(t) =
∫ 1

0

G(t, s)[f(s, u(s)) + g(s, u(s))]ds,

where G(t, s) is given as in Lemma 2.3. Define two operators A : P → E and
B : P → E by

Au(t) =
∫ 1

0

G(t, s)f(s, u(s)))ds, Bu(t) =
∫ 1

0

G(t, s)g(s, u(s))ds.

It is easy to prove that u is the solution of (1.4) if and only if u = Au + Bu. From
(H1) and Lemma 2.4, we know that A : P → P and B : P → P . In the sequel we
check that A,B satisfy all assumptions of Lemma 2.7.
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Firstly, we prove that A,B are two increasing operators. In fact, by (H1) and
Lemma 2.4, for u, v ∈ P with u ≥ v, we know that u(t) ≥ v(t), t ∈ [0, 1] and obtain

Au(t) =
∫ 1

0

G(t, s)f(s, u(s))ds ≥
∫ 1

0

G(t, s)f(s, v(s))ds = Av(t).

That is, Au ≥ Av. Similarly, Bu ≥ Bv. Next we show that A is a β-concave
operator and B is a sub-homogeneous operator. In fact, for any λ ∈ (0, 1) and
u ∈ P , by (H2) we obtain

A(λu)(t) =
∫ 1

0

G(t, s)f(s, λu(s))ds ≥ λβ

∫ 1

0

G(t, s)f(s, u(s))ds = λβAu(t).

That is, A(λu) ≥ λβAu for λ ∈ (0, 1), u ∈ P . So the operator A is a β-concave
operator. Also, for any λ ∈ (0, 1) and u ∈ P , from (H2) we know that

B(λu)(t) =
∫ 1

0

G(t, s)g(s, λu(s))ds ≥ λ

∫ 1

0

G(t, s)g(s, u(s))ds = λBu(t);

that is, B(λu) ≥ λBu for λ ∈ (0, 1), u ∈ P . So the operator B is sub-homogeneous.
Now we show that Ah ∈ Ph and Bh ∈ Ph. Let hmax = max{h(t) = tα−1(1− t) :

t ∈ [0, 1]}. Then hmax > 0. From (H1) and Lemma 2.4,

Ah(t) =
∫ 1

0

G(t, s)f(s, h(s))ds ≤ 1
Γ(α)

h(t)
∫ 1

0

(1− s)α−2f(s, hmax)ds,

Ah(t) =
∫ 1

0

G(t, s)f(s, h(s))ds ≥ α− 1
Γ(α)

h(t)
∫ 1

0

s(1− s)α−1f(s, 0)ds.

From (H1) and (H3), we have

f(s, hmax) ≥ f(s, 0) ≥ δ0g(s, 0) ≥ 0.

Since g(t, 0) 6≡ 0, we can obtain∫ 1

0

f(s, hmax)ds ≥
∫ 1

0

f(s, 0)ds ≥ δ0

∫ 1

0

g(s, 0)ds > 0,

and in consequence,

l1 :=
α− 1
Γ(α)

∫ 1

0

s(1− s)α−1f(s, 0)ds > 0,

l2 :=
1

Γ(α)

∫ 1

0

(1− s)α−2f(s, hmax)ds > 0.

So l1h(t) ≤ Ah(t) ≤ l2h(t), t ∈ [0, 1]; and hence we have Ah ∈ Ph.
Similarly,

α− 1
Γ(α)

h(t)
∫ 1

0

s(1− s)α−1g(s, 0)ds ≤ Bh(t) ≤ 1
Γ(α)

h(t)
∫ 1

0

(1− s)α−2g(s, hmax)ds,

from g(t, 0) 6≡ 0, we easily prove Bh ∈ Ph. Hence the condition (i) of Lemma 2.7 is
satisfied.

In the following we show the condition (ii) of Lemma 2.7 is satisfied. For u ∈ P ,
from (H3),

Au(t) =
∫ 1

0

G(t, s)f(s, u(s))ds ≥ δ0

∫ 1

0

G(t, s)g(s, u(s))ds = δ0Bu(t).
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Then we get Au ≥ δ0Bu, u ∈ P . Finally, an application of Lemma 2.7 implies:
the operator equation Ax + Bx = x has a unique solution u∗ in Ph. Moreover,
constructing successively the sequence yn = Ayn−1 + Byn−1, n = 1, 2, . . . for any
initial value y0 ∈ Ph, we have yn → u∗ as n → ∞. That is, problem (1.4) has
a unique positive solution u∗ in Ph. Moreover, for any initial value u0 ∈ Ph,
constructing successively the sequence

un+1(t) =
∫ 1

0

G(t, s)f(s, un(s))ds +
∫ 1

0

G(t, s)g(s, un(s))ds, n = 0, 1, 2, . . . ,

we have un(t) → u∗(t) as n →∞. �

Remark 3.2. A simple example that illustrates Theorem 3.1 is as follows: let
f(t, x) ≡ 2δ, g(t, x) ≡ 1, δ > 0. Then the conditions (H1)–(H3) are satisfied and
(1.4) has a unique solution u(t) = (2δ + 1)

∫ 1

0
G(t, s)ds, t ∈ [0, 1]. Evidently,

u(t) ≥ (2δ + 1)(α− 1)
Γ(α)

∫ 1

0

s(1− s)α−1ds · h(t) =
(2δ + 1)(α− 1)
α(α + 1)Γ(α)

· h(t),

u(t) ≤ 2δ + 1
Γ(α)

∫ 1

0

(1− s)α−2ds · h(t) =
2δ + 1

(α− 1)Γ(α)
· h(t), t ∈ [0, 1].

So the unique solution u is a positive solution and satisfies u ∈ Ph = Ptα−1(1−t).

Example 3.3.

D
3
2
0+u(t) + u1/2(t) +

u(t)
1 + u(t)

q(t) + t2 + a = 0, 0 < t < 1,

u(0) = u(1) = 0,

(3.1)

where a > 0 is a constant, q : [0, 1] → [0,+∞) is continuous with q 6≡ 0.
In this example, we have α = 3/2. Take 0 < b < a and let

f(t, x) = x1/2 + t2 + b, g(t, x) =
x

1 + x
q(t) + a− b,

β =
1
2
, qmax = max{q(t) : t ∈ [0, 1]}.

Obviously, qmax > 0; f, g : [0, 1]× [0,+∞) → [0,+∞) are continuous and increasing
respect to the second argument, g(t, 0) = a−b > 0. Besides, for λ ∈ (0, 1), t ∈ [0, 1],
x ∈ [0,+∞), we have

g(t, λx) =
λx

1 + λx
q(t) + a− b ≥ λx

1 + x
q(t) + λ(a− b) = λg(t, x),

f(t, λx) = λ1/2x1/2 + t2 + b ≥ λ1/2(x1/2 + t2 + b) = λβf(t, x).

Moreover, if we take δ0 ∈ (0, b
qmax+a−b ], then we obtain

f(t, x) = x1/2 + t2 + b ≥ b =
b

qmax + a− b
(qmax + a− b)

≥ δ0[
x

1 + x
q(t) + a− b] = δ0g(t, x).

Hence all the conditions of Theorem 3.1 are satisfied. This implies that (3.1) has a
unique positive solution in Ph, where h(t) = tα−1(1− t), t ∈ [0, 1].
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