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BLOW-UP CRITERION FOR TWO-DIMENSIONAL HEAT
CONVECTION EQUATIONS WITH ZERO HEAT

CONDUCTIVITY

YU-ZHU WANG, ZHIQIANG WEI

Abstract. In this article we obtain a blow-up criterion of smooth solutions
to Cauchy problem for the incompressible heat convection equations with zero
heat conductivity in R2. Our proof is based on careful Höder estimates of heat
and transport equations and the standard Littlewood-Paley theory.

1. Introduction

The incompressible heat convection equations in two space dimensions take the
form

∂tu + u · ∇u +∇π = µ∆u + θe2,

∂tθ + u · ∇θ − ν∆θ =
µ

2

2∑
i,j=1

(∂iu
j + ∂ju

i)2,

∇ · u = 0,

(1.1)

where u = (u1, u2)t is the fluid velocity, π is the pressure, θ stands for the absolute
temperature, µ is the coefficient of viscosity, ν is the coefficient of heat conductivity
and e2 = (0, 1).

Some problems related to (1.1) have been studied in recent years (see [22], [8],
[17]-[20] and [25]). Fan and Ozawa [8] obtained some regularity criteria of strong
solutions to the Cauchy problem for the (1.1) in R3. Hiroshi [17] proved the exis-
tence of the strong solutions for the initial boundary value problems for (1.1). Kagei
and Skowron [18] discussed the existence and uniqueness of solutions of the initial-
boundary value problem for the heat convection equations (1.1) of incompressible
asymmetric fluids in R3. Moreover, Kagei [19] considered global attractors for the
initial-boundary value problem for (1.1) in R2. Lukaszewicz and Krzyzanowski [25]
treated the initial-boundary value problem for (1.1) with moving boundaries in R3.
Kakizawa [20] proved that (1.1) has uniquely a mild solution. Moreover, a mild so-
lution of (1.1) can be a strong or classical solution under appropriate assumptions
for initial data.

It is well known that the Boussinesq approximation [3] is a simplified model
of heat convection of incompressible viscous fluids. There is no doubt that many
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investigations on the Boussinesq approximation have been carried out for a hundred
years. For regularity criteria of weak solutions and blow up criteria of smooth
solutions, we refer to [9] and so on.

Equation (1.1) is the Navier-Stokes equations coupled with the heat equation.
Due to its importance in mathematics and physics, there is lots of literature de-
voted to the mathematical theory of the Navier-Stokes equations. Leray-Hopf weak
solution were constructed by Leray [23] and Hopf [16], respectively. Later on, much
effort has been devoted to establish the global existence and uniqueness of smooth
solutions to the Navier-Stokes equations. Different criteria for regularity of the
weak solutions have been proposed and many interesting results were established
(see [7], [8]-[11], [12], [14], [29] and [33]-[34]). Serrin-type regularity criteria of Leray
weak solutions in terms of pressure in Besov space were obtained in [13] and [15].

In this paper, we consider (1.1) with the zero heat conductivity; i.e., ν = 0.
Without loss of generality, we take µ = 1. The corresponding heat convection
equations thus reads

∂tu + u · ∇u +∇π = ∆u + θe2,

∂tθ + u · ∇θ =
1
2

2∑
i,j=1

(∂iu
j + ∂ju

i)2,

∇ · u = 0.

(1.2)

Due to the term 1
2

∑2
i,j=1(∂iu

j + ∂ju
i)2, it is very difficult to deal with (1.2). The

local well-posedness of the Cauchy problem for (1.2) is rather standard, which can
be obtained by standard Galerkin method and energy estimates (for example see
[8]). In the absence of global well-posedness, the development of blow-up/ non
blow-up theory (see [1]) is of major importance for both theoretical and pratical
purposes. In this paper, we obtain a blow-up criterion of smooth solutions to the
Cauchy problem for (1.2). Our main theorem is as follows.

Theorem 1.1. Assume that (u, θ) is a local smooth solution to the heat convec-
tion equations with zero heat conductivity (1.2) on [0, T ) and ‖u(0)‖H1∩Ċ1+α +
‖θ(0)‖L2∩Ċα < ∞ for some α ∈ (0, 1). Then

‖u(t)‖Ċ1+α + ‖θ(t)‖Ċα < ∞

for all 0 ≤ t ≤ T provided that

‖u‖L2
T (Ḃ0

∞,∞) < ∞, ‖θ‖L1
T (Ḃ0

∞,∞) < ∞. (1.3)

This article is organized as follows. We first state some preliminary on functional
settings and some important inequalities in Section 2 and then prove the blow-up
criterion of smooth solutions of (1.2) in Section 3.

2. Preliminaries

Let S(R2) be the Schwartz class of rapidly decreasing functions. Given f ∈
S(R2), its Fourier transform Ff = f̂ is defined by

f̂(ξ) =
∫

R2
e−ix·ξf(x)dx
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and for any given g ∈ S(R2), its inverse Fourier transform F−1g = ǧ is defined by

ǧ(x) =
∫

R2
eix·ξg(ξ)dξ.

Next let us recall the Littlewood-Paley decomposition. Choose two non-negative
radial functions χ, φ ∈ S(R2), supported respectively in B = {ξ ∈ R2 : |ξ| ≤ 4

3} and
C = {ξ ∈ R2 : 3

4 ≤ |ξ| ≤ 8
3} such that

χ(ξ) +
∑
k≥0

φ(2−kξ) = 1, ∀ξ ∈ R2

and
∞∑

k=−∞

φ(2−kξ) = 1, ∀ξ ∈ R2\{0}.

The frequency localization operator is defined by

∆kf =
∫

R2
φ̌(y)f(x− 2−ky)dy, Skf =

∑
k′≤k−1

∆k′f.

Let us now recall homogeneous Besov spaces (for example, see [2] and [30]). For
(p, q) ∈ [1,∞]2 and s ∈ R, the homogeneous Besov space Ḃs

p,q is defined as the set
of f up to polynomials such that

‖f‖Ḃs
p,q

= ‖2ks‖∆kf‖Lp‖lq(Z) < ∞.

Finally, we recall the following space, which is defined in [6]. Let p be in [1,∞]
and r ∈ R; the space L̃p

T (Cr) is the space of the distributions f such that

‖f‖L̃p
T (Cr) = sup

k
2kr‖∆kf‖Lp

T (L∞) < ∞.

The open ball with radius R centered at x0 ∈ R2 is denoted by B(x0, R). The
ring {ξ ∈ R2|R1 ≤ |ξ| ≤ R2} is denoted by C(0, R1, R2).

In what follows, we shall use Bernstein inequalities, which can be found in [4].

Lemma 2.1. Let k a positive integer and σ any smooth homogeneous function of
degree m ∈ R. A constant C exists such that, for any positive real number λ and
any function f in Lp(R2), we have

supp f̂ ⊂ λB ⇒ sup
|β|=k

‖∂βf‖Lq ≤ Cλk+2( 1
p−

1
q )‖f‖Lp , (2.1)

supp f̂ ⊂ λC ⇒ C−1λk‖f‖Lp ≤ sup
|β|=k

‖∂βf‖Lp ≤ Cλk‖f‖Lp . (2.2)

Moreover, if σ is a smooth function on R2 which is homogeneous of degree m outside
a fixed ball, then we have

supp f̂ ⊂ λC ⇒ ‖σ(D)f‖Lq ≤ Cλ(m+2( 1
p−

1
q ))‖f‖Lp . (2.3)

Lemma 2.2. For any f ∈ Lp(R2)(p > 1) and any positive real number λ,

supp f̂ ⊂ λC ⇒ ‖et∆f‖Lp ≤ Ce−cλ2t‖f‖Lp , (2.4)

where C and c are positive constants. See [5] for the proof of (2.4).

The following lemma plays an important role in the proof of Theorem 1.1 (see
also [27] and [28] where similar estimate were established).
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Lemma 2.3. Assume that γ > 0, then there exists a positive constant C > 0 such
that

‖f‖L∞ ≤ C
(
1 + ‖f‖L2 + ‖f‖Ḃ0

∞,∞
ln(e + ‖f‖Ċγ )

)
(2.5)

and∫ T

0

‖∇f(τ)‖L∞dτ ≤ C
(
1 +

∫ T

0

‖f(τ)‖L2dτ + sup
k

∫ T

0

‖∆k∇f(τ)‖L∞dτ

× ln
(
e +

∫ T

0

‖∇f(τ)‖Ċγ dτ
))

.

(2.6)

Proof. If f ∈ Wm,p, m > 2
p , Cγ in (2.5) is replaced by Wm,p, then (2.5) still holds.

For example, see [1, 21]. It is not difficult to prove (2.5) (see [31]). For the reader
convenience, we give a detail proof. It follows from Littlewood-Paley composition
that

f =
0∑

k=−∞

∆kf +
A∑

k=1

∆kf +
∞∑

k=A+1

∆kf. (2.7)

Using (2.7) and (2.3), we obtain

‖f‖L∞ ≤
0∑

k=−∞

‖∆kf‖L∞ + A max
1≤k≤A

‖∆kf‖L∞ +
∞∑

k=A+1

‖∆kf‖L∞

≤ C

0∑
k=−∞

2k‖∆kf‖L2 + A‖f‖Ḃ0
∞,∞

+
∞∑

k=A+1

2−γk2γk‖∆kf‖L∞

≤ C‖f‖L2 + A‖f‖Ḃ0
∞,∞

+
∞∑

k=A+1

2−γk‖f‖Ċγ

≤ C‖f‖L2 + A‖f‖Ḃ0
∞,∞

+ 2−γA‖f‖Ċγ .

Equation (2.5) follows immediately by choosing

A =
1
γ

log2(e + ‖f‖Ċγ ) ≤ C ln(e + ‖f‖Ċγ ).

Similar to the proof of (2.5), we can obtain (2.6) (see also [24]). Thus the proof is
complete. �

To prove Theorem 1.1, we need the following interpolation inequalities in two
space dimensions.

Lemma 2.4. The following inequalities hold

‖f‖Lp ≤ C‖f‖1−
2
q + 2

p

Lq ‖∇f‖
2
q−

2
p

Lq , −2
p
≤ 1− 2

q
, p ≥ q. (2.8)

Proof. Noting − 2
p ≤ 1 − 2

q , p ≥ q and using the Sobolev embedding theorem, we
obtain

‖f‖Lp ≤ C(‖f‖Lq + ‖∇f‖Lq ). (2.9)
Let fλ(x) = f(λx). From (2.9), we obtain

‖fλ‖Lp ≤ C(‖fλ‖Lq + ‖∇fλ‖Lq ),

which implies
‖f‖Lp ≤ C(λ

2
p−

2
q ‖f‖Lq + λ1+ 2

p−
2
q ‖∇f‖Lq ). (2.10)
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Taking λ = ‖f‖Lq‖∇f‖−1
Lq , from (2.10), we immediately obtain (2.8). Thus, the

proof is complete. �

3. Proof of main results

This section is devoted to the proof of Theorem 1.1, for which we need the
following Lemma that is basically established in [8]. For completeness, the proof is
also sketched here.

Lemma 3.1. Assume ‖u(0)‖H1+‖θ(0)‖L2 < ∞ and assume furthermore that (u, θ)
is a smooth solution to the Cauchy problem for (1.2) on ×[0, T ). If

u ∈ L2
(
0, T ; Ḃ0

∞,∞(R2)
)

, (3.1)

then

‖u(t)‖2L2 + ‖∇u(t)‖2L2 + ‖θ(t)‖2L2 +
∫ T

0

(‖∇u(t)‖2L2 + ‖∆u(t)‖2L2)dt

≤ C(‖u(0)‖2H1 + ‖θ(0)‖2L2).
(3.2)

Proof. Multiplying the first equation in (1.2) by u and using Cauchy inequality, we
obtain

1
2

d

dt
‖u(t)‖2L2 + ‖∇u(t)‖2L2 ≤

1
2

∫
R2

(|θ|2 + |u|2)(x, t)dx. (3.3)

Multiplying the first equation in (1.2) by −∆u, using integration by parts, we obtain

1
2

d

dt
‖∇u(t)‖2L2 + ‖∆u(t)‖2L2 = −

∫
R2

θe2 ·∆udx +
∫

R2
u · ∇u ·∆udx. (3.4)

Note that (see [32])

−∆u = ∇× (∇× u), ∇× (u · ∇u) = u · ∇(∇× u)

provided that ∇ · u = 0.
Using integration by parts, we obtain∫

R2
u · ∇u ·∆udx = −

∫
R2

(u · ∇u) · ∇ × (∇× u)dx

= −
∫

R2
∇× (u · ∇u) · ∇ × udx

= −
∫

R2
u · ∇(∇× u) · (∇× u)dx = 0.

(3.5)

It follows from (3.4), (3.5) and Young inequality that

1
2

d

dt
‖∇u(t)‖2L2 +

1
2
‖∆u(t)‖2L2 ≤ C‖θ(t)‖2L2 . (3.6)
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Multiplying the second equation in (1.2) by θ, using Hölder inequality and Young
inequality, it holds that

1
2

d

dt
‖θ(t)‖2L2 = −1

2

2∑
i,j=1

∫
R2

θ(∂iuj + ∂jui)2dx

≤ C‖θ(t)‖L2‖∇u(t)‖2L4

≤ C‖θ(t)‖L2‖u(t)‖Ḃ0
∞,∞

‖∆u(t)‖L2

≤ 1
6
‖∆u(t)‖2L2 + C‖u(t)‖2

Ḃ0
∞,∞

‖θ(t)‖2L2 ,

(3.7)

where we have used the interpolation inequality (see for example [26])

‖∇u(t)‖L4 ≤ C‖u(t)‖1/2

Ḃ0
∞,∞

‖∆u(t)‖1/2
L2 . (3.8)

Collecting (3.3), (3.6) and (3.7) gives

d

dt
(‖u(t)‖2L2 + ‖∇u(t)‖2L2 + ‖θ(t)‖2L2) + ‖∇u(t)‖2L2 + ‖∆u(t)‖2L2

≤ C
(
‖u(t)‖2L2 + ‖θ(t)‖2L2 + ‖u(t)‖2

Ḃ0
∞,∞

(‖∇u(t)‖2L2 + ‖θ(t)‖2L2)
)

.
(3.9)

Inequality (3.2) follows immediately from (3.1), (3.9) and Gronwall’s inequality.
Thus, the proof complete. �

We also need the following lemma (see also [6, 24] where similar estimates were
established).

Lemma 3.2. Assume that F ∈ L̃1
T (C−1)∩L2

T (L2) and u0 ∈ L2. Let u be a solution
of the Navier-Stokes equations

∂tu + u · ∇u +∇π = ∆u + F,

∇ · u = 0,

t = 0 : u = u0(x).
(3.10)

Then it holds that

‖u‖L̃1
T (C1) ≤ C(sup

k
‖∆ku0‖L2(1− exp{−c22kT}) + (‖u0‖L2

+ ‖F‖L2
T (L2))‖∇u‖2L2

T (L2) + sup
k

∫ T

0

2−k‖∆kF (τ)‖L∞dτ).
(3.11)

Proof. Applying ∆k to (3.10), we obtain

∆ku = e∆t∆ku0 +
∫ t

0

e∆(t−τ)∆kP
(
∇ · (u⊗ u) + F

)
(τ)dτ, (3.12)

where operator P satisfies

(P̂u)i =
2∑

j=1

(δij −
ξiξj

|ξ|2
)ûj(ξ).
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It follows from (2.3) and (2.4) that

‖∆ku(t)‖L∞

≤ C
(
e−c22kt‖∆ku0‖L∞ +

∫ t

0

e−c22k(t−τ)‖∆k∇ · (u⊗ u)(τ)‖L∞dτ
)

+ C

∫ t

0

e−c22k(t−τ)‖∆kF (τ)‖L∞dτ.

(3.13)

This implies that

‖u‖L̃1
T (C1)

≤ C sup
k

∫ T

0

2ke−c22kt‖∆ku0‖L∞dt

+ C sup
k

∫ T

0

∫ t

0

22ke−c22k(t−τ)‖∆ku⊗ u(τ)‖L∞dτdt

+ C sup
k

∫ T

0

∫ t

0

2ke−c22k(t−τ)‖∆kF (τ)‖L∞dτdt

≤ C sup
k
‖∆ku0‖L2(1− e−c22kT )

+ C sup
k

∫ T

0

‖∆k(u⊗ u)(τ)‖L∞dτ + sup
k

∫ T

0

2−k‖∆kF (τ)‖L∞dτ.

(3.14)

It follows from Bony decomposition that

‖∆k(u⊗ u)(τ)‖L∞

=
∑

|m−n|≤1

‖∆k(∆mu⊗∆nu)(τ)‖L∞ +
∑

m−n≥2

‖∆k(∆mu⊗∆nu)(τ)‖L∞

+
∑

n−m≥2

‖∆k(∆mu⊗∆nu)(τ)‖L∞

By (2.1) and (2.2), a straight computation gives∫ T

0

∑
|m−n|≤1

‖∆k(∆mu⊗∆nu)(τ)‖L∞dτ

≤ C

∫ T

0

∑
|m−n|≤1

2k‖∆k(∆mu⊗∆nu)(τ)‖L2dτ

≤ C

∫ t

0

∑
|m−n|≤1,m≥k−3

2k−m+n
2 ‖2m∆mu(τ)‖1/2

L∞‖∆nu(τ)‖1/2
L2 ‖∆mu(τ)‖1/2

L∞

× ‖2n∆nu(τ)‖1/2
L2 dτ

≤ C

∫ t

0

∑
|m−n|≤1,m≥k−3

2k−m+n
2 ‖2m∆mu(τ)‖1/2

L∞‖∆nu(τ)‖1/2
L2 ‖2m∆mu(τ)‖1/2

L2

× ‖2n∆nu(τ)‖1/2
L2 dτ

≤ C‖u‖1/2
L∞T (L2)‖∇u‖L2

T (L2)‖u‖
1/2

L̃1
T (C1)

.
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Similarly, we obtain∫ T

0

( ∑
m−n≥2

‖∆k(∆mu⊗∆nu)(τ)‖L∞ +
∑

n−m≥2

‖∆k(∆mu⊗∆nu)(τ)‖L∞

)
dτ

≤ C

∫ T

0

∑
m−n≥2,|m−k|≤2

‖∆mu(τ)‖L∞‖∆nu(τ)‖L∞dτ

≤ C
∑

m−n≥2,|m−k|≤2

‖2m∆mu(τ)‖1/2
L∞‖2

m∆mu(τ)‖1/2
L2 2n−m

2 ‖∆nu(τ)‖L2dτ

≤ C‖u‖1/2
L∞T (L2)‖∇u‖L2

T (L2)‖u‖
1/2

L̃1
T (C1)

.

Using the above two estimates, from (3.14) and Young inequality, we obtain

‖u‖L̃1
T (C1) ≤ C(sup

k
‖∆ku0‖L2(1− exp{−c22kT}) + ‖u‖L∞T (L2)‖∇u‖2L2

T (L2)

+ sup
k

∫ T

0

2−k‖∆kF (τ)‖L∞dτ).
(3.15)

Combining (3.15) and the basic energy estimate

‖u‖2L∞T (L2) + ‖∇u‖2L2
T (L2) ≤ C(‖u0‖2L2 + ‖F‖2L2

T (L2)) (3.16)

gives (3.11). Thus, the proof is complete. �

Proof of Theorem 1.1. Set F = u · ∇u + θe2. It follows from (1.3) and (3.2) that
F ∈ L̃1

T (C−1) ∩ L2
T (L2). Applying ∆k to both sides of (3.10) and using standard

energy estimate, (2.2) and Young inequality, we have

1
2

d

dt
‖∆ku‖2L2 + c22k‖∆ku‖2L2

≤ c

2
22k‖∆ku‖2L2 + C(‖∆ku‖L2 + ‖∆kF‖2L2 + ‖∆k(u⊗ u)‖2L2).

Integrating the above inequality with respect to t and summing over k, we obtain∑
k

‖∆ku‖2L∞T (L2) +
∑

k

∫ t

0

22k‖∆ku(τ)‖2L2dτ

≤ C(‖u0‖2L2 + ‖F‖2L2
T (L2) + ‖u‖2L∞T (L2)‖∇u‖2L2

T (L2)),

(3.17)

where we used the interpolation inequality (see Lemma 2.4)

‖u‖L4 ≤ C‖u‖1/2
L2 ‖∇u‖1/2

L2 .

It follows from (3.16) and (3.17) that∑
k

‖∆ku‖2L∞T (L2) +
∑

k

∫ t

0

22k‖∆ku(τ)‖2L2dτ

≤ C(‖u0‖2L2 + ‖F‖2L2
T (L2))(1 + ‖u0‖2L2 + ‖F‖2L2

T (L2)).

(3.18)

Using (3.18), for any t0 ∈ [0, T ), we can choose k0 > 0 such that

sup
k≥k0

‖∆ku‖L∞[t0,T ](L
2) ≤

ε

4C
.
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By (3.16), we can choose t1 ∈ [t0, T ] such that

sup
t1≤t≤T

sup
k≤k0

‖∆ku(t)‖L2(1− exp{−c22k(T − t)})

≤ sup
t1≤t≤T

2c22k0(T − t1)‖u(t)‖L2

≤ C22k0(‖u0‖L2 + ‖F‖L2
T (L2))(T − t1) ≤

ε

4C
.

Consequently,

sup
t1≤t≤T

sup
k
‖∆ku(t)‖L2(1− exp{−c22k(T − t)}) ≤ ε

2C
. (3.19)

On the other hand, we can choose t2 ∈ [t1, T ) such that(
sup

t2≤t≤T
‖u(t)‖L2 + ‖F‖L2

[t2,T ](L
2)

)
‖∇u‖2L2

[t2,T ](L
2)

+ sup
k

∫ T

t2

2−k‖∆kF (τ)‖L∞dτ)

≤ ε

2C
.

(3.20)

It follows from (3.11) that

‖u‖L̃1
[t2,T ](C

1) ≤ C
(

sup
k
‖∆ku(t2)‖L2(1− exp{−c22k(T − t2)})

+
(
‖u(t2)‖L2 + ‖F‖L2

[t2,T ](L
2)

)
‖∇u‖2L2

[t2,T ](L
2)

+ sup
k

∫ T

t2

2−k‖∆kF (τ)‖L∞dτ
)
.

(3.21)

Combining (3.19)-(3.21) gives

‖u‖L̃1
[t2,T ](C

1) ≤ ε. (3.22)

Using (3.22) and (1.3), we can choose t∗ ∈ [t2, T ) such that

‖u‖L̃1
[t∗,T ](C

1) ≤ ε, ‖θ‖L1
[t∗,T ](Ḃ

0
∞,∞) ≤ ε. (3.23)

For 0 ≤ t < T , define

M(t) = sup
0≤τ<t

‖u(τ)‖Ċ1+α , N(t) = sup
0≤τ<t

‖θ(τ)‖Ċα .

In what follows, we estimate M(t) and N(t) for 0 ≤ t < T . Applying ∆k to the
first and second equation in (1.2), we obtain

∂t∆ku−∆∆ku +∇∆kπ = −∇ ·∆k(u⊗ u) + ∆k(θe2),

∂t∆kθ + u · ∇∆kθ = ∆k

(1
2

2∑
i,j=1

(∂iu
j + ∂ju

i)2
)

+ [u · ∇,∆k]θ.
(3.24)

Firstly, we make estimate ‖u(t)‖Ċ1+α . It follows from the first equation in (3.24)
and (2.4) that

‖∆ku(t)‖L∞ ≤ Ce−c22kt‖∆ku(0)‖L∞ + C

∫ t

0

e−c22k(t−τ)‖∇ ·∆k(u⊗ u)(τ)‖L∞dτ

+ C

∫ t

0

e−c22k(t−τ)‖∆k(θe2)(τ)‖L∞dτ.
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By the above inequality, (2.1), (2.2) and Hölder inequality, we obtain

‖u(t)‖Ċ1+α ≤ C‖u(0)‖Ċ1+α + C

∫ t

0

23k/2e−c22k(t−τ)‖u⊗ u(τ)‖
Ċ

1
2 +αdτ

+ C

∫ t

0

2ke−c22k(t−τ)‖θ(τ)‖Ċαdτ

≤ C(‖u(0)‖Ċ1+α + N(t)) + C(
∫ t

0

‖u⊗ u(τ)‖4
Ċ

1
2 +α

dτ)1/4.

(3.25)

By (2.8), we obtain

‖u‖L4 ≤ C‖u‖1/2
L2 ‖∇u‖1/2

L2 . (3.26)

Using this inequality and the fact ‖u⊗ u‖
Ċ

1
2 +α ≤ C‖u‖L4‖u‖Ċ1+α , we obtain

‖u(t)‖4
Ċ1+α

≤ C(‖u(0)‖Ċ1+α + N(t))4 + C

∫ t

0

‖u(τ)‖2L2‖∇u(τ)‖2L2‖‖u(τ)‖4
Ċ1+αdτ

≤ C(‖u(0)‖Ċ1+α + N(t̃))4 + C

∫ t

0

‖u(τ)‖2L2‖∇u(τ)‖2L2‖‖u(τ)‖4
Ċ1+αdτ,

(3.27)

for any fixed t̃ : 0 ≤ t̃ ≤ T and t ≤ t̃ < T . Here we have used the fact that N(t) is
nondecreasing. Consequently, Gronwall’s inequality gives

M(t̃)4 = sup
0≤t<t̃

‖u(t)‖4
Ċ1+α

≤ C(‖u(0)‖Ċ1+α + N(t̃))4 exp{C
∫ t

0

‖u(τ)‖2L2‖∇u(τ)‖2L2‖dτ}.

Since t̃ ∈ [0, T ) is arbitrary, by (3.2), we obtain

M(t) ≤ C(‖u(0)‖Ċ1+α + N(t)), ∀t ∈ [0, T ). (3.28)

We next continue to estimate N(t). It follows from the second equation in (3.24)
that

‖∆kθ‖L∞ ≤ C‖∆kθ(0)‖L∞ + C

∫ t

0

2∑
i,j=1

‖∆k(∂iu
j + ∂ju

i)2(τ)‖L∞dτ

+ C

∫ t

0

‖[u · ∇,∆k]θ(τ)‖L∞dτ.

(3.29)

Using (2.1), (2.2), (3.29) and Hölder inequality, we have

‖θ(t)‖Ċα ≤ C‖θ(0)‖Ċα + C

∫ t

0

‖∇u(τ)‖L∞‖u(τ)‖Ċ1+αdτ

+ C

∫ t

0

2kα‖[u · ∇,∆k]θ(τ)‖L∞dτ.

(3.30)
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It follows from Bony decomposition that

θ =
∑

|k′−r|≤1

[∆k′u · ∇,∆k]∆rθ +
∑

k′≤r−2

[∆k′u · ∇,∆k]∆rθ

+
∑

k′≤r−2

[∆ru · ∇,∆k]∆k′θ

=
∑

|k′−r|≤1

[∆k′u · ∇,∆k]∆rθ +
∑

|r−k|≤2

[Sr−1u · ∇,∆k]∆rθ

+
∑

|r−k|≤2

[∆ru · ∇,∆k]Sr−1θ.

(3.31)

Note that

[Sr−1u, ∆k]f =
∫

R2
h(y)[Sr−1u(x)− Sr−1u(x− 2−ky)]f(x− 2−ky)dy,

we obtain

‖[Sr−1u, ∆k]f‖L∞ ≤ C2−k‖∇Sr−1u‖L∞‖f‖L∞ .

Hence ∑
|r−k|≤2

∫ t

0

2kα‖[Sr−1u · ∇,∆k]∆rθ(τ)‖L∞dτ

≤ C
∑

|r−k|≤2

∫ t

0

2k(α−1)‖∇Sr−1u‖L∞‖∇∆rθ‖L∞(τ)dτ

≤ C
∑

|r−k|≤2

∫ t

0

‖∇Sr−1u‖L∞2rα‖∆rθ‖L∞(τ)dτ

≤ C

∫ t

0

‖∇u(τ)‖L∞‖θ(τ)‖Ċαdτ.

(3.32)

Note that

[∆ru, ∆k]f =
∫

R2
h(y)[∆ru(x)−∆ru(x− 2−ky)]f(x− 2−ky)dy.

Then, we have

‖[∆ru, ∆k]f‖ ≤ C2−k‖∇∆ru‖L∞‖f‖L∞ .

It follows from the above inequality and (2.1), (2.2) that

∑
|r−k|≤2

∫ t

0

2kα‖[∆ru · ∇,∆k]Sr−1θ(τ)‖L∞

≤ C
∑

|r−k|≤2

∫ t

0

2k(α−1)‖∇∆ru‖L∞‖∇Sr−1θ‖L∞(τ)dτ

≤ C

∫ t

0

‖θ(τ)‖L∞‖u(τ)‖Ċ1+α(τ)dτ.

(3.33)
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By a straightforward computation, we obtain∑
|k′−r|≤1

∫ t

0

2kα‖[∆k′u · ∇,∆k]∆rθ(τ)‖L∞dτ

≤ C

∫ t

0

‖θ(τ)‖L∞‖u(τ)‖Ċ1+αdτ.

(3.34)

Collecting (3.30)-(3.34) gives

‖θ(t)‖Ċα ≤ C‖θ(0)‖Ċα + C

∫ t

0

‖∇u(τ)‖L∞‖u(τ)‖Ċ1+αdτ

+ C

∫ t

0

(‖∇u(τ)‖L∞‖θ(τ)‖Ċα + ‖θ(τ)‖L∞‖u(τ)‖Ċ1+α)dτ

≤ C‖θ(0)‖Ċα + C

∫ t

0

(‖∇u(τ)‖L∞ + ‖θ(τ)‖L∞)(‖u(τ)‖Ċ1+α

+ ‖θ(τ)‖Ċα)dτ.

(3.35)

From (3.28) and (3.35), we obtain

N(t) ≤ C‖θ(0)‖Ċα +C

∫ t

0

(‖∇u(τ)‖L∞+‖θ(τ)‖L∞)(‖u(0)‖Ċ1+α +N(τ))dτ. (3.36)

With the help of Lemma 2.3 and (3.23), we obtain

C

∫ t

0

(‖∇u(τ)‖L∞ + ‖θ(τ)‖L∞)dτ

≤ C

∫ t?

0

(‖∇u(τ)‖L∞ + ‖θ(τ)‖L∞)dτ

+ C

∫ t

t?

(1 + ‖u(τ)‖L2 + ‖θ(τ)‖L2)dτ

+ C

∫ t

t?

‖θ‖Ḃ0
∞,∞

ln(e + ‖θ(τ)‖Ċα)dτ

+ C sup
k

∫ t

t?

‖∇∆ku(τ)‖L∞dτ ln
(
e +

∫ t

0

‖u(τ)‖Ċ1+αdτ
)

≤ C? + Cε ln (e + N(t)) + Cε ln[e + Ct(‖u(0)‖Ċ1+α + N(t))]

≤ C? + Cε ln(e + ‖u(0)‖Ċ1+α + N(t)),

(3.37)

where C? is a positive constant depending on the solution (u, θ) on [0, t?]. It follows
from (3.36)-(3.37) that

N(t) ≤ C?(1 + ‖u(0)‖Ċ1+α + ‖θ(0)‖Ċα) + C

∫ t

0

(‖∇u(τ)‖L∞ + ‖θ(τ)‖L∞)N(τ)dτ,

provided that ε > 0 is suitably small. By Gronwall’s inequality and (3.37), we
obtain

e + ‖u(0)‖Ċ1+α + N(t)

≤ C?(e + ‖u(0)‖Ċ1+α + ‖θ(0)‖Ċα) exp{C
∫ t

0

(‖∇u(τ)‖L∞ + ‖θ(τ)‖L∞)dτ}

≤ C?(e + ‖u(0)‖Ċ1+α + ‖θ(0)‖Ċα) exp{C? + Cε ln(e + ‖u(0)‖Ċ1+α + N(t))}
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≤ C?(e + ‖u(0)‖Ċ1+α + ‖θ(0)‖Ċα)(e + ‖u(0)‖Ċ1+α + N(t))Cε.

Choosing ε > 0 suitably small, the above inequality and (3.28) yields

M(t) + N(t) ≤ C?(1 + ‖u(0)‖Ċ1+α + ‖θ(0)‖Ċα)2.

The proof is complete. �
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