Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 72, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BLOW-UP CRITERION FOR TWO-DIMENSIONAL HEAT CONVECTION EQUATIONS WITH ZERO HEAT CONDUCTIVITY

YU-ZHU WANG, ZHIQIANG WEI

Abstract

In this article we obtain a blow-up criterion of smooth solutions to Cauchy problem for the incompressible heat convection equations with zero heat conductivity in \mathbb{R}^{2}. Our proof is based on careful Höder estimates of heat and transport equations and the standard Littlewood-Paley theory.

1. Introduction

The incompressible heat convection equations in two space dimensions take the form

$$
\begin{gather*}
\partial_{t} u+u \cdot \nabla u+\nabla \pi=\mu \Delta u+\theta e_{2} \\
\partial_{t} \theta+u \cdot \nabla \theta-\nu \Delta \theta=\frac{\mu}{2} \sum_{i, j=1}^{2}\left(\partial_{i} u^{j}+\partial_{j} u^{i}\right)^{2} \tag{1.1}\\
\nabla \cdot u=0
\end{gather*}
$$

where $u=\left(u^{1}, u^{2}\right)^{t}$ is the fluid velocity, π is the pressure, θ stands for the absolute temperature, μ is the coefficient of viscosity, ν is the coefficient of heat conductivity and $e_{2}=(0,1)$.

Some problems related to (1.1) have been studied in recent years (see [22], 8], [17]-[20] and [25]). Fan and Ozawa [8] obtained some regularity criteria of strong solutions to the Cauchy problem for the (1.1) in \mathbb{R}^{3}. Hiroshi [17] proved the existence of the strong solutions for the initial boundary value problems for (1.1). Kagei and Skowron [18] discussed the existence and uniqueness of solutions of the initialboundary value problem for the heat convection equations (1.1) of incompressible asymmetric fluids in \mathbb{R}^{3}. Moreover, Kagei [19] considered global attractors for the initial-boundary value problem for (1.1) in \mathbb{R}^{2}. Lukaszewicz and Krzyzanowski [25] treated the initial-boundary value problem for 1.1 with moving boundaries in \mathbb{R}^{3}. Kakizawa 20 proved that (1.1) has uniquely a mild solution. Moreover, a mild solution of 1.1 can be a strong or classical solution under appropriate assumptions for initial data.

It is well known that the Boussinesq approximation [3 is a simplified model of heat convection of incompressible viscous fluids. There is no doubt that many

[^0]investigations on the Boussinesq approximation have been carried out for a hundred years. For regularity criteria of weak solutions and blow up criteria of smooth solutions, we refer to [9] and so on.

Equation (1.1) is the Navier-Stokes equations coupled with the heat equation. Due to its importance in mathematics and physics, there is lots of literature devoted to the mathematical theory of the Navier-Stokes equations. Leray-Hopf weak solution were constructed by Leray [23] and Hopf 16], respectively. Later on, much effort has been devoted to establish the global existence and uniqueness of smooth solutions to the Navier-Stokes equations. Different criteria for regularity of the weak solutions have been proposed and many interesting results were established (see [7], 8]-11, [12, [14, [29] and [33]-34]). Serrin-type regularity criteria of Leray weak solutions in terms of pressure in Besov space were obtained in [13] and [15].

In this paper, we consider (1.1) with the zero heat conductivity; i.e., $\nu=0$. Without loss of generality, we take $\mu=1$. The corresponding heat convection equations thus reads

$$
\begin{gather*}
\partial_{t} u+u \cdot \nabla u+\nabla \pi=\Delta u+\theta e_{2}, \\
\partial_{t} \theta+u \cdot \nabla \theta=\frac{1}{2} \sum_{i, j=1}^{2}\left(\partial_{i} u^{j}+\partial_{j} u^{i}\right)^{2}, \tag{1.2}\\
\nabla \cdot u=0 .
\end{gather*}
$$

Due to the term $\frac{1}{2} \sum_{i, j=1}^{2}\left(\partial_{i} u^{j}+\partial_{j} u^{i}\right)^{2}$, it is very difficult to deal with 1.2 . The local well-posedness of the Cauchy problem for 1.2 is rather standard, which can be obtained by standard Galerkin method and energy estimates (for example see [8]). In the absence of global well-posedness, the development of blow-up/ non blow-up theory (see [1]) is of major importance for both theoretical and pratical purposes. In this paper, we obtain a blow-up criterion of smooth solutions to the Cauchy problem for 1.2). Our main theorem is as follows.

Theorem 1.1. Assume that (u, θ) is a local smooth solution to the heat convection equations with zero heat conductivity 1.2 on $[0, T)$ and $\|u(0)\|_{H^{1} \cap \dot{C}^{1+\alpha}}+$ $\|\theta(0)\|_{L^{2} \cap \dot{C}^{\alpha}}<\infty$ for some $\alpha \in(0,1)$. Then

$$
\|u(t)\|_{\dot{C}^{1+\alpha}}+\|\theta(t)\|_{\dot{C}^{\alpha}}<\infty
$$

for all $0 \leq t \leq T$ provided that

$$
\begin{equation*}
\|u\|_{L_{T}^{2}\left(\dot{B}_{\infty, \infty}^{0}\right)}<\infty, \quad\|\theta\|_{L_{T}^{1}\left(\dot{B}_{\infty, \infty}^{0}\right)}<\infty \tag{1.3}
\end{equation*}
$$

This article is organized as follows. We first state some preliminary on functional settings and some important inequalities in Section 2 and then prove the blow-up criterion of smooth solutions of 1.2 in Section 3.

2. Preliminaries

Let $\mathcal{S}\left(\mathbb{R}^{2}\right)$ be the Schwartz class of rapidly decreasing functions. Given $f \in$ $\mathcal{S}\left(\mathbb{R}^{2}\right)$, its Fourier transform $\mathcal{F} f=\hat{f}$ is defined by

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{2}} e^{-i x \cdot \xi} f(x) d x
$$

and for any given $g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, its inverse Fourier transform $\mathcal{F}^{-1} g=\check{g}$ is defined by

$$
\check{g}(x)=\int_{\mathbb{R}^{2}} e^{i x \cdot \xi} g(\xi) d \xi
$$

Next let us recall the Littlewood-Paley decomposition. Choose two non-negative radial functions $\chi, \phi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, supported respectively in $\mathbb{B}=\left\{\xi \in \mathbb{R}^{2}:|\xi| \leq \frac{4}{3}\right\}$ and $\mathcal{C}=\left\{\xi \in \mathbb{R}^{2}: \frac{3}{4} \leq|\xi| \leq \frac{8}{3}\right\}$ such that

$$
\chi(\xi)+\sum_{k \geq 0} \phi\left(2^{-k} \xi\right)=1, \quad \forall \xi \in \mathbb{R}^{2}
$$

and

$$
\sum_{k=-\infty}^{\infty} \phi\left(2^{-k} \xi\right)=1, \quad \forall \xi \in \mathbb{R}^{2} \backslash\{0\}
$$

The frequency localization operator is defined by

$$
\Delta_{k} f=\int_{\mathbb{R}^{2}} \check{\phi}(y) f\left(x-2^{-k} y\right) d y, \quad S_{k} f=\sum_{k^{\prime} \leq k-1} \Delta_{k^{\prime}} f
$$

Let us now recall homogeneous Besov spaces (for example, see [2] and 30]). For $(p, q) \in[1, \infty]^{2}$ and $s \in \mathbb{R}$, the homogeneous Besov space $\dot{B}_{p, q}^{s}$ is defined as the set of f up to polynomials such that

$$
\|f\|_{\dot{B}_{p, q}^{s}}=\left\|2^{k s}\right\| \Delta_{k} f\left\|_{L^{p}}\right\|_{l^{q}(\mathbb{Z})}<\infty
$$

Finally, we recall the following space, which is defined in 6]. Let p be in $[1, \infty]$ and $r \in \mathbb{R}$; the space $\tilde{L}_{T}^{p}\left(C^{r}\right)$ is the space of the distributions f such that

$$
\|f\|_{\tilde{L}_{T}^{p}\left(C^{r}\right)}=\sup _{k} 2^{k r}\left\|\Delta_{k} f\right\|_{L_{T}^{p}\left(L^{\infty}\right)}<\infty
$$

The open ball with radius R centered at $x_{0} \in \mathbb{R}^{2}$ is denoted by $\mathbf{B}\left(x_{0}, R\right)$. The ring $\left\{\xi \in \mathbb{R}^{2}\left|R_{1} \leq|\xi| \leq R_{2}\right\}\right.$ is denoted by $\mathbf{C}\left(0, R_{1}, R_{2}\right)$.

In what follows, we shall use Bernstein inequalities, which can be found in 4.
Lemma 2.1. Let k a positive integer and σ any smooth homogeneous function of degree $m \in \mathbb{R}$. A constant C exists such that, for any positive real number λ and any function f in $L^{p}\left(\mathbb{R}^{2}\right)$, we have

$$
\begin{gather*}
\operatorname{supp} \hat{f} \subset \lambda \boldsymbol{B} \Rightarrow \sup _{|\beta|=k}\left\|\partial^{\beta} f\right\|_{L^{q}} \leq C \lambda^{k+2\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L^{p}} \tag{2.1}\\
\operatorname{supp} \hat{f} \subset \lambda \boldsymbol{C} \Rightarrow C^{-1} \lambda^{k}\|f\|_{L^{p}} \leq \sup _{|\beta|=k}\left\|\partial^{\beta} f\right\|_{L^{p}} \leq C \lambda^{k}\|f\|_{L^{p}} . \tag{2.2}
\end{gather*}
$$

Moreover, if σ is a smooth function on \mathbb{R}^{2} which is homogeneous of degree m outside a fixed ball, then we have

$$
\begin{equation*}
\operatorname{supp} \hat{f} \subset \lambda \boldsymbol{C} \Rightarrow\|\sigma(D) f\|_{L^{q}} \leq C \lambda^{\left(m+2\left(\frac{1}{p}-\frac{1}{q}\right)\right)}\|f\|_{L^{p}} \tag{2.3}
\end{equation*}
$$

Lemma 2.2. For any $f \in L^{p}\left(\mathbb{R}^{2}\right)(p>1)$ and any positive real number λ,

$$
\begin{equation*}
\operatorname{supp} \hat{f} \subset \lambda \boldsymbol{C} \Rightarrow\left\|e^{t \Delta} f\right\|_{L^{p}} \leq C e^{-c \lambda^{2} t}\|f\|_{L^{p}} \tag{2.4}
\end{equation*}
$$

where C and c are positive constants. See [5] for the proof of 2.4.
The following lemma plays an important role in the proof of Theorem 1.1 (see also [27] and [28] where similar estimate were established).

Lemma 2.3. Assume that $\gamma>0$, then there exists a positive constant $C>0$ such that

$$
\begin{equation*}
\|f\|_{L^{\infty}} \leq C\left(1+\|f\|_{L^{2}}+\|f\|_{\dot{B}_{\infty, \infty}^{0}} \ln \left(e+\|f\|_{\dot{C}^{\gamma}}\right)\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{0}^{T}\|\nabla f(\tau)\|_{L^{\infty}} d \tau \leq & C\left(1+\int_{0}^{T}\|f(\tau)\|_{L^{2}} d \tau+\sup _{k} \int_{0}^{T}\left\|\Delta_{k} \nabla f(\tau)\right\|_{L^{\infty}} d \tau\right. \\
& \left.\times \ln \left(e+\int_{0}^{T}\|\nabla f(\tau)\|_{\dot{C}^{\gamma}} d \tau\right)\right) \tag{2.6}
\end{align*}
$$

Proof. If $f \in W^{m, p}, m>\frac{2}{p}, C^{\gamma}$ in 2.5 is replaced by $W^{m, p}$, then 2.5 still holds. For example, see [1, 21]. It is not difficult to prove (2.5) (see [31). For the reader convenience, we give a detail proof. It follows from Littlewood-Paley composition that

$$
\begin{equation*}
f=\sum_{k=-\infty}^{0} \Delta_{k} f+\sum_{k=1}^{A} \Delta_{k} f+\sum_{k=A+1}^{\infty} \Delta_{k} f . \tag{2.7}
\end{equation*}
$$

Using (2.7) and (2.3), we obtain

$$
\begin{aligned}
\|f\|_{L^{\infty}} & \leq \sum_{k=-\infty}^{0}\left\|\Delta_{k} f\right\|_{L^{\infty}}+A \max _{1 \leq k \leq A}\left\|\Delta_{k} f\right\|_{L^{\infty}}+\sum_{k=A+1}^{\infty}\left\|\Delta_{k} f\right\|_{L^{\infty}} \\
& \leq C \sum_{k=-\infty}^{0} 2^{k}\left\|\Delta_{k} f\right\|_{L^{2}}+A\|f\|_{\dot{B}_{\infty, \infty}^{0}}+\sum_{k=A+1}^{\infty} 2^{-\gamma k} 2^{\gamma k}\left\|\Delta_{k} f\right\|_{L^{\infty}} \\
& \leq C\|f\|_{L^{2}}+A\|f\|_{\dot{B}_{\infty, \infty}^{0}}+\sum_{k=A+1}^{\infty} 2^{-\gamma k}\|f\|_{\dot{C}^{\gamma}} \\
& \leq C\|f\|_{L^{2}}+A\|f\|_{\dot{B}_{\infty, \infty}^{0}}+2^{-\gamma A}\|f\|_{\dot{C}^{\gamma}}
\end{aligned}
$$

Equation 2.5 follows immediately by choosing

$$
A=\frac{1}{\gamma} \log _{2}\left(e+\|f\|_{\dot{C}^{\gamma}}\right) \leq C \ln \left(e+\|f\|_{\dot{C}^{\gamma}}\right)
$$

Similar to the proof of (2.5), we can obtain (2.6) (see also [24]). Thus the proof is complete.

To prove Theorem 1.1, we need the following interpolation inequalities in two space dimensions.
Lemma 2.4. The following inequalities hold

$$
\begin{equation*}
\|f\|_{L^{p}} \leq C\|f\|_{L^{q}}^{1-\frac{2}{q}+\frac{2}{p}}\|\nabla f\|_{L^{q}}^{\frac{2}{q}-\frac{2}{p}}, \quad-\frac{2}{p} \leq 1-\frac{2}{q}, \quad p \geq q \tag{2.8}
\end{equation*}
$$

Proof. Noting $-\frac{2}{p} \leq 1-\frac{2}{q}, p \geq q$ and using the Sobolev embedding theorem, we obtain

$$
\begin{equation*}
\|f\|_{L^{p}} \leq C\left(\|f\|_{L^{q}}+\|\nabla f\|_{L^{q}}\right) \tag{2.9}
\end{equation*}
$$

Let $f_{\lambda}(x)=f(\lambda x)$. From 2.9), we obtain

$$
\left\|f_{\lambda}\right\|_{L^{p}} \leq C\left(\left\|f_{\lambda}\right\|_{L^{q}}+\left\|\nabla f_{\lambda}\right\|_{L^{q}}\right)
$$

which implies

$$
\begin{equation*}
\|f\|_{L^{p}} \leq C\left(\lambda^{\frac{2}{p}-\frac{2}{q}}\|f\|_{L^{q}}+\lambda^{1+\frac{2}{p}-\frac{2}{q}}\|\nabla f\|_{L^{q}}\right) \tag{2.10}
\end{equation*}
$$

Taking $\lambda=\|f\|_{L^{q}}\|\nabla f\|_{L^{q}}^{-1}$, from 2.10, we immediately obtain (2.8). Thus, the proof is complete.

3. Proof of main results

This section is devoted to the proof of Theorem 1.1, for which we need the following Lemma that is basically established in [8]. For completeness, the proof is also sketched here.

Lemma 3.1. Assume $\|u(0)\|_{H^{1}}+\|\theta(0)\|_{L^{2}}<\infty$ and assume furthermore that (u, θ) is a smooth solution to the Cauchy problem for $\sqrt[1.2]{ }$ on $\times[0, T)$. If

$$
\begin{equation*}
u \in L^{2}\left(0, T ; \dot{B}_{\infty, \infty}^{0}\left(\mathbb{R}^{2}\right)\right) \tag{3.1}
\end{equation*}
$$

then

$$
\begin{align*}
& \|u(t)\|_{L^{2}}^{2}+\|\nabla u(t)\|_{L^{2}}^{2}+\|\theta(t)\|_{L^{2}}^{2}+\int_{0}^{T}\left(\|\nabla u(t)\|_{L^{2}}^{2}+\|\Delta u(t)\|_{L^{2}}^{2}\right) d t \tag{3.2}\\
& \leq C\left(\|u(0)\|_{H^{1}}^{2}+\|\theta(0)\|_{L^{2}}^{2}\right)
\end{align*}
$$

Proof. Multiplying the first equation in 1.2 by u and using Cauchy inequality, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|u(t)\|_{L^{2}}^{2}+\|\nabla u(t)\|_{L^{2}}^{2} \leq \frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\theta|^{2}+|u|^{2}\right)(x, t) d x \tag{3.3}
\end{equation*}
$$

Multiplying the first equation in $\sqrt{1.2}$ by $-\Delta u$, using integration by parts, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\nabla u(t)\|_{L^{2}}^{2}+\|\Delta u(t)\|_{L^{2}}^{2}=-\int_{\mathbb{R}^{2}} \theta e_{2} \cdot \Delta u d x+\int_{\mathbb{R}^{2}} u \cdot \nabla u \cdot \Delta u d x \tag{3.4}
\end{equation*}
$$

Note that (see [32])

$$
-\Delta u=\nabla \times(\nabla \times u), \quad \nabla \times(u \cdot \nabla u)=u \cdot \nabla(\nabla \times u)
$$

provided that $\nabla \cdot u=0$.
Using integration by parts, we obtain

$$
\begin{align*}
\int_{\mathbb{R}^{2}} u \cdot \nabla u \cdot \Delta u d x & =-\int_{\mathbb{R}^{2}}(u \cdot \nabla u) \cdot \nabla \times(\nabla \times u) d x \\
& =-\int_{\mathbb{R}^{2}} \nabla \times(u \cdot \nabla u) \cdot \nabla \times u d x \tag{3.5}\\
& =-\int_{\mathbb{R}^{2}} u \cdot \nabla(\nabla \times u) \cdot(\nabla \times u) d x=0 .
\end{align*}
$$

It follows from 3.4, 3.5 and Young inequality that

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\nabla u(t)\|_{L^{2}}^{2}+\frac{1}{2}\|\Delta u(t)\|_{L^{2}}^{2} \leq C\|\theta(t)\|_{L^{2}}^{2} \tag{3.6}
\end{equation*}
$$

Multiplying the second equation in $\sqrt{1.2}$ by θ, using Hölder inequality and Young inequality, it holds that

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|\theta(t)\|_{L^{2}}^{2} & =-\frac{1}{2} \sum_{i, j=1}^{2} \int_{\mathbb{R}^{2}} \theta\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)^{2} d x \\
& \leq C\|\theta(t)\|_{L^{2}}\|\nabla u(t)\|_{L^{4}}^{2} \tag{3.7}\\
& \leq C\|\theta(t)\|_{L^{2}}\|u(t)\|_{\dot{B}_{\infty, \infty}^{0}}\|\Delta u(t)\|_{L^{2}} \\
& \leq \frac{1}{6}\|\Delta u(t)\|_{L^{2}}^{2}+C\|u(t)\|_{\dot{B}_{\infty, \infty}^{0}}^{2}\|\theta(t)\|_{L^{2}}^{2}
\end{align*}
$$

where we have used the interpolation inequality (see for example [26])

$$
\begin{equation*}
\|\nabla u(t)\|_{L^{4}} \leq C\|u(t)\|_{\dot{B}_{\infty, \infty}^{0}}^{1 / 2}\|\Delta u(t)\|_{L^{2}}^{1 / 2} \tag{3.8}
\end{equation*}
$$

Collecting (3.3), (3.6) and (3.7) gives

$$
\begin{align*}
& \frac{d}{d t}\left(\|u(t)\|_{L^{2}}^{2}+\|\nabla u(t)\|_{L^{2}}^{2}+\|\theta(t)\|_{L^{2}}^{2}\right)+\|\nabla u(t)\|_{L^{2}}^{2}+\|\Delta u(t)\|_{L^{2}}^{2} \tag{3.9}\\
& \leq C\left(\|u(t)\|_{L^{2}}^{2}+\|\theta(t)\|_{L^{2}}^{2}+\|u(t)\|_{B_{\infty, \infty}^{0}}^{2}\left(\|\nabla u(t)\|_{L^{2}}^{2}+\|\theta(t)\|_{L^{2}}^{2}\right)\right) .
\end{align*}
$$

Inequality 3.2 follows immediately from (3.1, 3.9 and Gronwall's inequality. Thus, the proof complete.

We also need the following lemma (see also [6, 24] where similar estimates were established).

Lemma 3.2. Assume that $F \in \tilde{L}_{T}^{1}\left(C^{-1}\right) \cap L_{T}^{2}\left(L^{2}\right)$ and $u_{0} \in L^{2}$. Let u be a solution of the Navier-Stokes equations

$$
\begin{gather*}
\partial_{t} u+u \cdot \nabla u+\nabla \pi=\Delta u+F \\
\nabla \cdot u=0 \tag{3.10}\\
t=0: \quad u=u_{0}(x)
\end{gather*}
$$

Then it holds that

$$
\begin{align*}
\|u\|_{\tilde{L}_{T}^{1}\left(C^{1}\right)} \leq & C\left(\sup _{k}\left\|\Delta_{k} u_{0}\right\|_{L^{2}}\left(1-\exp \left\{-c 2^{2 k} T\right\}\right)+\left(\left\|u_{0}\right\|_{L^{2}}\right.\right. \\
& \left.\left.+\|F\|_{L_{T}^{2}\left(L^{2}\right)}\right)\|\nabla u\|_{L_{T}^{2}\left(L^{2}\right)}^{2}+\sup _{k} \int_{0}^{T} 2^{-k}\left\|\Delta_{k} F(\tau)\right\|_{L^{\infty}} d \tau\right) \tag{3.11}
\end{align*}
$$

Proof. Applying Δ_{k} to 3.10, we obtain

$$
\begin{equation*}
\Delta_{k} u=e^{\Delta t} \Delta_{k} u_{0}+\int_{0}^{t} e^{\Delta(t-\tau)} \Delta_{k} \mathbb{P}(\nabla \cdot(u \otimes u)+F)(\tau) d \tau \tag{3.12}
\end{equation*}
$$

where operator \mathbb{P} satisfies

$$
(\hat{\mathbb{P} u})^{i}=\sum_{j=1}^{2}\left(\delta_{i j}-\frac{\xi^{i} \xi^{j}}{|\xi|^{2}}\right) \hat{u}^{j}(\xi)
$$

It follows from 2.3 and 2.4 that

$$
\begin{align*}
&\left\|\Delta_{k} u(t)\right\|_{L^{\infty}} \\
& \leq C\left(e^{-c 2^{2 k} t}\left\|\Delta_{k} u_{0}\right\|_{L^{\infty}}+\int_{0}^{t} e^{-c 2^{2 k}(t-\tau)}\left\|\Delta_{k} \nabla \cdot(u \otimes u)(\tau)\right\|_{L^{\infty}} d \tau\right) \tag{3.13}\\
&+C \int_{0}^{t} e^{-c 2^{2 k}(t-\tau)}\left\|\Delta_{k} F(\tau)\right\|_{L^{\infty}} d \tau
\end{align*}
$$

This implies that

$$
\begin{align*}
&\|u\|_{\tilde{L}_{T}^{1}\left(C^{1}\right)} \\
& \leq C \sup _{k} \int_{0}^{T} 2^{k} e^{-c 2^{2 k} t}\left\|\Delta_{k} u_{0}\right\|_{L^{\infty}} d t \\
&+C \sup _{k} \int_{0}^{T} \int_{0}^{t} 2^{2 k} e^{-c 2^{2 k}(t-\tau)}\left\|\Delta_{k} u \otimes u(\tau)\right\|_{L^{\infty}} d \tau d t \\
&+C \sup _{k} \int_{0}^{T} \int_{0}^{t} 2^{k} e^{-c 2^{2 k}(t-\tau)}\left\|\Delta_{k} F(\tau)\right\|_{L^{\infty}} d \tau d t \tag{3.14}\\
& \leq C \sup _{k}\left\|\Delta_{k} u_{0}\right\|_{L^{2}}\left(1-e^{-c 2^{2 k} T}\right) \\
&+C \sup _{k} \int_{0}^{T}\left\|\Delta_{k}(u \otimes u)(\tau)\right\|_{L^{\infty}} d \tau+\sup _{k} \int_{0}^{T} 2^{-k}\left\|\Delta_{k} F(\tau)\right\|_{L^{\infty}} d \tau
\end{align*}
$$

It follows from Bony decomposition that

$$
\begin{aligned}
& \left\|\Delta_{k}(u \otimes u)(\tau)\right\|_{L^{\infty}} \\
& =\sum_{|m-n| \leq 1}\left\|\Delta_{k}\left(\Delta_{m} u \otimes \Delta_{n} u\right)(\tau)\right\|_{L^{\infty}}+\sum_{m-n \geq 2}\left\|\Delta_{k}\left(\Delta_{m} u \otimes \Delta_{n} u\right)(\tau)\right\|_{L^{\infty}} \\
& \quad+\sum_{n-m \geq 2}\left\|\Delta_{k}\left(\Delta_{m} u \otimes \Delta_{n} u\right)(\tau)\right\|_{L^{\infty}}
\end{aligned}
$$

By (2.1) and 2.2, a straight computation gives

$$
\begin{aligned}
& \int_{0}^{T} \sum_{|m-n| \leq 1}\left\|\Delta_{k}\left(\Delta_{m} u \otimes \Delta_{n} u\right)(\tau)\right\|_{L^{\infty}} d \tau \\
& \leq C \int_{0}^{T} \sum_{|m-n| \leq 1} 2^{k}\left\|\Delta_{k}\left(\Delta_{m} u \otimes \Delta_{n} u\right)(\tau)\right\|_{L^{2}} d \tau \\
& \leq C \int_{0}^{t} \sum_{|m-n| \leq 1, m \geq k-3} 2^{k-\frac{m+n}{2}}\left\|2^{m} \Delta_{m} u(\tau)\right\|_{L^{\infty}}^{1 / 2}\left\|\Delta_{n} u(\tau)\right\|_{L^{2}}^{1 / 2}\left\|\Delta_{m} u(\tau)\right\|_{L^{\infty}}^{1 / 2} \\
& \quad \times\left\|2^{n} \Delta_{n} u(\tau)\right\|_{L^{2}}^{1 / 2} d \tau \\
& \leq C \int_{0}^{t} \sum_{|m-n| \leq 1, m \geq k-3} 2^{k-\frac{m+n}{2}}\left\|2^{m} \Delta_{m} u(\tau)\right\|_{L^{\infty}}^{1 / 2}\left\|\Delta_{n} u(\tau)\right\|_{L^{2}}^{1 / 2}\left\|2^{m} \Delta_{m} u(\tau)\right\|_{L^{2}}^{1 / 2} \\
& \quad \times\left\|2^{n} \Delta_{n} u(\tau)\right\|_{L^{2}}^{1 / 2} d \tau \\
& \leq C\|u\|_{L_{T}^{\infty}\left(L^{2}\right)}^{1 / 2}\|\nabla u\|_{L_{T}^{2}\left(L^{2}\right)}^{1 / 2}\|u\|_{\tilde{L}_{T}^{1}\left(C^{1}\right)}^{1 / 2} .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
& \int_{0}^{T}\left(\sum_{m-n \geq 2}\left\|\Delta_{k}\left(\Delta_{m} u \otimes \Delta_{n} u\right)(\tau)\right\|_{L^{\infty}}+\sum_{n-m \geq 2}\left\|\Delta_{k}\left(\Delta_{m} u \otimes \Delta_{n} u\right)(\tau)\right\|_{L^{\infty}}\right) d \tau \\
& \leq C \int_{0}^{T} \sum_{m-n \geq 2,|m-k| \leq 2}\left\|\Delta_{m} u(\tau)\right\|_{L^{\infty}}\left\|\Delta_{n} u(\tau)\right\|_{L^{\infty}} d \tau \\
& \leq C \sum_{m-n \geq 2,|m-k| \leq 2}\left\|2^{m} \Delta_{m} u(\tau)\right\|_{L^{\infty}}^{1 / 2}\left\|2^{m} \Delta_{m} u(\tau)\right\|_{L^{2}}^{1 / 2} 2^{n-\frac{m}{2}}\left\|\Delta_{n} u(\tau)\right\|_{L^{2}} d \tau \\
& \leq C\|u\|_{L_{T}^{\infty}\left(L^{2}\right)}^{1 / 2}\|\nabla u\|_{L_{T}^{2}\left(L^{2}\right)}\|u\|_{\tilde{L}_{T}^{1}\left(C^{1}\right)^{\prime}}^{1 / 2}
\end{aligned}
$$

Using the above two estimates, from (3.14) and Young inequality, we obtain

$$
\begin{align*}
\|u\|_{\tilde{L}_{T}^{1}\left(C^{1}\right)} \leq & C\left(\sup _{k}\left\|\Delta_{k} u_{0}\right\|_{L^{2}}\left(1-\exp \left\{-c 2^{2 k} T\right\}\right)+\|u\|_{L_{T}^{\infty}\left(L^{2}\right)}\|\nabla u\|_{L_{T}^{2}\left(L^{2}\right)}^{2}\right. \\
& \left.+\sup _{k} \int_{0}^{T} 2^{-k}\left\|\Delta_{k} F(\tau)\right\|_{L^{\infty}} d \tau\right) \tag{3.15}
\end{align*}
$$

Combining 3.15 and the basic energy estimate

$$
\begin{equation*}
\|u\|_{L_{T}^{\infty}\left(L^{2}\right)}^{2}+\|\nabla u\|_{L_{T}^{2}\left(L^{2}\right)}^{2} \leq C\left(\left\|u_{0}\right\|_{L^{2}}^{2}+\|F\|_{L_{T}^{2}\left(L^{2}\right)}^{2}\right) \tag{3.16}
\end{equation*}
$$

gives 3.11 . Thus, the proof is complete.
Proof of Theorem 1.1. Set $F=u \cdot \nabla u+\theta e_{2}$. It follows from (1.3) and (3.2) that $F \in \tilde{L}_{T}^{1}\left(C^{-1}\right) \cap L_{T}^{2}\left(L^{2}\right)$. Applying Δ_{k} to both sides of 3.10 and using standard energy estimate, 2.2 and Young inequality, we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\Delta_{k} u\right\|_{L^{2}}^{2}+c 2^{2 k}\left\|\Delta_{k} u\right\|_{L^{2}}^{2} \\
& \leq \frac{c}{2} 2^{2 k}\left\|\Delta_{k} u\right\|_{L^{2}}^{2}+C\left(\left\|\Delta_{k} u\right\|_{L^{2}}+\left\|\Delta_{k} F\right\|_{L^{2}}^{2}+\left\|\Delta_{k}(u \otimes u)\right\|_{L^{2}}^{2}\right)
\end{aligned}
$$

Integrating the above inequality with respect to t and summing over k, we obtain

$$
\begin{align*}
& \sum_{k}\left\|\Delta_{k} u\right\|_{L_{T}^{\infty}\left(L^{2}\right)}^{2}+\sum_{k} \int_{0}^{t} 2^{2 k}\left\|\Delta_{k} u(\tau)\right\|_{L^{2}}^{2} d \tau \tag{3.17}\\
& \leq C\left(\left\|u_{0}\right\|_{L^{2}}^{2}+\|F\|_{L_{T}^{2}\left(L^{2}\right)}^{2}+\|u\|_{L_{T}^{\infty}\left(L^{2}\right)}^{2}\|\nabla u\|_{L_{T}^{2}\left(L^{2}\right)}^{2}\right)
\end{align*}
$$

where we used the interpolation inequality (see Lemma 2.4)

$$
\|u\|_{L^{4}} \leq C\|u\|_{L^{2}}^{1 / 2}\|\nabla u\|_{L^{2}}^{1 / 2}
$$

It follows from (3.16) and (3.17) that

$$
\begin{align*}
& \sum_{k}\left\|\Delta_{k} u\right\|_{L_{T}^{\infty}\left(L^{2}\right)}^{2}+\sum_{k} \int_{0}^{t} 2^{2 k}\left\|\Delta_{k} u(\tau)\right\|_{L^{2}}^{2} d \tau \tag{3.18}\\
& \leq C\left(\left\|u_{0}\right\|_{L^{2}}^{2}+\|F\|_{L_{T}^{2}\left(L^{2}\right)}^{2}\right)\left(1+\left\|u_{0}\right\|_{L^{2}}^{2}+\|F\|_{L_{T}^{2}\left(L^{2}\right)}^{2}\right)
\end{align*}
$$

Using 3.18], for any $t_{0} \in[0, T)$, we can choose $k_{0}>0$ such that

$$
\sup _{k \geq k_{0}}\left\|\Delta_{k} u\right\|_{L_{\left[t_{0}, T\right]}^{\infty}\left(L^{2}\right)} \leq \frac{\varepsilon}{4 C}
$$

By 3.16, we can choose $t_{1} \in\left[t_{0}, T\right]$ such that

$$
\begin{aligned}
& \sup _{t_{1} \leq t \leq T} \sup _{k \leq k_{0}}\left\|\Delta_{k} u(t)\right\|_{L^{2}}\left(1-\exp \left\{-c 2^{2 k}(T-t)\right\}\right) \\
& \leq \sup _{t_{1} \leq t \leq T} 2 c 2^{2 k_{0}}\left(T-t_{1}\right)\|u(t)\|_{L^{2}} \\
& \leq C 2^{2 k_{0}}\left(\left\|u_{0}\right\|_{L^{2}}+\|F\|_{L_{T}^{2}\left(L^{2}\right)}\right)\left(T-t_{1}\right) \leq \frac{\varepsilon}{4 C} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sup _{t_{1} \leq t \leq T} \sup _{k}\left\|\Delta_{k} u(t)\right\|_{L^{2}}\left(1-\exp \left\{-c 2^{2 k}(T-t)\right\}\right) \leq \frac{\varepsilon}{2 C} \tag{3.19}
\end{equation*}
$$

On the other hand, we can choose $t_{2} \in\left[t_{1}, T\right)$ such that

$$
\begin{align*}
& \left(\sup _{t_{2} \leq t \leq T}\|u(t)\|_{L^{2}}+\|F\|_{L_{\left[t_{2}, T\right]}^{2}\left(L^{2}\right)}\right)\|\nabla u\|_{L_{\left[t_{2}, T\right]}^{2}\left(L^{2}\right)}^{2} \\
& \left.+\sup _{k} \int_{t_{2}}^{T} 2^{-k}\left\|\Delta_{k} F(\tau)\right\|_{L^{\infty}} d \tau\right) \tag{3.20}\\
& \leq \frac{\varepsilon}{2 C}
\end{align*}
$$

It follows from (3.11) that

$$
\begin{align*}
\|u\|_{\tilde{L}_{\left[t_{2}, T\right]}^{1}\left(C^{1}\right)} \leq & C\left(\sup _{k}\left\|\Delta_{k} u\left(t_{2}\right)\right\|_{L^{2}}\left(1-\exp \left\{-c 2^{2 k}\left(T-t_{2}\right)\right\}\right)\right. \\
& +\left(\left\|u\left(t_{2}\right)\right\|_{L^{2}}+\|F\|_{L_{\left[t_{2}, T\right]}^{2}\left(L^{2}\right)}\right)\|\nabla u\|_{L_{\left[t_{2}, T\right]}^{2}\left(L^{2}\right)}^{2} \tag{3.21}\\
& \left.+\sup _{k} \int_{t_{2}}^{T} 2^{-k}\left\|\Delta_{k} F(\tau)\right\|_{L^{\infty}} d \tau\right)
\end{align*}
$$

Combining (3.19)-(3.21) gives

$$
\begin{equation*}
\|u\|_{\tilde{L}_{\left[t_{2}, T\right]}^{1}\left(C^{1}\right)} \leq \varepsilon \tag{3.22}
\end{equation*}
$$

Using (3.22 and 1.3 , we can choose $t^{*} \in\left[t_{2}, T\right)$ such that

$$
\begin{equation*}
\|u\|_{\tilde{L}_{\left[t^{*}, T\right]}^{1}\left(C^{1}\right)} \leq \varepsilon, \quad\|\theta\|_{L_{\left[t^{*}, T\right]}^{1}\left(\dot{B}_{\infty, \infty}^{0}\right)} \leq \varepsilon \tag{3.23}
\end{equation*}
$$

For $0 \leq t<T$, define

$$
M(t)=\sup _{0 \leq \tau<t}\|u(\tau)\|_{\dot{C}^{1+\alpha}}, \quad N(t)=\sup _{0 \leq \tau<t}\|\theta(\tau)\|_{\dot{C}^{\alpha}}
$$

In what follows, we estimate $M(t)$ and $N(t)$ for $0 \leq t<T$. Applying Δ_{k} to the first and second equation in $\sqrt[1.2]{ }$, we obtain

$$
\begin{gather*}
\partial_{t} \Delta_{k} u-\Delta \Delta_{k} u+\nabla \Delta_{k} \pi=-\nabla \cdot \Delta_{k}(u \otimes u)+\Delta_{k}\left(\theta e_{2}\right) \\
\partial_{t} \Delta_{k} \theta+u \cdot \nabla \Delta_{k} \theta=\Delta_{k}\left(\frac{1}{2} \sum_{i, j=1}^{2}\left(\partial_{i} u^{j}+\partial_{j} u^{i}\right)^{2}\right)+\left[u \cdot \nabla, \Delta_{k}\right] \theta \tag{3.24}
\end{gather*}
$$

Firstly, we make estimate $\|u(t)\|_{\dot{C}^{1+\alpha}}$. It follows from the first equation in 3.24 and (2.4) that

$$
\begin{aligned}
\left\|\Delta_{k} u(t)\right\|_{L^{\infty}} \leq & C e^{-c 2^{2 k}} t\left\|\Delta_{k} u(0)\right\|_{L^{\infty}}+C \int_{0}^{t} e^{-c 2^{2 k}(t-\tau)}\left\|\nabla \cdot \Delta_{k}(u \otimes u)(\tau)\right\|_{L^{\infty}} d \tau \\
& +C \int_{0}^{t} e^{-c 2^{2 k}(t-\tau)}\left\|\Delta_{k}\left(\theta e_{2}\right)(\tau)\right\|_{L^{\infty}} d \tau
\end{aligned}
$$

By the above inequality, 2.1, 2.2 and Hölder inequality, we obtain

$$
\begin{align*}
\|u(t)\|_{\dot{C}^{1+\alpha}} \leq & C\|u(0)\|_{\dot{C}^{1+\alpha}}+C \int_{0}^{t} 2^{3 k / 2} e^{-c 2^{2 k}(t-\tau)}\|u \otimes u(\tau)\|_{\dot{C}^{\frac{1}{2}+\alpha}} d \tau \\
& +C \int_{0}^{t} 2^{k} e^{-c 2^{2 k}(t-\tau)}\|\theta(\tau)\|_{\dot{C}^{\alpha}} d \tau \tag{3.25}\\
\leq & C\left(\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t)\right)+C\left(\int_{0}^{t}\|u \otimes u(\tau)\|_{\dot{C}^{\frac{1}{2}+\alpha}}^{4} d \tau\right)^{1 / 4}
\end{align*}
$$

By (2.8), we obtain

$$
\begin{equation*}
\|u\|_{L^{4}} \leq C\|u\|_{L^{2}}^{1 / 2}\|\nabla u\|_{L^{2}}^{1 / 2} . \tag{3.26}
\end{equation*}
$$

Using this inequality and the fact $\|u \otimes u\|_{\dot{C}^{\frac{1}{2}+\alpha}} \leq C\|u\|_{L^{4}}\|u\|_{\dot{C}^{1+\alpha}}$, we obtain

$$
\begin{align*}
& \|u(t)\|_{\dot{C}^{1+\alpha}}^{4} \\
& \leq C\left(\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t)\right)^{4}+C \int_{0}^{t}\|u(\tau)\|_{L^{2}}^{2}\|\nabla u(\tau)\|_{L^{2}}^{2}\| \| u(\tau) \|_{\dot{C}^{1+\alpha}}^{4} d \tau \tag{3.27}\\
& \leq C\left(\|u(0)\|_{\dot{C}^{1+\alpha}}+N(\tilde{t})\right)^{4}+C \int_{0}^{t}\|u(\tau)\|_{L^{2}}^{2}\|\nabla u(\tau)\|_{L^{2}}^{2}\| \| u(\tau) \|_{\dot{C}^{1+\alpha}}^{4} d \tau
\end{align*}
$$

for any fixed $\tilde{t}: 0 \leq \tilde{t} \leq T$ and $t \leq \tilde{t}<T$. Here we have used the fact that $N(t)$ is nondecreasing. Consequently, Gronwall's inequality gives

$$
\begin{aligned}
M(\tilde{t})^{4} & =\sup _{0 \leq t<\tilde{t}}\|u(t)\|_{\dot{C}^{1+\alpha}}^{4} \\
& \leq C\left(\|u(0)\|_{\dot{C}^{1+\alpha}}+N(\tilde{t})\right)^{4} \exp \left\{C \int_{0}^{t}\|u(\tau)\|_{L^{2}}^{2}\|\nabla u(\tau)\|_{L^{2}}^{2} \| d \tau\right\}
\end{aligned}
$$

Since $\tilde{t} \in[0, T)$ is arbitrary, by (3.2), we obtain

$$
\begin{equation*}
M(t) \leq C\left(\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t)\right), \quad \forall t \in[0, T) \tag{3.28}
\end{equation*}
$$

We next continue to estimate $N(t)$. It follows from the second equation in 3.24 that

$$
\begin{align*}
\left\|\Delta_{k} \theta\right\|_{L^{\infty}} \leq & C\left\|\Delta_{k} \theta(0)\right\|_{L^{\infty}}+C \int_{0}^{t} \sum_{i, j=1}^{2}\left\|\Delta_{k}\left(\partial_{i} u^{j}+\partial_{j} u^{i}\right)^{2}(\tau)\right\|_{L^{\infty}} d \tau \tag{3.29}\\
& +C \int_{0}^{t}\left\|\left[u \cdot \nabla, \Delta_{k}\right] \theta(\tau)\right\|_{L^{\infty}} d \tau
\end{align*}
$$

Using (2.1), 2.2, (3.29) and Hölder inequality, we have

$$
\begin{align*}
\|\theta(t)\|_{\dot{C}^{\alpha}} \leq & C\|\theta(0)\|_{\dot{C}^{\alpha}}+C \int_{0}^{t}\|\nabla u(\tau)\|_{L^{\infty}}\|u(\tau)\|_{\dot{C}^{1+\alpha}} d \tau \\
& +C \int_{0}^{t} 2^{k \alpha}\left\|\left[u \cdot \nabla, \Delta_{k}\right] \theta(\tau)\right\|_{L^{\infty}} d \tau . \tag{3.30}
\end{align*}
$$

It follows from Bony decomposition that

$$
\begin{align*}
\theta= & \sum_{\left|k^{\prime}-r\right| \leq 1}\left[\Delta_{k^{\prime}} u \cdot \nabla, \Delta_{k}\right] \Delta_{r} \theta+\sum_{k^{\prime} \leq r-2}\left[\Delta_{k^{\prime}} u \cdot \nabla, \Delta_{k}\right] \Delta_{r} \theta \\
& +\sum_{k^{\prime} \leq r-2}\left[\Delta_{r} u \cdot \nabla, \Delta_{k}\right] \Delta_{k^{\prime}} \theta \tag{3.31}\\
= & \sum_{\left|k^{\prime}-r\right| \leq 1}\left[\Delta_{k^{\prime}} u \cdot \nabla, \Delta_{k}\right] \Delta_{r} \theta+\sum_{|r-k| \leq 2}\left[S_{r-1} u \cdot \nabla, \Delta_{k}\right] \Delta_{r} \theta \\
& +\sum_{|r-k| \leq 2}\left[\Delta_{r} u \cdot \nabla, \Delta_{k}\right] S_{r-1} \theta
\end{align*}
$$

Note that

$$
\left[S_{r-1} u, \Delta_{k}\right] f=\int_{\mathbb{R}^{2}} h(y)\left[S_{r-1} u(x)-S_{r-1} u\left(x-2^{-k} y\right)\right] f\left(x-2^{-k} y\right) d y
$$

we obtain

$$
\left\|\left[S_{r-1} u, \Delta_{k}\right] f\right\|_{L^{\infty}} \leq C 2^{-k}\left\|\nabla S_{r-1} u\right\|_{L^{\infty}}\|f\|_{L^{\infty}}
$$

Hence

$$
\begin{align*}
& \sum_{|r-k| \leq 2} \int_{0}^{t} 2^{k \alpha}\left\|\left[S_{r-1} u \cdot \nabla, \Delta_{k}\right] \Delta_{r} \theta(\tau)\right\|_{L^{\infty}} d \tau \\
& \leq C \sum_{|r-k| \leq 2} \int_{0}^{t} 2^{k(\alpha-1)}\left\|\nabla S_{r-1} u\right\|_{L^{\infty}}\left\|\nabla \Delta_{r} \theta\right\|_{L^{\infty}}(\tau) d \tau \tag{3.32}\\
& \leq C \sum_{|r-k| \leq 2} \int_{0}^{t}\left\|\nabla S_{r-1} u\right\|_{L^{\infty}} 2^{r \alpha}\left\|\Delta_{r} \theta\right\|_{L^{\infty}}(\tau) d \tau \\
& \leq C \int_{0}^{t}\|\nabla u(\tau)\|_{L^{\infty}}\|\theta(\tau)\|_{\dot{C}^{\alpha}} d \tau
\end{align*}
$$

Note that

$$
\left[\Delta_{r} u, \Delta_{k}\right] f=\int_{\mathbb{R}^{2}} h(y)\left[\Delta_{r} u(x)-\Delta_{r} u\left(x-2^{-k} y\right)\right] f\left(x-2^{-k} y\right) d y
$$

Then, we have

$$
\left\|\left[\Delta_{r} u, \Delta_{k}\right] f\right\| \leq C 2^{-k}\left\|\nabla \Delta_{r} u\right\|_{L^{\infty}}\|f\|_{L^{\infty}} .
$$

It follows from the above inequality and $2.1,2.2$ that

$$
\begin{align*}
& \quad \sum_{|r-k| \leq 2} \int_{0}^{t} 2^{k \alpha}\left\|\left[\Delta_{r} u \cdot \nabla, \Delta_{k}\right] S_{r-1} \theta(\tau)\right\|_{L^{\infty}} \\
& \leq C \sum_{|r-k| \leq 2} \int_{0}^{t} 2^{k(\alpha-1)}\left\|\nabla \Delta_{r} u\right\|_{L^{\infty}}\left\|\nabla S_{r-1} \theta\right\|_{L^{\infty}}(\tau) d \tau \tag{3.33}\\
& \leq C \int_{0}^{t}\|\theta(\tau)\|_{L^{\infty}}\|u(\tau)\|_{\dot{C}^{1+\alpha}}(\tau) d \tau .
\end{align*}
$$

By a straightforward computation, we obtain

$$
\begin{align*}
& \sum_{\left|k^{\prime}-r\right| \leq 1} \int_{0}^{t} 2^{k \alpha}\left\|\left[\Delta_{k^{\prime}} u \cdot \nabla, \Delta_{k}\right] \Delta_{r} \theta(\tau)\right\|_{L^{\infty}} d \tau \tag{3.34}\\
& \leq C \int_{0}^{t}\|\theta(\tau)\|_{L^{\infty}}\|u(\tau)\|_{\dot{C}^{1+\alpha}} d \tau
\end{align*}
$$

Collecting (3.30)-(3.34) gives

$$
\begin{align*}
\|\theta(t)\|_{\dot{C}^{\alpha}} \leq & C\|\theta(0)\|_{\dot{C}^{\alpha}}+C \int_{0}^{t}\|\nabla u(\tau)\|_{L^{\infty}}\|u(\tau)\|_{\dot{C}^{1+\alpha}} d \tau \\
& +C \int_{0}^{t}\left(\|\nabla u(\tau)\|_{L^{\infty}}\|\theta(\tau)\|_{\dot{C}^{\alpha}}+\|\theta(\tau)\|_{L^{\infty}}\|u(\tau)\|_{\dot{C}^{1+\alpha}}\right) d \tau \tag{3.35}\\
\leq & C\|\theta(0)\|_{\dot{C}^{\alpha}}+C \int_{0}^{t}\left(\|\nabla u(\tau)\|_{L^{\infty}}+\|\theta(\tau)\|_{L^{\infty}}\right)\left(\|u(\tau)\|_{\dot{C}^{1+\alpha}}\right. \\
& \left.+\|\theta(\tau)\|_{\dot{C}^{\alpha}}\right) d \tau
\end{align*}
$$

From 3.28 and 3.35, we obtain

$$
\begin{equation*}
N(t) \leq C\|\theta(0)\|_{\dot{C}^{\alpha}}+C \int_{0}^{t}\left(\|\nabla u(\tau)\|_{L^{\infty}}+\|\theta(\tau)\|_{L^{\infty}}\right)\left(\|u(0)\|_{\dot{C}^{1+\alpha}}+N(\tau)\right) d \tau \tag{3.36}
\end{equation*}
$$

With the help of Lemma 2.3 and 3.23 , we obtain

$$
\begin{align*}
& C \int_{0}^{t}\left(\|\nabla u(\tau)\|_{L^{\infty}}+\|\theta(\tau)\|_{L^{\infty}}\right) d \tau \\
& \leq C \int_{0}^{t_{\star}}\left(\|\nabla u(\tau)\|_{L^{\infty}}+\|\theta(\tau)\|_{L^{\infty}}\right) d \tau \\
& \quad+C \int_{t_{\star}}^{t}\left(1+\|u(\tau)\|_{L^{2}}+\|\theta(\tau)\|_{L^{2}}\right) d \tau \\
& \quad+C \int_{t_{\star}}^{t}\|\theta\|_{\dot{B}_{\infty, \infty}^{0}} \ln \left(e+\|\theta(\tau)\|_{\dot{C}^{\alpha}}\right) d \tau \tag{3.37}\\
& \quad+C \sup _{k} \int_{t_{\star}}^{t}\left\|\nabla \Delta_{k} u(\tau)\right\|_{L^{\infty}} d \tau \ln \left(e+\int_{0}^{t}\|u(\tau)\|_{\dot{C}^{1+\alpha}} d \tau\right) \\
& \leq C_{\star}+C \varepsilon \ln (e+N(t))+C \varepsilon \ln \left[e+C t\left(\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t)\right)\right] \\
& \leq C_{\star}+C \varepsilon \ln \left(e+\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t)\right)
\end{align*}
$$

where C_{\star} is a positive constant depending on the solution (u, θ) on $\left[0, t_{\star}\right]$. It follows from (3.36)-3.37) that
$N(t) \leq C_{\star}\left(1+\|u(0)\|_{\dot{C}^{1+\alpha}}+\|\theta(0)\|_{\dot{C}^{\alpha}}\right)+C \int_{0}^{t}\left(\|\nabla u(\tau)\|_{L^{\infty}}+\|\theta(\tau)\|_{L^{\infty}}\right) N(\tau) d \tau$,
provided that $\varepsilon>0$ is suitably small. By Gronwall's inequality and 3.37, we obtain

$$
\begin{aligned}
e & +\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t) \\
& \leq C_{\star}\left(e+\|u(0)\|_{\dot{C}^{1+\alpha}}+\|\theta(0)\|_{\dot{C}^{\alpha}}\right) \exp \left\{C \int_{0}^{t}\left(\|\nabla u(\tau)\|_{L^{\infty}}+\|\theta(\tau)\|_{L^{\infty}}\right) d \tau\right\} \\
& \leq C_{\star}\left(e+\|u(0)\|_{\dot{C}^{1+\alpha}}+\|\theta(0)\|_{\dot{C}^{\alpha}}\right) \exp \left\{C_{\star}+C \varepsilon \ln \left(e+\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t)\right)\right\}
\end{aligned}
$$

$$
\leq C_{\star}\left(e+\|u(0)\|_{\dot{C}^{1+\alpha}}+\|\theta(0)\|_{\dot{C}^{\alpha}}\right)\left(e+\|u(0)\|_{\dot{C}^{1+\alpha}}+N(t)\right)^{C \varepsilon} .
$$

Choosing $\varepsilon>0$ suitably small, the above inequality and (3.28) yields

$$
M(t)+N(t) \leq C_{\star}\left(1+\|u(0)\|_{\dot{C}^{1+\alpha}}+\|\theta(0)\|_{\dot{C}^{\alpha}}\right)^{2} .
$$

The proof is complete.
Acknowledgements. The research is supported by grant 11101144 from the NNSF of China.

References

[1] J. Beale, T. Kato, A. Majda; Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66.
[2] J. Bergh, J. Löfström; Interpolation Spaces, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, 1976.
[3] J. Boussinesq; Théorie analytique de la chaleur (Volume II), Gauthier-Villars, 1903.
[4] J. Y. Chemin; perfect incompressible Fluids, The Clarendon Press, Oxford Univ. Press, New York, Oxford Lecture Ser. Math. Appl. 14, 1998.
[5] J. Y. Chemin; Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999), 27-50.
[6] J. Y. Chemin, N. Masmoudi; About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM. J. Math. Anal. 33 (1999), 84-112.
[7] W. Chen, S. Gala; A regularity criterion for the Navier-Stokes equations in terms of the horizontal derivatives of the two velocity components. Electron. J. Differential Equations, 2011 (2011) no. 06, 1-7.
[8] J. S. Fan, T. Ozawa; Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity 22 (2009), 553-568.
[9] J. S. Fan, Y. Zhou; A note on regularity criterion for the 3D Boussinesq system with partial viscosity, Appl. Math. Lett. 22 (2009), 802-805.
[10] J. Fan, T. Ozawa; Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure, J. Inequal. Appl., 2008 Art. ID 412678, 6pp.
[11] J. Fan, S. Jiang, G. Nakamura, Y. Zhou; Logarithmically Improved Regularity Criteria for the Navier-Stokes and MHD Equations, J. Math. Fluid Mech., 13 (2011), 557-571.
[12] S. Gala; A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity. Electron. J. Differential Equations, 2009 (2009), no. 148, 1-6.
[13] Z. Guo, S. Gala; Remarks on logarithmical regularity criteria for the Navier-Stokes equations, J. Math. Phys., 52 (2011) 063503.
[14] C. He; New sufficient conditions for regularity of solutions to the Navier-Stokes equations, Adv. Math. Sci. Appl., 12 (2002), 535-548.
[15] X. He, S. Gala; Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the pressure in the class $L^{2}\left(0, T ; \dot{B}_{\infty, \infty}^{-1}\left(\mathbb{R}^{3}\right)\right)$, Nonlinear Anal. RWA, 12 (2011) 3602-3607.
[16] E. Hopf; Über die Anfangswertaufgabe f̈ur die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.
[17] H. Inoue; On heat convection equations with dissipative terms in time dependent domains, Nonlinear Analysis 30 (1997), 4441-4448.
[18] Y. Kagei and M. Skowron; Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J. 23 (1993), 343-363.
[19] Y. Kagei; Attractors for two-dimensional equations of thermal convection in the pressence of the dissipation function, Hiroshima Math. J. 25 (1995), 251-311.
[20] R. Kakizawa; The initial value problem for the heat convection equations with viscous dissipation in Banach spaces, Hiroshima Math. J. 40 (2010), 371-402 .
[21] H. Kozono and Y. Taniuchi; limiting case of the Sobolev inequality in BMO with application to the Euler Equations, Comm. Math. Phys. 214 (2000), 191-200.
[22] H. Lamb; Hydrodynamics (Sixth edition), Cambridge University Press, Cambridge, 1932.
[23] J. Leray; Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 183-248.
[24] Z. Lei, N. Masmoudi, Y. Zhou; Remarks on the blowup criteria for Oldroyd models, J. Diff. Equ. 248 (2010), 328-341.
[25] G. Lukaszewicz, P. KrzyBzanowski; On the heat convection equations with dissi- pation term in regions with moving boundaries, Math. Methods Appl. Sci. 20 (1997), 347-368.
[26] S. Machihara, T. Ozawa; Interpolation inequalities in Besov Spaces, Proc. Amer. Math. Soc. 131 (2003), 1553-1556.
[27] N. Masmoudi, P. Zhang, Z. F. Zhang; Global well-posedness for 2D polymeric fliud models and growth estimate, Phys. D. 237 (2008), 1663-1675 .
[28] N. Masmoudi; Global well-posedness for the Maxwell- Navier-stokes system in 2D, J. Math. Pures Appl. 93 (2010), 559-571.
[29] J. Serrin; On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962) 187-195.
[30] H. Triebel; Theory of Function Spaces, Birkhaüser, Boston, 1983.
[31] Y.-Z. Wang, Y.-X. Wang; Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity, Math. Methods Appl. Sci. 34 (2011), 2125-2135.
[32] Y. Zhou and J. S. Fan; A regularity criterion for the 2D MHD system with zero magnetic diffusivity, J. Math. Anal. Appl. 378 (2011), 169-172.
[33] Y. Zhou; A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496-1514.
[34] Y. Zhou, S. Gala; Regularity criteria in terms of the pressure for the Navier-Stokes equations in the critical Morrey-Campanato space, Z. Anal. Anwend. 30 (2011), 83-93.

Yu-Zhu Wang
School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

E-mail address: yuzhu108@163.com
Zhiqiang Wei
School of Mathematics and Information Sciences, North China University of Water
Resources and Electric Power, Zhengzhou 450011, China
E-mail address: weizhiqiang@ncwu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 76D03, 35Q35.
 Key words and phrases. Heat convection equations; smooth solutions; blow-up criterion.
 (C) 2012 Texas State University - San Marcos.

 Submitted February 28, 2012. Published May 10, 2012.

