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EXISTENCE OF PERIODIC SOLUTIONS FOR RAYLEIGH
EQUATIONS WITH STATE-DEPENDENT DELAY

JEHAD O. ALZABUT, CEMIL TUNÇ

Abstract. We establish sufficient conditions for the existence of periodic so-
lutions for a Rayleigh-type equation with state-dependent delay. Our approach
is based on the continuation theorem in degree theory, and some analysis tech-
niques. An example illustrates that our approach to this problem is new.

1. Introduction

Lord Rayleigh (John William Strutt: 1842–1919) [18] introduced the equation

x′′(t) + f(x′(t)) + ax(t) = 0 (1.1)

to model the oscillations of a clarinet reed. This equation is used for studying
problems arising in acoustics, and is referred in the literature as Rayleigh equation.
Later on, the Rayleigh equation of the form

x′′(t) + f(x′(t)) + g(t, x(t)) = 0 (1.2)

was studied in the monographs [1, 3, 6]. In many circumstances, however, it is
known that the forces intervening in the system depend depend not only at the
current time considered, but also on previous times. Thus, the forced Rayleigh
equation with delay

x′′(t) + f(t, x′(t)) + g(t, x(t− τ)) = p(t) (1.3)

has been taken into consideration, see [19, 20, 21]. Recently, it has been recognized
that (1.3) has widespread applications in many applied sciences such as physics,
mechanics and engineering techniques fields. In such applications, it is crucial
to know the periodic behavior of solutions for Rayleigh equation. This justifies
the intensive interest among researchers in investigating the existence of periodic
solutions for this equation in the last decade. Publications [8, 5, 9, 10, 11, 13, 14,
15, 17, 22, 23, 24, 25, 26] are devoted to various generalizations of equation (1.3).
Nevertheless, one can realize that all the results obtained in the above mentioned
papers have been proved under the assumptions that τ is a constant, g is bounded
and

∫ 2π

0
p(t) dt = 0. However, it is known that the delay may not be only related to

time t but also it relates to the current state x. Thus, it is worth while to consider
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a type of Rayleigh equation with state-dependent delay. In this paper, particularly,
we consider Rayleigh equation of the form

x′′(t) + f(t, x(t)) + g(x(t− τ(t, x(t)))) = p(t). (1.4)

We shall utilize the continuation theorem of degree theory to obtain sufficient con-
ditions for the existence of periodic solutions of (1.4). The main result is proved
by bypassing the boundedness of g and the integral condition on p. To the best of
authors’ observations, there exists no paper establishing sufficient conditions for the
existence of periodic solutions for (1.4). Thus, our result presents a new approach.

2. Preliminaries

Let
C2π =

{
x : x ∈ C(R, R), x(t + 2π) ≡ x(t), ∀ t ∈ R

}
with the norm ‖x‖0 = maxt∈[0,2π] |x(t)|, for x ∈ C2π and

C1
2π =

{
x : x ∈ C1(R, R), x(t + 2π) ≡ x(t), ∀ t ∈ R

}
with the norm ‖x‖1 = maxt∈[0,2π]{‖x(t)‖0, ‖x′(t)‖0}, for x ∈ C1

2π. We shall consider
(1.4) under the assumptions that f ∈ C2π(R2, R) with f(·, 0) = 0, g ∈ C2π(R, R),
τ ∈ C2π(R2, R+) and p ∈ C2π(R, R).

Let 0 ≤ τ(t) ∈ C2π, then there must exist two integers k ≥ 0 and m ≥ 1 such
that

τ(t) ∈ [2πk, 2π(k + m)], τ(t) /∈ (0, 2πk) ∪ (2π(k + m),∞). (2.1)

Denote ∆i =
{
t : t ∈ [0, 2π], τ(t) ∈ [2π(k + i), 2π(k + i+1)]

}
, i = 0, 1, 2, . . . ,m− 1,

τ0(t) =

{
τ(t), t ∈ ∆0,

2π(k + 1), t ∈ [0, 2π]\∆0,

and

τj(t) =

{
τ(t), t ∈ ∆j ,

2π(k + j), t ∈ [0, 2π]\∆j .

Then, it is clear that ∪m−1
i=0 ∆i = [0, 2π]; 2π(k+1)−τ0(t) ∈ [0, 2π] and τj(t)−2π(k+

j) ∈ [0, 2π] for all t ∈ [0, 2π], j = 1, 2, . . . ,m− 1.
Let δ0 = supt∈[0,2π][2π(k +1)− τ0(t)], δj = supt∈[0,2π][τj(t)− 2π(k + j)], then we

have δ0, δm−1 ∈ [0, 2π], δj = 2π, j = 1, 2, . . . ,m− 2.
The following lemma plays a key role in proving the main result.

Lemma 2.1 ([2]). Let τ(t, x(t)) ∈ C2π satisfying (2.1) and x ∈ C1
2π, then∫ 2π

0

|x(t−τ(t, x(t)))−x(t)|2 dt ≤
(
β0+βm−1+

m−2∑
j=1

βj

) ∫ 2π

0

|x′(t)|2 dt, 2 < m < ∞

and∫ 2π

0

|x(t− τ(t, x(t)))− x(t)|2 dt ≤
(
β0 + βm−1

) ∫ 2π

0

|x′(t)|2 dt, 1 ≤ m ≤ 2,

where

β0 = max
σ∈[0,2π−δ0]

∫ σ+δ0

σ

τ(t, x(t)) dt, βm−1 = max
σ∈[0,2π−δm−1]

∫ σ+δm−1

σ

τ(t, x(t)) dt
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and

βj =
∫ 2π

0

τ(t, x(t)) dt, j = 1, 2, . . . ,m− 2.

Lemma 2.2 ([12]). Let x ∈ C1
2π and there exists a constant ξ ∈ R such that

x(ξ) = 0. Then we have ∫ 2π

0

|x(t)|2 dt ≤ 4
∫ 2π

0

|x′(t)|2 dt.

Degree theory has been used to prove the existence of solutions of a wide variety
of differential, integral, functional and difference equations. Of particular interest
is its use in the investigation of periodic solutions. We shall use a result by Mawhin
[16] to prove the existence of a 2π-periodic solution of equation (1.4). We refer the
reader to [4] for more information. Here are some basic concepts in the framework
of this theory.

Define a linear operator

L : D(L) ⊂ C1
2π → C2π, Lx = x′′,

where D(L) = {x : x ∈ C2(R, R), x(t + 2π) ≡ x(t)} and a nonlinear operator

N : C1
2π → C2π, Nx = −f(t, x(t))− g(x(t− τ(t, x(t)))) + p(t).

It is easy to see that

ker(L) = {a, a ∈ R}, Im L =
{

y : y ∈ C2π,

∫ 2π

0

y(s) ds = 0
}

.

Therefore, Im L is closed in C2π and dim kerL = codim Im L = 1. It follows that
the operator L is a Fredholm operator with index zero.

Define the continuous projectors

P : C2π → ker L, Px = x(0),

Q : C2π → C2π/ Im L, Qy =
1
2π

∫ 2π

0

y(s) ds.

It is easy to see that Im P = kerL and ker Q = Im L. Set the operators

Lp = L
∣∣
D(L)∩ker P

: D(L) ∩ ker P → Im L.

Then, Lp has a unique continuous inverse operator L−1
p on Im L defined by

(L−1
p y)(t) =

∫ 2π

0

G(t, s)y(s)ds,

where

G(t, s) =

{
s(2π−t)

2π , 0 ≤ s < t
t(2π−s)

2π , t ≤ s ≤ 2π.

Lemma 2.3 ([3]). Let X and Y be two Banach spaces. Suppose that L : D(L) ⊂
X → Y is a Fredholm operator with index zero and N : X → Y is L-compact on Ω
where Ω ⊂ X is an open bounded set. If the following conditions hold:

(i) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L), for all λ ∈ (0, 1);
(ii) Nx /∈ Im L, for all x ∈ ∂Ω ∩ ker L;
(iii) The Brouwer degree deg{QN, Ω ∩ ker L, 0} 6= 0.

Then equation Lx = Nx has at least one solution in Ω.
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3. Existence result

Theorem 3.1. Assume that there exist constants K > 0, d > 0 and L ≥ 0 such
that

(C1) |f(t, x)| ≤ K for all (t, x) ∈ R2;
(C2) xg(x) < 0 and |g(x)| ≤ ‖p‖0 implies |x| ≤ d;
(C3) |g(x1)− g(x2)| ≤ L|x1 − x2|, for all x1, x2 ∈ R.

If

2L
(
β0 + βm−1 +

m−2∑
j=1

βj

)1/2

< 1. (3.1)

Then (1.4) has at least one 2π-periodic solution.

Proof. Consider the auxiliary equation

x′′(t) + λf(t, x(t)) + λg(x(t− τ(t, x(t)))) = λp(t), λ ∈ (0, 1). (3.2)

To complete the proof of this theorem, one can see that it suffices to show that all
possible 2π-periodic solutions of (3.2) are bounded. In other words, we shall prove
that there exist positive constants M2 and M4 independent of λ and x such that if
x(t) is a 2π-periodic solution of equation (3.2) then ‖x‖0 < M2 and ‖x′‖0 < M4.

Let x(t) be any 2π-periodic solution of (3.2). Then there exist t1, t2 ∈ [0, 2π]
such that

x(t1) = min
t∈[0,2π]

x(t), x(t2) = max
t∈[0,2π]

x(t). (3.3)

We claim that there exists t∗ ∈ [0, 2π] such that

|x(t∗)| ≤ d. (3.4)

From (3.3), it follows that x′(t1) = 0 and thus x′′(t1) ≥ 0. Therefore, we have

g(x(t1 − τ(t1, x(t1)))) ≤ p(t1)− f(t1, x(t1)). (3.5)

In a similar manner, we deduce that x′(t2) = 0 and thus x′′(t2) ≤ 0. Hence,

g(x(t2 − τ(t2, x(t2)))) ≥ p(t2)− f(t2, x(t2)). (3.6)

In view of (3.5) and (3.6), we may write

g(x(t1 − τ(t1, x(t1)))) ≤ p(t1) ≤ ‖p‖0, (3.7)

g(x(t2 − τ(t2, x(t2)))) ≥ p(t2)−K ≥ −‖p‖0. (3.8)

Combining (3.7) and (3.8), we can find a point ξ ∈ [0, 2π] such that

|g(x(ξ − τ(ξ, x(ξ))))| ≤ ‖p‖0.

By (C2), the above inequality implies∣∣x(ξ − τ(ξ, x(ξ)))
∣∣ ≤ d.

Since x(t) is a 2π-periodic function then there exists t∗ ∈ [0, 2π] such that ξ −
τ(ξ, x(ξ)) = 2πk + t∗. Therefore, one can see that (3.4) holds. It follows that

‖x‖0 ≤ |x(t∗)|+
∫ 2π

0

|x′(s)|ds ≤ d +
∫ 2π

0

|x′(s)|ds. (3.9)

Let
E1 = {t ∈ [0, 2π] : |x(t)| > d}, E2 = {t ∈ [0, 2π] : |x(t)| ≤ d}.
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Multiplying both sides of (3.2) by x(t) and integrating over [0, 2π], we have

−
∫ 2π

0

(
x′(t)

)2

dt = −λ

∫ 2π

0

g
(
x(t− τ(t, x(t)))

)
x(t) dt− λ

∫ 2π

0

f(t, x(t))x(t) dt

+ λ

∫ 2π

0

p(t)x(t) dt

or ∫ 2π

0

|x′(t)|2 dt = λ

∫ 2π

0

g
(
x(t− τ(t, x(t)))

)
x(t) dt + λ

∫ 2π

0

f(t, x(t))x(t) dt

− λ

∫ 2π

0

p(t)x(t) dt.

It follows that∫ 2π

0

|x′(t)|2 dt

= λ

∫ 2π

0

[
g(x(t− τ(t, x(t))))− g(x(t))

]
x(t) dt + λ

∫ 2π

0

g(x(t))x(t) dt

+ λ

∫ 2π

0

f(t, x(t))x(t) dt− λ

∫ 2π

0

p(t)x(t) dt

or ∫ 2π

0

|x′(t)|2 dt

= λ

∫ 2π

0

[
g(x(t− τ(t, x(t))))− g(x(t))

]
x(t) dt + λ

∫
E1

g(x(t))x(t) dt

+ λ

∫
E2

g(x(t))x(t) dt + λ

∫ 2π

0

f(t, x(t))x(t) dt− λ

∫ 2π

0

p(t)x(t) dt.

This implies∫ 2π

0

|x′(t)|2 dt ≤
∫ 2π

0

∣∣∣g(x(t− τ(t, x(t))))− g(x(t))
∣∣∣|x(t)|dt + gd

∫ 2π

0

|x(t)|dt

+ K

∫ 2π

0

|x(t)|dt +
∫ 2π

0

|p(t)||x(t)|dt,

where gd = maxt∈E2 |g(x(t))|. Furthermore,∫ 2π

0

|x′(t)|2 dt

≤ L

∫ 2π

0

∣∣∣x(t− τ(t, x(t)))− x(t)
∣∣∣|x(t)|dt + gd(2π)1/2‖x‖2 + K‖x‖2 + ‖p‖2‖x‖2,

where ‖x‖2 =
( ∫ 2π

0
|x(s)|2 ds

)1/2

. It follows that∫ 2π

0

|x′(t)|2 dt ≤ L

(∫ 2π

0

∣∣∣x(t− τ(t, x(t)))− x(t)
∣∣∣2 dt

)1/2

‖x‖2 + gd(2π)1/2‖x‖2

+ K‖x‖2 + ‖p‖2‖x‖2.
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By the consequence of Lemma 2.1, we obtain∫ 2π

0

|x′(t)|2 dt ≤ L
(
β0 + βm−1 +

m−2∑
j=1

βj

)1/2( ∫ 2π

0

|x′(t)|2 dt
)1/2

‖x‖2

+ gd(2π)1/2‖x‖2 + K‖x‖2 + ‖p‖2‖x‖2,

(3.10)

Denote u(t) = x(t)− x(t∗) where t∗ is defined as in (3.9). Then we have

|x(t)| ≤ |x(t∗)|+ |x(t)− x(t∗)| ≤ d + |u(t)|.

Using the Minkowski inequality [7], we obtain

‖x‖2 =
( ∫ 2π

0

|x(t)|2 dt
)1/2

≤ (2π)1/2d +
( ∫ 2π

0

|u(t)|2 dt
)1/2

. (3.11)

However, since u(t∗) = 0, u(t+2π) = u(t) and u′(t) = x′(t) then by the consequence
of Lemma 2.2, we have( ∫ 2π

0

|u(t)|2 dt
)1/2

≤ 2
( ∫ 2π

0

|u′(t)|2 dt
)1/2

= 2
( ∫ 2π

0

|x′(t)|2 dt
)1/2

.

Substituting back in (3.11), we obtain( ∫ 2π

0

|x(t)|2 dt
)1/2

≤ (2π)1/2d + 2
( ∫ 2π

0

|x′(t)|2 dt
)1/2

. (3.12)

It follows from (3.10) and (3.12) that∫ 2π

0

|x′(t)|2 dt ≤ L
(
β0 + βm−1 +

m−2∑
j=1

βj

)1/2( ∫ 2π

0

|x′(t)|2 dt
)1/2

×
(
(2π)1/2d + 2

( ∫ 2π

0

|x′(t)|2 dt
)1/2)

+
(
gd(2π)1/2 + K + ‖p‖2

) (
(2π)1/2d + 2

( ∫ 2π

0

|x′(t)|2 dt
)1/2)

= 2L
(
β0 + βm−1 +

m−2∑
j=1

βj

)1/2
∫ 2π

0

|x′(t)|2 dt

+ (2π)1/2dL
(
β0 + βm−1 +

m−2∑
j=1

βj

)1/2( ∫ 2π

0

|x′(t)|2 dt
)1/2

+ 2
(
gd(2π)1/2 + K + ‖p‖2

) ( ∫ 2π

0

|x′(t)|2 dt
)1/2

+ (2π)1/2d
(
gd(2π)1/2 + K + ‖p‖2

)
.

By (3.1), we deduce that there exists a constant M1 > 0 such that∫ 2π

0

|x′(t)|2 dt ≤ M1.

From (3.9), we end up with

‖x‖0 ≤ d + (2π)1/2M
1/2
1 := M2.
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In view of equation (1.4), one can obtain

‖x′′(t)‖ ≤ gM2 + K + ‖p‖0 := M3, (3.13)

where gM2 = max|x|≤M2 |g(x)|. However, since x(0) = x(2π) then there exists a
constant η ∈ [0, 2π] such that x′(η) = 0. Therefore, by (3.13) we have

‖x′‖0 ≤ |x′(η)|+
∫ 2π

0

|x′′(s)|ds ≤ 2πM3 := M4.

Clearly, M2 and M4 are independent of λ and x. Take Ω = {x : x ∈ X, ‖x‖0 <
M2, ‖x′‖0 < M4} and Ω1 = {x : x ∈ ker L, Nx ∈ Im L}. Clearly for all x ∈
Ω1, x ≡ c is a constant and f(t, c) + g(c) = p(t) thus by assumption (C2) we have
|c| ≤ d and hence Ω1 ⊂ Ω. This tells that conditions (i)–(ii) of Lemma 2.3 are
satisfied. Let

H(x, µ) = µx− 1− µ

2π

∫ 2π

0

(
f(t, x) + g(x)− p(t)

)
dt.

Then, one can easily realize that H(x, µ) 6= 0 for all (x, µ) ∈ (∂Ω ∩ ker L) × [0, 1].
Hence

deg{QN, Ω ∩ ker L, 0} = deg{H(x, 0),Ω ∩ ker L, 0} = deg{H(x, 1),Ω ∩ ker L, 0}
= deg{1,Ω ∩ ker L, 0} 6= 0.

Therefore, condition (iii) of Lemma 2.3 holds. This shows that equation (1.4) has
at least one 2π-periodic solution. The proof is complete. �

Example 3.2. Consider the equation

x′′(t) +
1
2

sinx(t)−
x3

(
t− 1

40τ(t, x(t))
)

1 + x2
(
t− 1

20τ(t, x(t))
) = ecos2 t, (3.14)

where f(t, x) = 1
2 sinx(t), g(x) = −x3/(1 + x2), τ(t, x(t)) = 1

80 | cos(t + 10x(t))|
and p(t) = ecos2 t. Clearly, K = 1/2, L = 1 and τ(t, x(t)) ∈ [0, 4π] for t ∈ [0, 2π].
Therefore, k = 0, m = 2, δ0 = δ1 = 2π, β0 = β1 = π/40. Thus, it is straightforward
to realize that conditions (C1)–(C3) and (3.1) hold. By Theorem 3.1, equation
(3.14) has at least one 2π-periodic solution.

We remark that the results obtained in [2, 8, 5, 9, 10, 11, 13, 14, 15, 17, 22, 23,
24, 25, 26] can not be applied to (3.14). This tells that the result in this paper is
essentially new.
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