Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 82, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

SOLITARY WAVES FOR THE COUPLED NONLINEAR KLEIN-GORDON AND BORN-INFELD TYPE EQUATIONS

FEIZHI WANG

Abstract. In this article we study the existence of solutions for a nonlinear Klein-Gordon-Maxwell equation coupled with a Born-Infeld equation.

1. Introduction

It is well known that the gauge potential (ϕ, \mathbf{A}) can be coupled to a complex order parameter ψ through the minimal coupling rule; that is the formal substitution

$$
\begin{aligned}
\frac{\partial}{\partial t} & \mapsto \frac{\partial}{\partial t}+i e \phi \\
\nabla & \mapsto \nabla-i e \mathbf{A}
\end{aligned}
$$

where e is the electric charge, $\mathbf{A}: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ is a magnetic vector potential and $\phi: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$ is an electric potential. Therefore, in a flat Minkowskian space-time with metric $\left(g_{\mu \nu}\right)=\operatorname{diag}[1,-1,-1,-1]$, we can define the Klein-Gordon-Maxwell Lagrangian density

$$
\mathcal{L}_{K G M}=\frac{1}{2}\left[\left|\frac{\partial \psi}{\partial t}+i e \phi \psi\right|^{2}-|\nabla \psi-i e \mathbf{A}|^{2}-m^{2}|\psi|^{2}\right]+\frac{1}{q}|\psi|^{q},
$$

where $m \geq 0$ represents the mass of the charged field. The total action of the system is thus given by

$$
\begin{equation*}
\mathcal{S}=\iint\left(\mathcal{L}_{K G M}+\mathcal{L}_{\mathrm{emf}}\right) d x d t \tag{1.1}
\end{equation*}
$$

where $\mathcal{L}_{\text {emf }}$ is the Lagrangian density of the electro-magnetic field. In the BornInfeld theory (see [8]), with a suitable choice of constants, $\mathcal{L}_{\text {emf }}$ can be written as

$$
\mathcal{L}_{\mathrm{emf}}=\mathcal{L}_{B I}:=\frac{b^{2}}{4 \pi}\left(1-\sqrt{1-\frac{1}{b^{2}}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right)}\right),
$$

where b is the so-called Born-Infeld parameter, $b \gg 1$. By the Maxwell equations,

$$
\mathbf{E}=-\nabla \phi-\frac{\partial \mathbf{A}}{\partial t}
$$

[^0]is the electric field, and
$$
\mathbf{B}=\nabla \times \mathbf{A}
$$
is the magnetic induction field. If, as in 4, we consider the electrostatic solitary wave:
$$
\psi(x, t)=u(x) e^{-i \omega t}, \quad \mathbf{A}=0, \quad \phi=\phi(x)
$$
where $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $\omega \in \mathbb{R}$, then the total action in 1.1) takes the form
\[

$$
\begin{align*}
F_{\mathrm{BI}}(u, \phi)= & \frac{1}{2} \int_{\mathbb{R}^{3}}|D u|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{3}}\left(m^{2}-(e \phi-\omega)^{2}\right) u^{2} d x \\
& -\frac{1}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x-\frac{b^{2}}{4 \pi} \int_{\mathbb{R}^{3}}\left(1-\sqrt{1-\frac{1}{b^{2}}|\nabla \phi|^{2}}\right) d x . \tag{1.2}
\end{align*}
$$
\]

The critical point (u, ϕ) of F_{BI} satisfies the Euler-Lagrange equations associted to 1.2). By standard calculations, we obtain:

$$
\begin{gather*}
-\Delta u+\left[m^{2}-(\phi-\omega)^{2}\right] u=|u|^{q-2} u, \\
\nabla \cdot \frac{\nabla \phi}{\sqrt{3}} \tag{1.3}\\
\sqrt{1-\frac{1}{b^{2}}|\nabla \phi|^{2}}
\end{gather*}=4 \pi(\phi-\omega) u^{2}, \quad \text { in } \mathbb{R}^{3},
$$

where we have taken $e=1$. We can see that the sign ω is not relevant for the existence of solutions for problem 1.3). In fact, if (u, ϕ) is a solution of 1.3) with ω, then $(u,-\phi)$ is also a solution corresponding to $-\omega$. So, without loss of generality, we can assume $\omega>0$.

As we know, a large number of works have been devoted to the problem like 1.3). In the following we review some assumptions and the corresponding results.

In [2, 3, 4, 5, 6, 7, 9, 10, 15, the authors consider the first-order expansion of the second formula of $\sqrt{1.3}$ for $b \rightarrow+\infty$. Therefore 1.3 becomes

$$
\begin{gather*}
-\Delta u+\left[m^{2}-(\phi-\omega)^{2}\right] u=|u|^{q-2} u, \quad \text { in } \mathbb{R}^{3}, \\
\Delta \phi=4 \pi(\phi-\omega) u^{2}, \quad \text { in } \mathbb{R}^{3} . \tag{1.4}
\end{gather*}
$$

About the problem (1.4), the pioneering work is given by Benci and Fortunato [4. They showed that (1.4) has infinitely many solutions when $q \in(4,6)$ and $0<\omega<m$. In [10] d'Aprile and Mugnai proved the existence of nontrivial solutions of (1.4) whenever $q \in(2,4]$ and

$$
\frac{q-2}{2} m^{2}>\omega^{2} .
$$

d'Aprile and Mugnai [9] also showed that (1.4) has no nontrivial solutions when $q \geq 6$ and $0<\omega \leq m$ or $q \leq 2$. Recently, in [2], under the following conditions:

$$
\begin{gathered}
(q-2)(4-q) m^{2}>\omega^{2}, \quad p \in(2,3) \\
m>\omega>0, \quad p \in[3,6)
\end{gathered}
$$

Azzollini, Pisani and Pomponio showed that (1.4) admits a nontrivial solution. It is easy to see that $(p-2)(4-p)>(p-2) / 2$ for $p \in(2,3]$.

In [11, 12, 14, the authors consider the second-order expansion of the second formula of 1.3 for $b \rightarrow+\infty$. Therefore (1.3) becomes

$$
\begin{gather*}
-\Delta u+\left[m^{2}-(\phi-\omega)^{2}\right] u=|u|^{q-2} u, \quad \text { in } \mathbb{R}^{3} \\
\Delta \phi+\beta_{2} \Delta_{4} \phi=4 \pi(\phi-\omega) u^{2}, \quad \text { in } \mathbb{R}^{3} \tag{1.5}
\end{gather*}
$$

where $\beta_{2}=1 /\left(2 b^{2}\right) \rightarrow 0$ and $\Delta_{4} \phi=D\left(|D \phi|^{2} D \phi\right)$. In [12], Fortunato, Orsina and Pisani showed the existence of electrostatic solutions with finite energy, while in [11] d'Avenia and Pisani proved that (1.5) has infinitely many solutions, provided that $4<q<6$ and $0<\omega<m$. In [14] Mugnai established the same results under the following assumptions: $4 \leq q<6$ and $0<\omega<m$ or $2<q<4$ and

$$
\frac{q-2}{2} m^{2}>\omega^{2} .
$$

Recently, Yu 18 studied the original Born-Infeld equations, i.e. (1.3). He proved the existence of the least-action solitary waves in both bounded smooth domain case and \mathbb{R}^{3} case whenever $q \in(2,6)$ and

$$
\frac{q-2}{q} m^{2}>\omega^{2} .
$$

In the present paper we consider the nonlinear Klein-Gordon equations coupled with the N-th order expansion of the second formula of (1.3) for $b \rightarrow+\infty$:

$$
\begin{gather*}
-\Delta u+\left[m^{2}-(\phi-\omega)^{2}\right] u=|u|^{q-2} u, \quad \text { in } \mathbb{R}^{3} \\
\sum_{k=1}^{N}\left(\beta_{k} \Delta_{2 k} \phi\right)=4 \pi(\phi-\omega) u^{2}, \quad \text { in } \mathbb{R}^{3} \tag{1.6}
\end{gather*}
$$

where $\beta_{1}=1, \beta_{k}=\frac{1 \cdot 3 \cdot 5 \ldots(2 k-3)}{2^{k-1}(k-1)!} \frac{1}{b^{2(k-1)}}$ and $\Delta_{2 k} \phi=D\left(|D \phi|^{2 k-2} D \phi\right)$, for $k=$ $2,3, \ldots, N$.

It is well-known that $H^{1}\left(\mathbb{R}^{3}\right)$ is the usual Sobolev space endowed with the norm

$$
\|u\|_{H^{1}\left(\mathbb{R}^{3}\right)}=\left(\int_{\mathbb{R}^{3}}\left[|D u|^{2}+u^{2}\right] d x\right)^{1 / 2}
$$

(see [1], 17, Theorem 1.8]). $D^{N}\left(\mathbb{R}^{3}\right)$ denotes the completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ with respect to the norm

$$
\|\phi\|_{D^{N}\left(\mathbb{R}^{3}\right)}=\left(\int_{\mathbb{R}^{3}}|D \phi|^{2} d x\right)^{1 / 2}+\left(\int_{\mathbb{R}^{3}}|D \phi|^{2 N} d x\right)^{1 /(2 N)}
$$

By a solution (u, ϕ) of (1.6), we understand $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times D^{N}\left(\mathbb{R}^{3}\right)$ satisfying (1.6) in the weak sense. Obviously, $(u, \phi)=(0,0)$ is a trivial solution of (1.6). We define a functional $F_{N}: H^{1}\left(\mathbb{R}^{3}\right) \times D^{N}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ by
$F_{N}(u, \phi)=\int_{\mathbb{R}^{3}}\left[\frac{1}{2}|D u|^{2}-\frac{1}{4 \pi} \sum_{k=1}^{N}\left(\frac{1}{2 k} \beta_{k}|D \phi|^{2 k}\right)+\frac{1}{2}\left(m^{2}-(\phi-\omega)^{2}\right) u^{2}-\frac{1}{q}|u|^{q}\right] d x$.
It is easy to see that $F_{N} \in C^{1}\left(H^{1}\left(\mathbb{R}^{3}\right) \times D^{N}\left(\mathbb{R}^{3}\right), \mathbb{R}\right)$. Therefore solutions of 1.6) correspond to critical points of the functional F_{N}. Next we give our main result.
Theorem 1.1. Problem (1.6) has at least a nontrivial solution $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times$ $D^{N}\left(\mathbb{R}^{3}\right)$, provided one of the following conditions is satisfied
(i) $q \in(3,6)$ and $m>\omega>0$.
(ii) $q \in(2,3]$ and $(q-2)(4-q) m^{2}>\omega^{2}>0$.

Set $|u|_{q}:=\left\{\int_{\mathbb{R}^{3}}|u|^{q} d x\right\}^{1 / q}$ for $1<q<\infty$. We say that $\left\{u_{n}\right\} \subset H^{1}\left(\mathbb{R}^{3}\right)$ is a Palais-Smale sequence for $\Phi \in C^{1}\left(H^{1}\left(\mathbb{R}^{3}\right), \mathbb{R}\right)$ at level $c \in \mathbb{R}$ (the $(P S)_{c}$-sequence for short), if and only if $\left\{u_{n}\right\}$ satisfies $\Phi\left(u_{n}\right) \rightarrow c$ and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

To find the critical points of the functional $F_{N}(u, \phi)$ we will overcome two difficulties. The first difficulty is that $F_{N}(u, \phi)$ is strongly indefinite (unbounded both
from below and from above on infinite dimensional subspaces). To avoid this difficulty, we use the reduction method just like in [12, 11, 14 . The reduction method consists in reducing the study of $F_{N}(u, \phi)$ to the study of a functional $J(u)$ in the only variable u. The second difficulty is that the embedding of $H^{1}\left(\mathbb{R}^{3}\right)$ into $L^{q}\left(\mathbb{R}^{3}\right)$ is not compact, where $2<q<2^{*}(=6)$. So $J(u)$ does not in general satisfy the Palais-Smale condition. We will study $J(u)$ in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$, where

$$
H_{r}^{1}\left(\mathbb{R}^{3}\right)=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right): u(x)=u(|x|)\right\} .
$$

By the Principle of symmetric criticality (see [16] or [17, Theorem 1.28]), a critical point $u \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ for $J(u)$ is also a critical point in $H^{1}\left(\mathbb{R}^{3}\right)$. We construct a bounded $(P S)_{c}$-sequence following the methods of Jeanjean 13 . Then there exists a subsequence of $\left\{u_{n}\right\}$ which converges strongly in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$.

This paper is organized as follows: in Section 2, we make some preliminaries; in Section 3, we obtain that the solutions of (1.6) must verify some suitable Pohožaev identity; in Section 4, we give the proof of Theorem 1.1.

2. Preliminaries

In the following we give some lemmas, whose similar proofs can be founded in [9, 11, 14].

Lemma 2.1. For every $u \in H^{1}\left(\mathbb{R}^{3}\right)$ there is a unique $\phi=\Phi(u) \in D^{N}\left(\mathbb{R}^{3}\right)$ which solves

$$
\begin{equation*}
\sum_{k=1}^{N}\left(\beta_{k} \Delta_{2 k} \phi\right)=4 \pi(\phi-\omega) u^{2} \tag{2.1}
\end{equation*}
$$

Lemma 2.2. For any $u \in H^{1}\left(\mathbb{R}^{3}\right)$, on the set $\left\{x \in \mathbb{R}^{3}: u(x) \neq 0\right\}$,

$$
0 \leq \Phi(u) \leq \omega
$$

Proof. Set $\Phi^{-}=\min \{\Phi, 0\}$. Multiplying (2.1) by Φ^{-}, we have

$$
-\frac{1}{4 \pi} \sum_{k=1}^{N}\left(\beta_{k} \int_{\mathbb{R}^{3}}\left|D \Phi^{-}\right|^{2 k} d x\right)=\int_{\mathbb{R}^{3}}\left(\Phi^{-}\right)^{2} u^{2} d x-\omega \int_{\mathbb{R}^{3}} \Phi^{-} u^{2} d x \geq 0
$$

So we obtain $D \Phi^{-} \equiv 0$. Hence, $\Phi \geq 0$.
When we multiply 2.1 by $(\Phi(u)-\omega)^{+}=\max \{\Phi(u)-\omega, 0\}$, we obtain

$$
\int_{\Phi(u) \geq \omega}(\Phi(u)-\omega)^{2} u^{2} d x=-\frac{1}{4 \pi} \sum_{k=1}^{N}\left(\beta_{k} \int_{\Phi(u) \geq \omega}|D \Phi(u)|^{2 k} d x\right) \geq 0
$$

so that $(\Phi(u)-\omega)^{+}=0$ for $u \neq 0$. Hence $\Phi(u) \leq \omega$.
Lemma 2.3. The pair $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times D^{N}\left(\mathbb{R}^{3}\right)$ is a solution of 1.6 if and only if u is a critical point of

$$
\begin{aligned}
J_{N}(u):=F_{N}(u, \Phi(u))= & \int_{\mathbb{R}^{3}}\left[\frac{1}{2}|D u|^{2}-\frac{1}{4 \pi} \sum_{k=1}^{N}\left(\frac{1}{2 k} \beta_{k}|D \Phi(u)|^{2 k}\right)\right. \\
& \left.+\frac{1}{2}\left(m^{2}-(\Phi(u)-\omega)^{2}\right) u^{2}-\frac{1}{q} \int_{\mathbb{R}^{3}}|u|^{q}\right] d x
\end{aligned}
$$

and $\phi=\Phi(u)$.

The functional of (1.6) is

$$
\begin{aligned}
F_{N}(u, \phi)= & \int_{\mathbb{R}^{3}}\left[\frac{1}{2}|D u|^{2}-\frac{1}{4 \pi} \sum_{k=1}^{N}\left(\frac{1}{2 k} \beta_{k}|D \phi|^{2 k}\right)\right. \\
& \left.+\frac{1}{2}\left(m^{2}-(\phi-\omega)^{2}\right) u^{2}-\frac{1}{q} \int_{\mathbb{R}^{3}}|u|^{q}\right] d x .
\end{aligned}
$$

From Lemma 2.1 for fixed $u \in H^{1}\left(\mathbb{R}^{3}\right)$, we have

$$
-\frac{1}{4 \pi} \sum_{k=1}^{N}\left(\beta_{k} \int_{\mathbb{R}^{3}}|D \Phi(u)|^{2 k} d x\right)=\int_{\mathbb{R}^{3}} \Phi^{2}(u) u^{2} d x-\omega \int_{\mathbb{R}^{3}} \Phi(u) u^{2} d x
$$

where $\Phi(u)$ appears in Lemma 2.1. Then

$$
\begin{aligned}
J_{N}(u)= & F_{N}(u, \Phi(u)) \\
= & \frac{1}{2} \int_{\mathbb{R}^{3}}|D u|^{2} d x+\frac{1}{2}\left(m^{2}-\omega^{2}\right) \int_{\mathbb{R}^{3}} u^{2} d x+\frac{\omega}{2} \int_{\mathbb{R}^{3}} \Phi(u) u^{2} d x \\
& +\frac{1}{4 \pi} \sum_{k=2}^{N}\left(\frac{k-1}{2 k} \beta_{k} \int_{\mathbb{R}^{3}}|D \Phi(u)|^{2 k} d x\right)-\frac{1}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x .
\end{aligned}
$$

By the definition of $J_{N}(u)$, we have

$$
\begin{aligned}
\left\langle J_{N}^{\prime}(u), u\right\rangle= & \int_{\mathbb{R}^{3}}|D u|^{2} d x+\left(m^{2}-\omega^{2}\right) \int_{\mathbb{R}^{3}} u^{2} d x-\int_{\mathbb{R}^{3}} \Phi^{2}(u) u^{2} d x \\
& +2 \omega \int_{\mathbb{R}^{3}} \Phi(u) u^{2} d x-\int_{\mathbb{R}^{3}}|u|^{q} d x
\end{aligned}
$$

From Lemmas 2.1 and 2.3 , to obtain a solution of 1.6 , we need only to find a critical point of J_{N} in $H^{1}\left(\mathbb{R}^{3}\right)$. Note that the functional J_{N} depends only on u. Set

$$
H_{r}^{1}\left(\mathbb{R}^{3}\right)=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right): u(x)=u(|x|)\right\}
$$

By standard arguments (Principle of symmetric criticality) one sees that a critical point $u \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ for the functional J_{N} in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$ is also a critical point for J_{N} in $H^{1}\left(\mathbb{R}^{3}\right)$.

3. The Pohožaev identity

In this section we obtain that the solutions of (1.6) must verify some suitable Pohožaev identity, as was proved in [9], which provides necessary conditions to prove the existence of nontrivial solutions.

Lemma 3.1. Let $u \in H_{l o c}^{2}\left(\mathbb{R}^{n}\right)$, $\phi \in H_{l o c}^{2 k}\left(\mathbb{R}^{n}\right)$ and $a, b \geq 0$. Then, for any ball $B_{R}=\left\{x \in \mathbb{R}^{n}:|x| \leq R>0\right\}$, the following equalities hold:

$$
\begin{align*}
& \int_{B_{R}}-\Delta u\langle x, D u\rangle d x \\
& =\frac{2-n}{2} \int_{B_{R}}|D u|^{2} d x-\frac{1}{R} \int_{\partial B_{R}}\langle x, D u\rangle^{2} d \sigma+\frac{R}{2} \int_{\partial B_{R}}|D u|^{2} d \sigma \tag{3.1}
\end{align*}
$$

$$
\begin{align*}
& \int_{B_{R}}(a+b \phi) \phi u\langle x, D u\rangle d x \\
&=-\int_{B_{R}}\left(\frac{a}{2}+b \phi\right) u^{2}\langle x, D \phi\rangle d x \tag{3.2}\\
&- \frac{n}{2} \int_{B_{R}}(a+b \phi) \phi u^{2} d x+\frac{R}{2} \int_{\partial B_{R}}(a+b \phi) \phi u^{2} d \sigma \\
& \int_{B_{R}} g(u)\langle x, D u\rangle d x=-n \int_{B_{R}} G(u) d x+R \int_{\partial B_{R}} G(u) d \sigma \tag{3.3}\\
& \int_{B_{R}} \Delta_{2 k} \phi\langle x, D \phi\rangle d x= \int_{B_{R}} D\left(|D \phi|^{2 k-2} D \phi\right)\langle x, D \phi\rangle d x \\
&= \frac{n-2 k}{2 k} \int_{B_{R}}|D \phi|^{2 k} d x-\frac{R}{2 k} \int_{\partial B_{R}}|D \phi|^{2 k} d \sigma \tag{3.4}\\
&+\frac{1}{R} \int_{\partial B_{R}}|D \phi|^{2 k-2}\langle x, D \phi\rangle^{2} d \sigma,
\end{align*}
$$

where $\Delta_{2 k} \phi=D\left(|D \phi|^{2 k-2}|D \phi|\right)$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $g(0)=0$ and $G(s)=\int_{0}^{s} g(t) d t$.

Proof. The proofs of (3.1), (3.2) and (3.3) can be found in [9, Lemma 3.1]. In the following we show (3.4). For fix $i_{1}, \ldots, i_{k-1}, j, l=1,2, \ldots, n$, we see from the integration by parts formula that

$$
\begin{aligned}
& \int_{B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} \phi_{x_{j} x_{j}} x_{l} \phi_{x_{l}} d x \\
& =-\int_{B_{R}}\left(\phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} x_{l} \phi_{x_{l}}\right)_{x_{j}} \phi_{x_{j}} d x+\int_{\partial B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} x_{l} \phi_{x_{l}} \phi_{x_{j}} \frac{x_{j}}{|x|} d \sigma \\
& =-\int_{B_{R}}\left(\phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2}\right)_{x_{j}} x_{l} \phi_{x_{l}} \phi_{x_{j}} d x-\int_{B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} \phi_{x_{l}} \phi_{x_{j}} \delta_{l j} d x \\
& \quad-\int_{B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} x_{l} \phi_{x_{l} x_{j}} \phi_{x_{j}} d x+\int_{\partial B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} x_{l} \phi_{x_{l}} \phi_{x_{j}} \frac{x_{j}}{|x|} d \sigma,
\end{aligned}
$$

where $d \sigma$ indicates the $(n-1)$-dimensional area element in ∂B_{R} and $\delta_{l j}$ are the Kroneker symbols. Summing up for $i_{1}, \ldots, i_{k-1}, j, l=1,2, \ldots, n$, we have

$$
\begin{align*}
& \int_{B_{R}}|D \phi|^{2 k-2} \Delta \phi\langle x, D \phi\rangle d x \\
& \left.=-\left.\int_{B_{R}}\langle D| D \phi\right|^{2 k-2}, D \phi\right\rangle\langle x, D \phi\rangle d x-\int_{B_{R}}|D \phi|^{2 k} d x \tag{3.5}\\
& \quad-\int_{B_{R}}|D \phi|^{2 k-2}\left\langle x, D^{2} \phi D \phi\right\rangle d x+\frac{1}{R} \int_{\partial B_{R}}|D \phi|^{2 k-2}\langle x, D \phi\rangle^{2} d \sigma .
\end{align*}
$$

Similarly, for fix $i_{1}, \ldots, i_{k-1}, j, l=1,2, \ldots, n$, we see from the integration by parts formula that

$$
\begin{aligned}
& 2 \int_{B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} x_{l} \phi_{x_{l} x_{j}} \phi_{x_{j}} d x=\int_{B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} x_{l}\left(\phi_{x_{j}}^{2}\right)_{x_{l}} d x \\
& =-\int_{B_{R}}\left(\phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} x_{l}\right)_{x_{l}} \phi_{x_{j}}^{2} d x+\int_{\partial B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} \phi_{x_{j}}^{2} \frac{x_{l}^{2}}{|x|} d \sigma
\end{aligned}
$$

$$
\begin{aligned}
= & -\int_{B_{R}}\left(\phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2}\right)_{x_{l}} x_{l} \phi_{x_{j}}^{2} d x-\int_{B_{R}}\left(\phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2}\right)_{x_{l}} \phi_{x_{j}}^{2} d x \\
& +\int_{\partial B_{R}} \phi_{x_{i_{1}}}^{2} \ldots \phi_{x_{i_{k-1}}}^{2} \phi_{x_{j}}^{2} \frac{x_{l}^{2}}{|x|} d \sigma
\end{aligned}
$$

Summing up for $i_{1}, \ldots, i_{k-1}, j, l=1,2, \ldots, n$, we have

$$
\begin{aligned}
& 2 \int_{B_{R}}|D \phi|^{2 k-2}\left\langle x, D^{2} \phi D \phi\right\rangle d x \\
& =-\int_{B_{R}}\left\langle x, D\left(|D \phi|^{2 k-2}\right)\right\rangle|D \phi|^{2} d x-n \int_{B_{R}}|D \phi|^{2 k} d x+R \int_{\partial B_{R}}|D \phi|^{2 k} d \sigma \\
& =-2(k-1) \int_{B_{R}}|D \phi|^{2 k-2}\left\langle x, D^{2} \phi D \phi\right\rangle d x-n \int_{B_{R}}|D \phi|^{2 k} d x+R \int_{\partial B_{R}}|D \phi|^{2 k} d \sigma .
\end{aligned}
$$

Then

$$
\begin{equation*}
\int_{B_{R}}|D \phi|^{2 k-2}\left\langle x, D^{2} \phi D \phi\right\rangle d x=-\frac{n}{2 k} \int_{B_{R}}|D \phi|^{2 k} d x+\frac{R}{2 k} \int_{\partial B_{R}}|D \phi|^{2 k} d \sigma \tag{3.6}
\end{equation*}
$$

Using (3.5) and (3.6), we obtain

$$
\begin{aligned}
& \int_{B_{R}} \Delta_{2 k} \phi\langle x, D \phi\rangle d x \\
& =\int_{B_{R}} D\left(|D \phi|^{2 k-2} D \phi\right)\langle x, D \phi\rangle d x \\
& \left.=\int_{B_{R}}|D \phi|^{2 k-2} \Delta \phi\langle x, D \phi\rangle d x+\left.\int_{B_{R}}\langle D| D \phi\right|^{2 k-2}, D \phi\right\rangle\langle x, D \phi\rangle d x \\
& =-\int_{B_{R}}|D \phi|^{2 k} d x-\int_{B_{R}}|D \phi|^{2 k-2}\left\langle x, D^{2} \phi D \phi\right\rangle d x+\frac{1}{R} \int_{\partial B_{R}}|D \phi|^{2 k-2}\langle x, D \phi\rangle^{2} d \sigma \\
& =\frac{n-2 k}{2 k} \int_{B_{R}}|D \phi|^{2 k} d x-\frac{R}{2 k} \int_{\partial B_{R}}|D \phi|^{2 k} d \sigma+\frac{1}{R} \int_{\partial B_{R}}|D \phi|^{2 k-2}\langle x, D \phi\rangle^{2} d \sigma .
\end{aligned}
$$

Set $\Omega=m^{2}-w^{2}$. From the above Lemma we have the following result.
Lemma 3.2. If (u, ϕ) is a solution of the system 1.6), then (u, ϕ) satisfies the Pohožaev type identity:

$$
\begin{align*}
& \int_{\mathbb{R}^{3}}|D u|^{2} d x+3 \int_{\mathbb{R}^{3}} u^{2} d x+\frac{1}{4 \pi} \sum_{k=2}^{N}\left(\beta_{k} \frac{3(k-1)}{k} \int_{\mathbb{R}^{3}}|D \phi|^{2 k} d x\right) \tag{3.7}\\
& \quad-2 \int_{\mathbb{R}^{3}} \phi^{2} u^{2} d x+5 \int_{\mathbb{R}^{3}} \omega \phi u^{2} d x-\frac{6}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x=0 .
\end{align*}
$$

Proof. Multiplying the first formula of (1.6) by $\langle x, D u\rangle$, integrating on B_{R} and using the above Lemma, we conclude that

$$
\begin{align*}
&- \frac{1}{2} \int_{B_{R}}|D u|^{2} d x-\frac{3}{2} \Omega \int_{B_{R}} u^{2} d x \\
&+\int_{B_{R}}(\phi-\omega) u^{2}\langle x, D \phi\rangle d x+\frac{3}{2} \int_{B_{R}}(\phi-2 \omega) \phi u^{2} d x+\frac{3}{q} \int_{B_{R}}|u|^{q} d x \\
&= \frac{1}{R} \int_{\partial B_{R}}\langle x, D u\rangle^{2} d \sigma-\frac{R}{2} \int_{\partial B_{R}}|D u|^{2} d \sigma \tag{3.8}\\
& \quad-\frac{\Omega R}{2} \int_{\partial B_{R}} u^{2} d \sigma+\frac{R}{2} \int_{B_{R}}(\phi-2 \omega) \phi u^{2} d \sigma+\frac{R}{q} \int_{\partial B_{R}}|u|^{q} d x .
\end{align*}
$$

Multiplying the second formula of 1.6 by $\langle x, D \phi\rangle$, integrating on B_{R} and using the above Lemma, we obtain

$$
\begin{align*}
& 4 \pi \int_{B_{R}}(\phi-\omega) u^{2}\langle x, D \phi\rangle d x \\
& =\int_{B_{R}} \sum_{k=1}^{N}\left(\beta_{k} \Delta_{2 k} \phi\right)\langle x, D \phi\rangle d x \\
& =\sum_{k=1}^{N} \beta_{k} \int_{B_{R}} \Delta_{2 k} \phi\langle x, D \phi\rangle d x \tag{3.9}\\
& =\sum_{k=1}^{N} \beta_{k}\left(\frac{3-2 k}{2 k} \int_{B_{R}}|D \phi|^{2 k} d x-\frac{R}{2 k} \int_{\partial B_{R}}|D \phi|^{2 k} d \sigma\right. \\
& \left.\quad+\frac{1}{R} \int_{\partial B_{R}}|D \phi|^{2 k-2}\langle x, D \phi\rangle^{2} d \sigma\right)
\end{align*}
$$

By (3.8), (3.9) and the proof of [9, Theorem 1.1, pp. 316-317], we deduce the equality

$$
\begin{aligned}
& -\frac{1}{2} \int_{\mathbb{R}^{3}}|D u|^{2} d x-\frac{3}{2} \Omega \int_{\mathbb{R}^{3}} u^{2} d x+\frac{1}{4 \pi} \sum_{k=1}^{N}\left(\beta_{k} \frac{3-2 k}{2 k} \int_{\mathbb{R}^{3}}|D \phi|^{2 k} d x\right) \\
& +\frac{3}{2} \int_{\mathbb{R}^{3}}(\phi-2 \omega) \phi u^{2} d x+\frac{3}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x=0
\end{aligned}
$$

Then, noting (1.6), we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}|D u|^{2} d x+3 \Omega \int_{\mathbb{R}^{3}} u^{2} d x+\frac{1}{2 \pi} \sum_{k=2}^{N}\left(\beta_{k} \frac{3(k-1)}{2 k} \int_{\mathbb{R}^{3}}|D \phi|^{2 k} d x\right) \\
& -2 \int_{\mathbb{R}^{3}} \phi^{2} u^{2} d x+5 \omega \int_{\mathbb{R}^{3}} \phi u^{2} d x-\frac{6}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x=0 .
\end{aligned}
$$

4. Proof of the main theorem

First, we give a abstract result which is due to Jeanjean [13].

Proposition 4.1. Let $(X,\|\cdot\|)$ be a Banach space and let $I \subset \mathbb{R}^{+}$be an interval. Consider the family of C^{1} functionals on X

$$
\Psi_{\lambda}(u)=A(u)-\lambda B(u), \quad \forall \lambda \in I
$$

with $B(u)$ nonnegative and either $A(u) \rightarrow+\infty$ or $B(u) \rightarrow+\infty$, as $\|u\| \rightarrow \infty$ and such that $\Psi_{\lambda}(0)=0$. For any $\lambda \in I$ we set

$$
\Gamma_{\lambda}=\left\{\gamma \in C([0,1], X): \gamma(0)=0, \Psi_{\lambda}(\gamma(1)) \leq 0\right\}
$$

If for every $\lambda \in I$ the set Γ_{λ} is nonempty and

$$
c_{\lambda}:=\inf _{\gamma \in \Gamma_{\lambda}} \max _{t \in[0,1]} \Psi_{\lambda}(\gamma(t))>0
$$

then for almost every $\lambda \in I$ there is a sequence $\left\{\left(u_{\lambda}\right)_{n}\right\} \subset X$ such that
(i) $\left\{\left(u_{\lambda}\right)_{n}\right\}$ is bounded in X;
(ii) $\Psi_{\lambda}\left(\left(u_{\lambda}\right)_{n}\right) \rightarrow c_{\lambda}$;
(iii) $\Psi_{\lambda}^{\prime}\left(\left(u_{\lambda}\right)_{n}\right) \rightarrow 0$ in the dual X^{*} of X.

Proof Theorem 1.1. Denote

$$
M(\phi):=\frac{1}{4 \pi} \sum_{k=2}^{N}\left(\beta_{k} \frac{k-1}{k} \int_{\mathbb{R}^{3}}|D \phi|^{2 k}\right) d x
$$

Then, noting the definition of $\Phi(u)$ we can write 3.7 and $J(u)$ by:

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}|D u|^{2} d x+3 \Omega \int_{\mathbb{R}^{3}} u^{2} d x+3 M(\Phi(u))-2 \int_{\mathbb{R}^{3}} \Phi^{2}(u) u^{2} d x \\
& +5 \omega \int_{\mathbb{R}^{3}} \Phi(u) u^{2} d x-\frac{6}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x=0
\end{aligned}
$$

and

$$
\begin{aligned}
J_{N}(u)= & \frac{1}{2} \int_{\mathbb{R}^{3}}|D u|^{2} d x+\frac{1}{2} \Omega \int_{\mathbb{R}^{3}} u^{2} d x+\frac{\omega}{2} \int_{\mathbb{R}^{3}} \Phi(u) u^{2} d x \\
& +\frac{1}{2} M(\Phi(u))-\frac{1}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x
\end{aligned}
$$

respectively.
For $\lambda \in\left[\frac{1}{2}, 1\right]$, we define the family of functionals $J_{N, \lambda}: H_{r}^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
J_{N, \lambda}(u)= & \frac{1}{2} \int_{\mathbb{R}^{3}}|D u|^{2} d x+\frac{1}{2} \Omega \int_{\mathbb{R}^{3}} u^{2} d x+\frac{\omega}{2} \int_{\mathbb{R}^{3}} \Phi(u) u^{2} d x \\
& +\frac{1}{2} M(\Phi(u))-\frac{\lambda}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x
\end{aligned}
$$

Using a slightly modified version of [2, Lemmas 2.3 and 2.4], it can be proved that: for every $\lambda \in\left[\frac{1}{2}, 1\right]$, there exist $\alpha_{\lambda}, \rho_{\lambda}>0$ and $\nu_{\lambda} \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that
(i) $\inf _{\|u\|=\rho_{\lambda}} J_{N, \lambda}(u)>\alpha_{\lambda}$.
(ii) $\left\|\nu_{\lambda}\right\|>\rho_{\lambda}$ and $J_{N, \lambda}\left(\nu_{\lambda}\right)<0$.

Thus $J_{N, \lambda}$ has the mountain pass geometry. So we can define the Mountain Pass level c_{λ} by

$$
c_{\lambda}:=\inf _{\gamma \in \Gamma_{\lambda}} \max _{0 \leq t \leq 1} J_{N, \lambda}(\gamma(t))
$$

where

$$
\Gamma_{\lambda}=\left\{\gamma \in C\left([0,1], H_{r}^{1}\left(\mathbb{R}^{3}\right)\right): \gamma(0)=0, \gamma(1)=\nu_{\lambda}\right\}
$$

Set $X=H_{r}^{1}\left(\mathbb{R}^{3}\right), I=\left[\frac{1}{2}, 1\right], \Psi_{\lambda}=J_{N, \lambda}$,

$$
A(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}|D u|^{2} d x+\frac{1}{2} \Omega \int_{\mathbb{R}^{3}} u^{2} d x+\frac{\omega}{2} \int_{\mathbb{R}^{3}} \Phi(u) u^{2} d x+\frac{1}{2} M(\Phi(u))
$$

and

$$
B(u)=\frac{1}{q} \int_{\mathbb{R}^{3}}|u|^{q} d x
$$

It is easy to see that $B(u) \geq 0$ for all $u \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ and $A(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$. Thus, by Proposition 4.1, for almost every $\lambda \in I$ there is a sequence $\left\{\left(u_{\lambda}\right)_{n}\right\} \subset X$ such that
(i) $\left\{\left(u_{\lambda}\right)_{n}\right\}$ is bounded in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$;
(ii) $J_{N, \lambda}\left(\left(u_{\lambda}\right)_{n}\right) \rightarrow c_{\lambda}$;
(iii) $J_{N, \lambda}^{\prime}\left(\left(u_{\lambda}\right)_{n}\right) \rightarrow 0$ in the dual $\left(H_{r}^{1}\left(\mathbb{R}^{3}\right)\right)^{*}$ of $H_{r}^{1}\left(\mathbb{R}^{3}\right)$.

There exists $u_{\lambda} \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that

$$
J_{\lambda}^{\prime}\left(u_{\lambda}\right)=0, \quad J_{\lambda}\left(u_{\lambda}\right)=c_{\lambda}
$$

for almost every $\lambda \in I$. Now we can choose a suitable $\lambda_{n} \rightarrow 1$ and $u_{\lambda_{n}}$ such that

$$
J_{\lambda_{n}}^{\prime}\left(u_{\lambda_{n}}\right)=0, \quad J_{\lambda_{n}}\left(u_{\lambda_{n}}\right)=c_{\lambda_{n}} \rightarrow c_{1},
$$

For simplicity we denoted $u_{\lambda_{n}}$ by u_{n}. Since $J_{\lambda_{n}}^{\prime}\left(u_{n}\right)=0, u_{n}$ satisfies the Pohožaev equality

$$
\begin{align*}
& \int_{\mathbb{R}^{3}}\left|D u_{n}\right|^{2} d x+3 \Omega \int_{\mathbb{R}^{3}} u_{n}^{2} d x+3 M\left(\Phi\left(u_{n}\right)\right)-2 \int_{\mathbb{R}^{3}} \Phi^{2}\left(u_{n}\right) u_{n}^{2} d x \\
& +5 \omega \int_{\mathbb{R}^{3}} \Phi\left(u_{n}\right) u_{n}^{2} d x-\frac{6 \lambda_{n}}{q} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{q} d x=0 . \tag{4.1}
\end{align*}
$$

By $J_{\lambda_{n}}^{\prime}\left(u_{n}\right)=0$ and $J_{\lambda_{n}}\left(u_{n}\right)=c_{\lambda_{n}} \rightarrow c_{1}$, we have

$$
\begin{align*}
& \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} d x+\Omega \int_{\mathbb{R}^{3}} u_{n}^{2} d x+2 \omega \int_{\mathbb{R}^{3}} \Phi\left(u_{n}\right) u_{n}^{2} d x \tag{4.2}\\
& -\int_{\mathbb{R}^{3}} \Phi^{2}\left(u_{n}\right) u_{n}^{2} d x-\lambda_{n} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{q} d x=0
\end{align*}
$$

and, for n large enough,

$$
\begin{aligned}
& \frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} d x+\frac{1}{2} \Omega \int_{\mathbb{R}^{3}} u_{n}^{2} d x+\frac{1}{2} M\left(\Phi\left(u_{n}\right)\right) \\
& +\frac{\omega}{2} \int_{\mathbb{R}^{3}} \Phi\left(u_{n}\right) u_{n}^{2} d x-\frac{\lambda_{n}}{q} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{q} d x \leq c_{1}+1 .
\end{aligned}
$$

Set α and β two real number (which we will estimate later). Then from $\alpha \times 4.1+$ $\beta \times(4.2$, we obtain

$$
\begin{aligned}
& \frac{\lambda_{n}}{q} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{q} d x \\
& =\frac{1}{6 \alpha+q \beta}\left\{(\alpha+\beta) \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} d x+(3 \alpha+\beta) \Omega \int_{\mathbb{R}^{3}} u_{n}^{2} d x+3 \alpha M\left(\Phi\left(u_{n}\right)\right)\right. \\
& \left.\quad+(5 \alpha+2 \beta) \int_{\mathbb{R}^{3}} \omega \Phi_{u_{n}} u_{n}^{2} d x-(2 \alpha+\beta) \int_{\mathbb{R}^{3}} \Phi_{u_{n}}^{2} u_{n}^{2} d x\right\}
\end{aligned}
$$

Thus

$$
c_{1}+1 \geq J_{\lambda_{n}}\left(u_{n}\right)
$$

$$
\begin{aligned}
= & \frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} d x+\frac{1}{2} \Omega \int_{\mathbb{R}^{3}} u_{n}^{2} d x \\
& +\frac{1}{2} M\left(\Phi\left(u_{n}\right)\right)+\frac{1}{2} \int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n}^{2} d x-\frac{\lambda_{n}}{q} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{q} d x \\
= & \left(\frac{1}{2}-\frac{\alpha+\beta}{6 \alpha+q \beta}\right) \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} d x+\left(\frac{1}{2}-\frac{3 \alpha+\beta}{6 \alpha+q \beta}\right) \Omega \int_{\mathbb{R}^{3}} u_{n}^{2} d x \\
& +\left(\frac{1}{2}-\frac{5 \alpha+2 \beta}{6 \alpha+q \beta}\right) \int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n}^{2} d x+\left(\frac{1}{2}-\frac{3 \alpha}{6 \alpha+q \beta}\right) M\left(\Phi\left(u_{n}\right)\right) \\
& +\frac{2 \alpha+\beta}{6 \alpha+q \beta} \int_{\mathbb{R}^{3}} \Phi^{2}\left(u_{n}\right) u_{n}^{2} d x \\
= & \left(\frac{1}{2}-\frac{\tau+1}{6 \tau+q}\right) \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} d x \\
& +\left(\frac{1}{2}-\frac{3 \tau}{6 \tau+q}\right) M\left(\Phi\left(u_{n}\right)\right)+\frac{2 \tau+1}{6 \tau+q} \int_{\mathbb{R}^{3}} \Phi^{2}\left(u_{n}\right) u_{n}^{2} d x \\
& +\left(\frac{1}{2}-\frac{3 \tau+1}{6 \tau+q}\right) \Omega \int_{\mathbb{R}^{3}} u_{n}^{2} d x+\left(\frac{1}{2}-\frac{5 \tau+2}{6 \tau+q}\right) \int_{\mathbb{R}^{3}} \omega \Phi\left(u_{n}\right) u_{n}^{2} d x,
\end{aligned}
$$

where $\tau=\frac{\alpha}{\beta}$. Under one of the following conditions:
(i) $q \in(4,6), \tau \in((2-q) / 4,-1 / 2)$ and $m>\omega>0$;
(ii) $q \in(3,4], \tau \in((2-q) / 4,(q-4) / 4)$ and $m>\omega>0$;
(iii) $q \in(2,3], \tau \in((2-q) / 4,+\infty)$ and $m \sqrt{(q-2)(4-q)}>\omega>0$,
we conclude that

$$
\frac{1}{2}-\frac{\tau+1}{6 \tau+q}>0, \quad \frac{1}{2}-\frac{3 \tau}{6 \tau+q}>0
$$

and

$$
\frac{2 \tau+1}{6 \tau+q} t^{2}+\left(\frac{1}{2}-\frac{5 \tau+2}{6 \tau+q}\right) \omega t+\left(\frac{1}{2}-\frac{3 \tau+1}{6 \tau+q}\right) \Omega \geq 0, \quad \text { for } t \in[0, \omega] .
$$

So we obtain that $\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} d x$ is bounded for all n. Then, as in [2, Proof of Teorem 1.1, pp. 9] we have $\left\{u_{n}\right\}$ is bounded in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$. Thus $\left\{u_{n}\right\}$ is a bounded $(P S)_{c_{1}}$-sequence for J_{N}. So J_{N} has a nontrivial critical point u_{N}.

References

[1] R. A. Adams; Sobolev spaces, Academic Press, New York, 1975.
[2] A. Azzollini, L. Pisani, A. Pomponio; Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 141(2011), 449-463.
[3] A. Azzollini, A. Pomponio; Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal. 35(2010) 33-42.
[4] V. Benci, D. Fortunato; Solitary waves of the nonlinear Klein-Gordon equation coupled wiht the Maxwell equations, Rev. Math. Phys. 14(2002), 409-420.
[5] Benci, Fortunato; Existence of hylomorphic solitary waves in Klein-Gordon and in Klein-Gordon-Maxwell equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 20 (2009) 243-279.
[6] Benci, Fortunato; Three-dimensional vortices in abelian gauge theories, Nonlinear Anal. 70 (2009) 4402-4421.
[7] Benci, Fortunato; Spinning Q-balls for the Klein-Gordon-Maxwell equations, Comm. Math. Phys. 295 (2010) 639-668.
[8] M. Born, L. Infeld; Foundation of the new field theory, Proc. Roy. Soc. A 144(1934) 425-451.
[9] T. d'Aprile, D. Mugnai; Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud. 4(2004) 307-322.
[10] T. d'Aprile, D. Mugnai; Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger -Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 893-906.
[11] P. d'Avenia, L. Pisani; Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations, Elect. J. Diff. Eqns. 26 (2002) 1-13.
[12] D. Fortunato, L. Orsina, L. Pisani; Born-Infeld type equations for electrostatic fields, J. of Math. Phys. $43(11)(2002)$ 5698-5706.
[13] L. Jeanjean; On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on $\mathbb{R}^{\mathbb{N}}$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809.
[14] D. Mugnai; Coupled Klein-Gordon and Born-Infeld type equations: Looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004) 1519-1528.
[15] Feizhi Wang; Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system, Nonlinear Analysis 74(2011) 4796-4803.
[16] R. S. Palais; The principle of symmetric criticality, Comm. Math, Phys. 69(1979) 19-30.
[17] M. Willem; Minimax Theorems. Birkhäuser, Boston, 1996.
[18] Y. Yu; Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory, Ann. I. H. Poincaré-AN 27 (2010) 351-376.

Feizhi Wang
School of Mathematics, Yantai University, Yantai, Shandong, China
E-mail address: wangfz@ytu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35J15.
 Key words and phrases. Nonlinear Klein-Gordon; Born-Infeld type equation;
 electrostatic solitary wave; critical points.
 (C) 2012 Texas State University - San Marcos.

 Submitted December 22, 2011. Published May 23, 2012.
 Supported by grant ZR2011AL009 from the Shandong Province Natural Science Foundation.

