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SOLUTIONS TO OVER-DETERMINED SYSTEMS OF PARTIAL
DIFFERENTIAL EQUATIONS RELATED TO HAMILTONIAN

STATIONARY LAGRANGIAN SURFACES

BANG-YEN CHEN

Abstract. This article concerns the over-determined system of partial differ-
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It was shown in [6, Theorem 8.1] that this system with ε = 0 admits traveling
wave solutions as well as non-traveling wave solutions. In this article we solve
completely this system when ε 6= 0. Our main result states that this system
admits only traveling wave solutions, whenever ε 6= 0.

1. Introduction

A submanifold M of a Kähler manifold M̃ is called Lagrangian if the complex
structure J of M̃ interchanges each tangent space TpM with the corresponding
normal space T⊥p M , p ∈M (cf. [1]).

A vector field X on a Kähler manifold M̃ is called Hamiltonian if LXω = fω for
some function f ∈ C∞(M̃), where L is the Lie derivative. Thus, there is a smooth
real-valued function ϕ on M̃ such that X = J∇̃ϕ, where ∇̃ is the gradient in M̃ .
The diffeomorphisms of the flux ψt of X satisfy ψtω = ehtω. Thus they transform
Lagrangian submanifolds of M̃ into Lagrangian submanifolds. A normal vector
field ξ to a Lagrangian immersion ψ : M → M̃ is called Hamiltonian if ξ = J∇f ,
for some f ∈ C∞(M), where ∇f is the gradient of f . A Lagrangian submanifold
of a Kähler manifold is called Hamiltonian stationary if it is a critical point of the
volume under Hamiltonian deformations.

Related to the classification of Hamiltonian stationary Lagrangian surfaces of
constant curvature ε in a Kähler surface of constant holomorphic sectional curvature
4ε via a construction method introduced by Chen, Dillen, Verstraelen and Vrancken
in [4] (see also [2, 3, 5]), one has to determine the exact solutions of the following
overdetermined system of PDEs (see [6, 7] for details):(k
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This over-determined system was solved completely in [6] for the case ε = 0.
In particular, it was shown that system (1.1) with ε = 0 admits traveling wave
solutions as well as non-traveling wave solutions. More precisely, we have the
following result from [6, Theorem 8.1].

Theorem 1.1. The solutions {f, k} of the over-determined PDE system(k
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are the following:

f(x, y) = ±k(x, y) = aeb(x+y); (1.2)

f(x, y) = ameb(m2x+y), k(x, y) = ±aeb(m2x+y); (1.3)

f(x, y) =
a√
x
ec arctan

√
−y/x, k(x, y) = ± a√

−y
ec arctan

√
−y/x, (1.4)

where a, b, c,m are real numbers with a, c,m 6= 0 and m 6= ±1.

The main purpose of this article is to solve the over-determined system (1.1)
completely. Our main result states that the over-determined PDE system (1.1)
with ε 6= 0 admits only traveling wave solutions.

2. Exact solutions of the over-determined system with ε = 1

Theorem 2.1. The solutions {f, k} of the over-determined PDE system(k
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are the traveling wave solutions given by

f = cm sech
(c(m2x+ y)√

1 +m2

)
, k = c sech

(c(m2x+ y)√
1 +m2

)
, (2.2)

where c and m are nonzero real numbers.

Proof. First, let us assume that f = mk for some nonzero real number m. Then
the first equation of system (2.1) holds identically.

If {f, k} satisfies the second equation of system (2.1), then we have kx = m2ky,
which implies that

f = mK(s), k = K(s), s = m2x+ y, (2.3)

for some function K. By substituting (2.3) into the third equation in system (2.1),
we find

(1 +m2)(K(s)K ′′(s)− (K ′)2(s)) +K4(s) = 0. (2.4)
Since K 6= 0, (2.4) implies that K is non-constant. Thus (2.4) gives

(1 +m2)
K ′2

K2
+K2 = c2 (2.5)

for some positive real number c1. After solving (2.5) we conclude that, up to
translations and sign, K is given by

K = c sech
( cs√

1 +m2

)
. (2.6)

Now, after combining (2.3) and (2.6) we obtain the traveling wave solutions of the
over-determined PDE system given by (2.2).
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Next, let us assume that v = f(x, y)/k(x, y) is a non-constant function. It follows
from the first equation of system (2.1) that ∂v

∂y 6= 0. Therefore, after solving the
first equation of system (2.1), we obtain

y = −q(v)− xv2, f = vk (2.7)

for some function q. Let us consider the new variables (u, v) with u = x and v
being defined by (2.7). Then we have

∂x

∂u
= 1,

∂x

∂v
= 0,

∂y

∂u
= −v2,

∂y

∂v
= −q′(v)− 2uv, (2.8)
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= 0,
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=

−v2

q′(v) + 2uv
,

∂v

∂y
=

−1
q′(v) + 2uv

, (2.9)

It follows from (2.7), (2.8) and (2.9) that

fy = − k + vkv

q′(v) + 2uv
, kx = ku −

v2kv

q′(v) + 2uv
. (2.10)

By substituting (2.7), and (2.10) into the second equation of (2.1) we obtain

ku +
( v

q′(v) + 2uv

)
k = 0. (2.11)

After solving this equation we obtain

f =
vA(v)√

2uv + q′(v)
, k =

A(v)√
2uv + q′(v)

. (2.12)

Now, by applying (2.9) and (2.12), we find

fx =
v2A(v)(vq′′(v)− 6uv − 4q′(v))− 2v3A′(v)(2uv + q′(v))

2(2uv + q′(v))5/2
,

fy =
A(v)(vq′′(v)− 2uv − 2q′(v))− 2vA′(v)(2uv + q′(v))

2(2uv + q′(v))5/2
,

kx =
vA(v)(vq′′(v)− 2uv − 2q′(v))− 2v2A′(v)(2uv + q′(v))

2(2uv + q′(v))5/2
,

ky =
A(v)(2u+ q′′(v))− 2A′(v)(2uv + q′(v))

2(2uv + q′(v))5/2
.

(2.13)

After substituting (2.13) into the last equation in (2.1) and by applying (2.8) and
(2.9), we obtain a polynomial equation of degree 3 in u:

A4(v)u3 +B(v)u2 + C(v)u+D(v) = 0, (2.14)

where B,C and D are functions in v. Consequently, we must have A(v) = 0 which
is a contradiction according to (2.14). Therefore this case cannot happen. �

3. Exact solutions of the over-determined system with ε = −1

Theorem 3.1. The solutions {f, k} of the over-determined PDE system(k
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are the following traveling wave solutions:

f = cm csch
(c(m2x+ y)√
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; (3.2)
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f = cm sec
(c(m2x+ y)√

1 +m2

)
, k = c sec

(c(m2x+ y)√
1 +m2

)
; (3.3)

f =
m
√

1 +m2

m2x+ y
, k =

√
1 +m2

m2x+ y
, (3.4)

where c and m are nonzero real numbers.

Proof. First, let us assume that f = mk for some nonzero real number m. Then
the first equation of system (3.1) holds identically. As in the previous section, we
obtain from the second equation of system (3.1) that

f = mK(s), k = K(s), s = m2x+ y, (3.5)

for some function K. By substituting (2.3) into the third equation in system (3.1),
we find

(1 +m2)(K(s)K ′′(s)−K ′2(s)) = K4(s). (3.6)

Since K 6= 0, (3.6) implies that K is non-constant. Thus (2.4) gives

(1 +m2)
K ′2

K2
−K2 = c1 (3.7)

for some real number c1.
If c1 > 0, we put c1 = c2 with c 6= 0. Then (3.7) becomes

(1 +m2)
K ′2

K2
−K2 = c2. (3.8)

After solving (3.8) we conclude that, up to translations and sign, K is given by

K = c csch
( cs√

1 +m2

)
. (3.9)

Now, after combining (3.5) and (3.9) we obtain the traveling wave solutions (3.2).
If c1 < 0, we put c1 = −c2 with c 6= 0. Then (3.7) becomes

(1 +m2)
(K ′)2

K2
−K2 = −c2. (3.10)

After solving (3.10) we conclude that, up to translations and sign, K is given by

K = c sec
( cs√

1 +m2

)
. (3.11)

By combining (3.5) and (3.11) we obtain the traveling wave solutions of the over-
determined PDE system given by (3.3).

If c1 = 0, (3.7) becomes
(1 +m2)K ′2 = K4. (3.12)

After solving (3.12) we conclude that, up to translations and sign, K is given by

K =
√

1 +m3

m2x+ y
, (3.13)

which yields solutions (3.4).
Finally, by applying a argument similar to the one given in section 2, we conclude

that the remaining case is impossible. �
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4. Applications to Hamiltonian-stationary Lagrangian surfaces

Let (Mj , gj), j = 1, . . . ,m, be Riemannian manifolds, fi a positive function on
M1 × · · · ×Mm and πi : M1 × · · · ×Mm → Mi the i-th canonical projection for
i = 1, . . . ,m. The twisted product

f1M1 × · · · ×fm
Mm

is the product manifold M1 × · · · ×Mm equipped with the twisted product metric
g defined by

g(X,Y ) = f2
1 · g1(π1∗X,π1∗Y ) + · · ·+ f2

m · gm(πm∗X,πm∗Y ). (4.1)

Let Nn−`(ε) be an (n− `)-dimensional real space form of constant curvature ε. For
` < n− 1 we consider the following twisted product:

f1I1 × · · · ×f`
I` ×1 N

n−`(ε) (4.2)

with twisted product metric given by

g = f2
1 dx

2
1 + · · ·+ f2

` dx
2
` + g0, (4.3)

where g0 is the canonical metric of Nn−`(ε) and I1, . . . , I` are open intervals. When
` = n− 1, we shall replace Nn−1(ε) by an open interval. If the twisted product is
a real-space-form Mn(ε), it is called a twisted product decomposition of Mn(ε) (cf.
[4]). We denote such a decomposition by T Pn

f1...f`
(ε).

We recall the following result from [6, Theorem 3.2] (see also [7]).

Theorem 4.1. Let f, k be a pair of positive functions satisfying PDE system (2.1).
Then, up to rigid motions of M̃2(4ε), there is a unique H-stationary Lagrangian
isometric immersion:

Lf,k : T P 2
f2k2(ε) → M̃2(4ε) (4.4)

whose second fundamental form satisfies

h
( ∂

∂x1
,
∂

∂x1

)
= J

∂

∂x1
, h

( ∂

∂x1
,
∂

∂x2

)
= 0, h

( ∂

∂x2
,
∂

∂x2

)
= J

∂

∂x2
. (4.5)

If the two twistor functions f2 and k2 are equal and if they satisfy PDE system
(1.1), then the corresponding Hamiltonian-stationary adapted Lagrangian immer-
sion of T P 2

f2k2(ε) is said to be of type I. If the two twistor functions f2 and k2

are unequal, then the corresponding Hamiltonian-stationary adapted Lagrangian
immersion is said to be of type II.

By applying Theorem 2.1 and results of [6, Section 5], we can determine all type
II adapted Hamiltonian stationary Lagrangian surfaces in the complex projective
plane CP 2(4) of constant holomorphic sectional curvature 4. In fact, by combining
Theorem 2.1 and [6, Section 5] we have the following.

Corollary 4.2. A type II adapted Hamiltonian-stationary Lagrangian surface in
CP 2(4) is congruent to π ◦ L, where π : S5(1) → CP 2(4) is the Hopf fibration and
L is given by

L(x, y) =
sech

(
m2x+y√

1+m2

)
√

2 +m2

(
2m

√
2 +m2

√
1 + 5m2

ei(x+y)/2 sin
(√1 + 5m2

2
√

1 +m2
(x− y)

)
,

ei(x+y)/2
[√

1 +m2 cos
(√1 + 5m2

2
√

1 +m2
(x− y)

)
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− i(1−m2)
√

1 + 5m2 sin
(√1 + 5m2

2
√

1 +m2
(x− y)

)]
,

1√
2

√
1 + cosh

(2m2x+ 2y√
1 +m2

)(
1− i

√
1 +m2 tanh

(m2x+ y√
1 +m2

)))
for some positive number m 6= 1.

Similarly, by applying Theorem 3.1 and results of [6, Section 7] we can determine
all type II adapted Hamiltonian-stationary Lagrangian surfaces in the complex
hyperbolic plane CH2(−4) of constant holomorphic sectional curvature −4. More
precisely, we have the following result.

Corollary 4.3. A type II adapted Hamiltonian-stationary Lagrangian surface in
CH2(−4) is congruent to π ◦ L, where π : H5

1 (−1) → CH2(−4) denotes the Hopf
fibration and L(x, y) is given by one of the following five immersions:
(a)

L =
(
1− i(1 +m2)

m2x+ y
,
m
√

1 +m2

m2x+ y
eix,

√
1 +m2

m2x+ y
eiy

)
;

(b)

L = sech
(x+ 3y

2
√

3

)(x− y + 4i
2

ei(x+y)/2,
x− y

2
ei(x+y)/2,

√
3 + 2i tan

(x+ 3y
2
√

3

))
;

(c)

L =
(√3m4 + 2m2 − 1 cosh(α(x− y)) + i(m2 − 1) sinh(α(x− y))

m
√

3m2 − 1e−i(x+y)/2
sec

(m2x+ y√
1 +m2

)
,

2mei(x+y)/2

√
3m2 − 1

sec
(m2x+ y√

1 +m2

)
sinh(α(x− y)),

1
m

+
i
√

1 +m2

m
tan

(m2x+ y√
1 +m2

))
;

(d)

L =
(√1− 2m2 − 3m4 cos(β(x− y)) + i(1−m2) sin(β(x− y))

m
√

1− 3m2e−i(x+y)/2
sec

(m2x+ y√
1 +m2

)
,

2mei(x+y)/2

√
1− 3m2

sec
(m2x+ y√

1 +m2

)
sinh(β(x− y)),

1
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+
i
√

1 +m2

m
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(m2x+ y√
1 +m2

))
;

(e)

L =
1√

2 +m2
csch

(m2x+ y√
1 +m2

)(
sinh

(m2x+ y√
1 +m2

)
− i

√
1 +m2 cosh

(m2x+ y√
1 +m2

)
,

ei(x+y)/2
{√

1 +m2 cos
(√1 + 5m2

2
√

1 +m2
(x− y)

)
+
i(m2 − 1)√

1 + 5m2
sin

(√1 + 5m2

2
√

1 +m2
(x− y)

)}
,

2m
√

2 +m2

√
1 + 5m2

ei(x+y)/2 sin
(√1 + 5m2

2
√

1 +m2
(x− y)

))
,

where α and β are constants given by

α =
√

3m2 − 1
2
√

1 +m2
, β =

√
1− 3m2

2
√

1 +m2
.



EJDE-2012/83 OVER-DETERMINED SYSTEMS OF PDES 7

References

[1] Chen, B.-Y.: Pseudo-Riemannian geometry, δ-invariants and Applications, World Scientific,
Hackensack, NJ, 2011.

[2] Chen, B.-Y.: Classification of a family of Hamiltonian-stationary Lagrangian submanifolds
in complex hyperbolic 3-space, Taiwanese J. Math. 12 (2008), 1261–1284.

[3] Chen, B.-Y.; Dillen, F.: Warped product decompositions of real space forms and Hamiltonian
stationary Lagrangian submanifolds, Nonlinear Anal. 69 (2008), 3462–3494.

[4] Chen, B.-Y.; Dillen, F.; Verstraelen, L.; Vrancken, L.: Lagrangian isometric immersions of

a real-space-form Mn(c) into a complex-space-form M̃n(4c), Math. Proc. Cambridge Philo.
Soc. 124 (1998), 107–125.

[5] Chen, B.-Y.; Garay, O. J.: Classification of Hamiltonian-stationary Lagrangian submanifolds
of constant curvature in CP 3 with positive relative nullity, Nonlinear Anal. 69 (2008), 747–
762.

[6] Chen, B.-Y.; Garay, O. J.; Zhou, Z.: Hamiltonian stationary Lagrangian surfaces of constant

curvature ε in complex space form M̃2(4ε), Nonlinear Anal. 71 (2009), 2640–2659.
[7] Dong, Y.; Han, Y.: Some explicit examples of Hamiltonian minimal Lagrangian submanifolds

in complex space forms, Nonlinear Anal. 66 (2007), 1091–1099.

Bang-Yen Chen
Department of Mathematics, Michigan State University, 619 Red Cedar Road, East
Lansing, Michigan 48824-1027, USA

E-mail address: bychen@math.msu.edu


	1. Introduction
	2. Exact solutions of the over-determined system with =1
	3. Exact solutions of the over-determined system with =-1
	4. Applications to Hamiltonian-stationary Lagrangian surfaces
	References

