Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 83, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

SOLUTIONS TO OVER-DETERMINED SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS RELATED TO HAMILTONIAN STATIONARY LAGRANGIAN SURFACES

BANG-YEN CHEN

Abstract

This article concerns the over-determined system of partial differential equations $$
\left(\frac{k}{f}\right)_{x}+\left(\frac{f}{k}\right)_{y}=0, \quad \frac{f_{y}}{k}=\frac{k_{x}}{f}, \quad\left(\frac{f_{y}}{k}\right)_{y}+\left(\frac{k_{x}}{f}\right)_{x}=-\varepsilon f k .
$$

It was shown in [6] Theorem 8.1] that this system with $\varepsilon=0$ admits traveling wave solutions as well as non-traveling wave solutions. In this article we solve completely this system when $\varepsilon \neq 0$. Our main result states that this system admits only traveling wave solutions, whenever $\varepsilon \neq 0$.

1. Introduction

A submanifold M of a Kähler manifold \tilde{M} is called Lagrangian if the complex structure J of \tilde{M} interchanges each tangent space $T_{p} M$ with the corresponding normal space $T_{p}^{\perp} M, p \in M$ (cf. [1]).

A vector field X on a Kähler manifold \tilde{M} is called Hamiltonian if $\mathcal{L}_{X} \omega=f \omega$ for some function $f \in C^{\infty}(\tilde{M})$, where \mathcal{L} is the Lie derivative. Thus, there is a smooth real-valued function φ on \tilde{M} such that $X=J \tilde{\nabla} \varphi$, where $\tilde{\nabla}$ is the gradient in \tilde{M}. The diffeomorphisms of the flux ψ_{t} of X satisfy $\psi_{t} \omega=e^{h_{t}} \omega$. Thus they transform Lagrangian submanifolds of \tilde{M} into Lagrangian submanifolds. A normal vector field ξ to a Lagrangian immersion $\psi: M \rightarrow \tilde{M}$ is called Hamiltonian if $\xi=J \nabla f$, for some $f \in C^{\infty}(M)$, where ∇f is the gradient of f. A Lagrangian submanifold of a Kähler manifold is called Hamiltonian stationary if it is a critical point of the volume under Hamiltonian deformations.

Related to the classification of Hamiltonian stationary Lagrangian surfaces of constant curvature ε in a Kähler surface of constant holomorphic sectional curvature 4ε via a construction method introduced by Chen, Dillen, Verstraelen and Vrancken in 4 (see also [2, 3, 5]), one has to determine the exact solutions of the following overdetermined system of PDEs (see [6, 7] for details):

$$
\begin{equation*}
\left(\frac{k}{f}\right)_{x}+\left(\frac{f}{k}\right)_{y}=0, \quad \frac{f_{y}}{k}=\frac{k_{x}}{f}, \quad\left(\frac{f_{y}}{k}\right)_{y}+\left(\frac{k_{x}}{f}\right)_{x}=-\varepsilon f k . \tag{1.1}
\end{equation*}
$$

[^0]This over-determined system was solved completely in [6] for the case $\varepsilon=0$. In particular, it was shown that system 1.1 with $\varepsilon=0$ admits traveling wave solutions as well as non-traveling wave solutions. More precisely, we have the following result from [6, Theorem 8.1].
Theorem 1.1. The solutions $\{f, k\}$ of the over-determined PDE system

$$
\left(\frac{k}{f}\right)_{x}+\left(\frac{f}{k}\right)_{y}=0, \quad \frac{f_{y}}{k}=\frac{k_{x}}{f}, \quad\left(\frac{f_{y}}{k}\right)_{y}+\left(\frac{k_{x}}{f}\right)_{x}=0,
$$

are the following:

$$
\begin{gather*}
f(x, y)= \pm k(x, y)=a e^{b(x+y)} \tag{1.2}\\
f(x, y)=a m e^{b\left(m^{2} x+y\right)}, \quad k(x, y)= \pm a e^{b\left(m^{2} x+y\right)} \tag{1.3}\\
f(x, y)=\frac{a}{\sqrt{x}} e^{c \arctan \sqrt{-y / x}}, \quad k(x, y)= \pm \frac{a}{\sqrt{-y}} e^{c \arctan \sqrt{-y / x}} \tag{1.4}
\end{gather*}
$$

where a, b, c, m are real numbers with $a, c, m \neq 0$ and $m \neq \pm 1$.
The main purpose of this article is to solve the over-determined system 1.1 completely. Our main result states that the over-determined $P D E$ system (1.1) with $\varepsilon \neq 0$ admits only traveling wave solutions.

2. Exact solutions of the over-Determined system with $\varepsilon=1$

Theorem 2.1. The solutions $\{f, k\}$ of the over-determined PDE system

$$
\begin{equation*}
\left(\frac{k}{f}\right)_{x}+\left(\frac{f}{k}\right)_{y}=0, \quad \frac{f_{y}}{k}=\frac{k_{x}}{f}, \quad\left(\frac{f_{y}}{k}\right)_{y}+\left(\frac{k_{x}}{f}\right)_{x}=-f k \tag{2.1}
\end{equation*}
$$

are the traveling wave solutions given by

$$
\begin{equation*}
f=c m \operatorname{sech}\left(\frac{c\left(m^{2} x+y\right)}{\sqrt{1+m^{2}}}\right), \quad k=c \operatorname{sech}\left(\frac{c\left(m^{2} x+y\right)}{\sqrt{1+m^{2}}}\right), \tag{2.2}
\end{equation*}
$$

where c and m are nonzero real numbers.
Proof. First, let us assume that $f=m k$ for some nonzero real number m. Then the first equation of system (2.1) holds identically.

If $\{f, k\}$ satisfies the second equation of system (2.1), then we have $k_{x}=m^{2} k_{y}$, which implies that

$$
\begin{equation*}
f=m K(s), \quad k=K(s), \quad s=m^{2} x+y \tag{2.3}
\end{equation*}
$$

for some function K. By substituting (2.3) into the third equation in system 2.1), we find

$$
\begin{equation*}
\left(1+m^{2}\right)\left(K(s) K^{\prime \prime}(s)-\left(K^{\prime}\right)^{2}(s)\right)+K^{4}(s)=0 \tag{2.4}
\end{equation*}
$$

Since $K \neq 0$, 2.4 implies that K is non-constant. Thus (2.4) gives

$$
\begin{equation*}
\left(1+m^{2}\right) \frac{K^{\prime 2}}{K^{2}}+K^{2}=c^{2} \tag{2.5}
\end{equation*}
$$

for some positive real number c_{1}. After solving 2.5 we conclude that, up to translations and sign, K is given by

$$
\begin{equation*}
K=c \operatorname{sech}\left(\frac{c s}{\sqrt{1+m^{2}}}\right) \tag{2.6}
\end{equation*}
$$

Now, after combining $(2.3$ and 2.6 we obtain the traveling wave solutions of the over-determined PDE system given by 2.2).

Next, let us assume that $v=f(x, y) / k(x, y)$ is a non-constant function. It follows from the first equation of system (2.1) that $\frac{\partial v}{\partial y} \neq 0$. Therefore, after solving the first equation of system (2.1), we obtain

$$
\begin{equation*}
y=-q(v)-x v^{2}, \quad f=v k \tag{2.7}
\end{equation*}
$$

for some function q. Let us consider the new variables (u, v) with $u=x$ and v being defined by (2.7). Then we have

$$
\begin{gather*}
\frac{\partial x}{\partial u}=1, \quad \frac{\partial x}{\partial v}=0, \quad \frac{\partial y}{\partial u}=-v^{2}, \quad \frac{\partial y}{\partial v}=-q^{\prime}(v)-2 u v \tag{2.8}\\
\frac{\partial u}{\partial x}=1, \quad \frac{\partial u}{\partial y}=0, \quad \frac{\partial v}{\partial x}=\frac{-v^{2}}{q^{\prime}(v)+2 u v}, \quad \frac{\partial v}{\partial y}=\frac{-1}{q^{\prime}(v)+2 u v} \tag{2.9}
\end{gather*}
$$

It follows from $2.7,(2.8$ and 2.9 that

$$
\begin{equation*}
f_{y}=-\frac{k+v k_{v}}{q^{\prime}(v)+2 u v}, \quad k_{x}=k_{u}-\frac{v^{2} k_{v}}{q^{\prime}(v)+2 u v} . \tag{2.10}
\end{equation*}
$$

By substituting 2.7), and 2.10 into the second equation of 2.1 we obtain

$$
\begin{equation*}
k_{u}+\left(\frac{v}{q^{\prime}(v)+2 u v}\right) k=0 . \tag{2.11}
\end{equation*}
$$

After solving this equation we obtain

$$
\begin{equation*}
f=\frac{v A(v)}{\sqrt{2 u v+q^{\prime}(v)}}, \quad k=\frac{A(v)}{\sqrt{2 u v+q^{\prime}(v)}} \tag{2.12}
\end{equation*}
$$

Now, by applying 2.9 and 2.12 , we find

$$
\begin{gather*}
f_{x}=\frac{v^{2} A(v)\left(v q^{\prime \prime}(v)-6 u v-4 q^{\prime}(v)\right)-2 v^{3} A^{\prime}(v)\left(2 u v+q^{\prime}(v)\right)}{2\left(2 u v+q^{\prime}(v)\right)^{5 / 2}} \\
f_{y}=\frac{A(v)\left(v q^{\prime \prime}(v)-2 u v-2 q^{\prime}(v)\right)-2 v A^{\prime}(v)\left(2 u v+q^{\prime}(v)\right)}{2\left(2 u v+q^{\prime}(v)\right)^{5 / 2}} \\
k_{x}=\frac{v A(v)\left(v q^{\prime \prime}(v)-2 u v-2 q^{\prime}(v)\right)-2 v^{2} A^{\prime}(v)\left(2 u v+q^{\prime}(v)\right)}{2\left(2 u v+q^{\prime}(v)\right)^{5 / 2}} \tag{2.13}\\
k_{y}=\frac{A(v)\left(2 u+q^{\prime \prime}(v)\right)-2 A^{\prime}(v)\left(2 u v+q^{\prime}(v)\right)}{2\left(2 u v+q^{\prime}(v)\right)^{5 / 2}}
\end{gather*}
$$

After substituting (2.13) into the last equation in 2.1) and by applying 2.8 and (2.9), we obtain a polynomial equation of degree 3 in u :

$$
\begin{equation*}
A^{4}(v) u^{3}+B(v) u^{2}+C(v) u+D(v)=0 \tag{2.14}
\end{equation*}
$$

where B, C and D are functions in v. Consequently, we must have $A(v)=0$ which is a contradiction according to 2.14 . Therefore this case cannot happen.

3. EXACT SOLUTIONS OF THE OVER-DETERMINED SYSTEM WITH $\varepsilon=-1$

Theorem 3.1. The solutions $\{f, k\}$ of the over-determined PDE system

$$
\begin{equation*}
\left(\frac{k}{f}\right)_{x}+\left(\frac{f}{k}\right)_{y}=0, \quad \frac{f_{y}}{k}=\frac{k_{x}}{f}, \quad\left(\frac{f_{y}}{k}\right)_{y}+\left(\frac{k_{x}}{f}\right)_{x}=f k \tag{3.1}
\end{equation*}
$$

are the following traveling wave solutions:

$$
\begin{equation*}
f=c m \operatorname{csch}\left(\frac{c\left(m^{2} x+y\right)}{\sqrt{1+m^{2}}}\right), \quad k=c \operatorname{csch}\left(\frac{c\left(m^{2} x+y\right)}{\sqrt{1+m^{2}}}\right) \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
f=c m \sec \left(\frac{c\left(m^{2} x+y\right)}{\sqrt{1+m^{2}}}\right), \quad k=c \sec \left(\frac{c\left(m^{2} x+y\right)}{\sqrt{1+m^{2}}}\right) \tag{3.3}\\
f=\frac{m \sqrt{1+m^{2}}}{m^{2} x+y}, \quad k=\frac{\sqrt{1+m^{2}}}{m^{2} x+y} \tag{3.4}
\end{align*}
$$

where c and m are nonzero real numbers.
Proof. First, let us assume that $f=m k$ for some nonzero real number m. Then the first equation of system (3.1) holds identically. As in the previous section, we obtain from the second equation of system (3.1) that

$$
\begin{equation*}
f=m K(s), \quad k=K(s), \quad s=m^{2} x+y \tag{3.5}
\end{equation*}
$$

for some function K. By substituting (2.3) into the third equation in system (3.1), we find

$$
\begin{equation*}
\left(1+m^{2}\right)\left(K(s) K^{\prime \prime}(s)-K^{\prime 2}(s)\right)=K^{4}(s) \tag{3.6}
\end{equation*}
$$

Since $K \neq 0$, (3.6) implies that K is non-constant. Thus (2.4) gives

$$
\begin{equation*}
\left(1+m^{2}\right) \frac{K^{\prime 2}}{K^{2}}-K^{2}=c_{1} \tag{3.7}
\end{equation*}
$$

for some real number c_{1}.
If $c_{1}>0$, we put $c_{1}=c^{2}$ with $c \neq 0$. Then (3.7) becomes

$$
\begin{equation*}
\left(1+m^{2}\right) \frac{K^{\prime 2}}{K^{2}}-K^{2}=c^{2} \tag{3.8}
\end{equation*}
$$

After solving (3.8 we conclude that, up to translations and sign, K is given by

$$
\begin{equation*}
K=c \operatorname{csch}\left(\frac{c s}{\sqrt{1+m^{2}}}\right) \tag{3.9}
\end{equation*}
$$

Now, after combining (3.5 and (3.9) we obtain the traveling wave solutions 3.2 .
If $c_{1}<0$, we put $c_{1}=-c^{2}$ with $c \neq 0$. Then (3.7) becomes

$$
\begin{equation*}
\left(1+m^{2}\right) \frac{\left(K^{\prime}\right)^{2}}{K^{2}}-K^{2}=-c^{2} \tag{3.10}
\end{equation*}
$$

After solving (3.10) we conclude that, up to translations and sign, K is given by

$$
\begin{equation*}
K=c \sec \left(\frac{c s}{\sqrt{1+m^{2}}}\right) \tag{3.11}
\end{equation*}
$$

By combining (3.5) and (3.11) we obtain the traveling wave solutions of the overdetermined PDE system given by (3.3).

If $c_{1}=0,3.7$ becomes

$$
\begin{equation*}
\left(1+m^{2}\right) K^{\prime 2}=K^{4} \tag{3.12}
\end{equation*}
$$

After solving $\sqrt{3.12}$ we conclude that, up to translations and sign, K is given by

$$
\begin{equation*}
K=\frac{\sqrt{1+m^{3}}}{m^{2} x+y}, \tag{3.13}
\end{equation*}
$$

which yields solutions (3.4).
Finally, by applying a argument similar to the one given in section 2, we conclude that the remaining case is impossible.

4. Applications to Hamiltonian-stationary Lagrangian surfaces

Let $\left(M_{j}, g_{j}\right), j=1, \ldots, m$, be Riemannian manifolds, f_{i} a positive function on $M_{1} \times \cdots \times M_{m}$ and $\pi_{i}: M_{1} \times \cdots \times M_{m} \rightarrow M_{i}$ the i-th canonical projection for $i=1, \ldots, m$. The twisted product

$$
f_{1} M_{1} \times \cdots \times_{f_{m}} M_{m}
$$

is the product manifold $M_{1} \times \cdots \times M_{m}$ equipped with the twisted product metric g defined by

$$
\begin{equation*}
g(X, Y)=f_{1}^{2} \cdot g_{1}\left(\pi_{1 *} X, \pi_{1 *} Y\right)+\cdots+f_{m}^{2} \cdot g_{m}\left(\pi_{m *} X, \pi_{m *} Y\right) \tag{4.1}
\end{equation*}
$$

Let $N^{n-\ell}(\varepsilon)$ be an $(n-\ell)$-dimensional real space form of constant curvature ε. For $\ell<n-1$ we consider the following twisted product:

$$
\begin{equation*}
f_{1} I_{1} \times \cdots \times_{f_{\ell}} I_{\ell} \times_{1} N^{n-\ell}(\varepsilon) \tag{4.2}
\end{equation*}
$$

with twisted product metric given by

$$
\begin{equation*}
g=f_{1}^{2} d x_{1}^{2}+\cdots+f_{\ell}^{2} d x_{\ell}^{2}+g_{0} \tag{4.3}
\end{equation*}
$$

where g_{0} is the canonical metric of $N^{n-\ell}(\varepsilon)$ and I_{1}, \ldots, I_{ℓ} are open intervals. When $\ell=n-1$, we shall replace $N^{n-1}(\varepsilon)$ by an open interval. If the twisted product is a real-space-form $M^{n}(\varepsilon)$, it is called a twisted product decomposition of $M^{n}(\varepsilon)$ (cf. (4). We denote such a decomposition by $\mathcal{T} P_{f_{1} \ldots f_{\ell}}^{n}(\varepsilon)$.

We recall the following result from [6, Theorem 3.2] (see also [7]).
Theorem 4.1. Let f, k be a pair of positive functions satisfying PDE system (2.1). Then, up to rigid motions of $\tilde{M}^{2}(4 \varepsilon)$, there is a unique H-stationary Lagrangian isometric immersion:

$$
\begin{equation*}
L_{f, k}: \mathcal{T} P_{f^{2} k^{2}}^{2}(\varepsilon) \rightarrow \tilde{M}^{2}(4 \varepsilon) \tag{4.4}
\end{equation*}
$$

whose second fundamental form satisfies

$$
\begin{equation*}
h\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right)=J \frac{\partial}{\partial x_{1}}, \quad h\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right)=0, \quad h\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{2}}\right)=J \frac{\partial}{\partial x_{2}} . \tag{4.5}
\end{equation*}
$$

If the two twistor functions f^{2} and k^{2} are equal and if they satisfy PDE system (1.1), then the corresponding Hamiltonian-stationary adapted Lagrangian immersion of $\mathcal{T} P_{f^{2} k^{2}}^{2}(\varepsilon)$ is said to be of type I. If the two twistor functions f^{2} and k^{2} are unequal, then the corresponding Hamiltonian-stationary adapted Lagrangian immersion is said to be of type II.

By applying Theorem 2.1 and results of [6, Section 5], we can determine all type II adapted Hamiltonian stationary Lagrangian surfaces in the complex projective plane $C P^{2}(4)$ of constant holomorphic sectional curvature 4 . In fact, by combining Theorem 2.1 and [6, Section 5] we have the following.

Corollary 4.2. A type II adapted Hamiltonian-stationary Lagrangian surface in $C P^{2}(4)$ is congruent to $\pi \circ L$, where $\pi: S^{5}(1) \rightarrow C P^{2}(4)$ is the Hopf fibration and L is given by

$$
\begin{aligned}
L(x, y)= & \frac{\operatorname{sech}\left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)}{\sqrt{2+m^{2}}}\left(\frac{2 m \sqrt{2+m^{2}}}{\sqrt{1+5 m^{2}}} e^{i(x+y) / 2} \sin \left(\frac{\sqrt{1+5 m^{2}}}{2 \sqrt{1+m^{2}}}(x-y)\right)\right. \\
& e^{i(x+y) / 2}\left[\sqrt{1+m^{2}} \cos \left(\frac{\sqrt{1+5 m^{2}}}{2 \sqrt{1+m^{2}}}(x-y)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-i\left(1-m^{2}\right) \sqrt{1+5 m^{2}} \sin \left(\frac{\sqrt{1+5 m^{2}}}{2 \sqrt{1+m^{2}}}(x-y)\right)\right] \\
& \frac{1}{\sqrt{2}} \sqrt{\left.1+\cosh \left(\frac{2 m^{2} x+2 y}{\sqrt{1+m^{2}}}\right)\left(1-i \sqrt{1+m^{2}} \tanh \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)\right)\right)}
\end{aligned}
$$

for some positive number $m \neq 1$.
Similarly, by applying Theorem 3.1 and results of [6, Section 7] we can determine all type II adapted Hamiltonian-stationary Lagrangian surfaces in the complex hyperbolic plane $C H^{2}(-4)$ of constant holomorphic sectional curvature -4 . More precisely, we have the following result.

Corollary 4.3. A type II adapted Hamiltonian-stationary Lagrangian surface in $C H^{2}(-4)$ is congruent to $\pi \circ L$, where $\pi: H_{1}^{5}(-1) \rightarrow C H^{2}(-4)$ denotes the Hopf fibration and $L(x, y)$ is given by one of the following five immersions:
(a)

$$
L=\left(1-\frac{i\left(1+m^{2}\right)}{m^{2} x+y}, \frac{m \sqrt{1+m^{2}}}{m^{2} x+y} e^{i x}, \frac{\sqrt{1+m^{2}}}{m^{2} x+y} e^{i y}\right)
$$

(b)

$$
L=\operatorname{sech}\left(\frac{x+3 y}{2 \sqrt{3}}\right)\left(\frac{x-y+4 i}{2} e^{i(x+y) / 2}, \frac{x-y}{2} e^{i(x+y) / 2}, \sqrt{3}+2 i \tan \left(\frac{x+3 y}{2 \sqrt{3}}\right)\right)
$$

(c)

$$
\begin{aligned}
L= & \left(\frac{\sqrt{3 m^{4}+2 m^{2}-1} \cosh (\alpha(x-y))+i\left(m^{2}-1\right) \sinh (\alpha(x-y))}{m \sqrt{3 m^{2}-1} e^{-i(x+y) / 2}} \sec \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right),\right. \\
& \left.\frac{2 m e^{i(x+y) / 2}}{\sqrt{3 m^{2}-1}} \sec \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right) \sinh (\alpha(x-y)), \frac{1}{m}+\frac{i \sqrt{1+m^{2}}}{m} \tan \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)\right)
\end{aligned}
$$

(d)

$$
\begin{aligned}
L= & \left(\frac{\sqrt{1-2 m^{2}-3 m^{4}} \cos (\beta(x-y))+i\left(1-m^{2}\right) \sin (\beta(x-y))}{m \sqrt{1-3 m^{2}} e^{-i(x+y) / 2}} \sec \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)\right. \\
& \left.\frac{2 m e^{i(x+y) / 2}}{\sqrt{1-3 m^{2}}} \sec \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right) \sinh (\beta(x-y)), \frac{1}{m}+\frac{i \sqrt{1+m^{2}}}{m} \tan \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)\right)
\end{aligned}
$$

(e)

$$
\begin{aligned}
L= & \frac{1}{\sqrt{2+m^{2}}} \operatorname{csch}\left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)\left(\sinh \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)-i \sqrt{1+m^{2}} \cosh \left(\frac{m^{2} x+y}{\sqrt{1+m^{2}}}\right)\right. \\
& e^{i(x+y) / 2}\left\{\sqrt{1+m^{2}} \cos \left(\frac{\sqrt{1+5 m^{2}}}{2 \sqrt{1+m^{2}}}(x-y)\right)\right. \\
& \left.+\frac{i\left(m^{2}-1\right)}{\sqrt{1+5 m^{2}}} \sin \left(\frac{\sqrt{1+5 m^{2}}}{2 \sqrt{1+m^{2}}}(x-y)\right)\right\} \\
& \left.\frac{2 m \sqrt{2+m^{2}}}{\sqrt{1+5 m^{2}}} e^{i(x+y) / 2} \sin \left(\frac{\sqrt{1+5 m^{2}}}{2 \sqrt{1+m^{2}}}(x-y)\right)\right)
\end{aligned}
$$

where α and β are constants given by

$$
\alpha=\frac{\sqrt{3 m^{2}-1}}{2 \sqrt{1+m^{2}}}, \quad \beta=\frac{\sqrt{1-3 m^{2}}}{2 \sqrt{1+m^{2}}} .
$$

References

[1] Chen, B.-Y.: Pseudo-Riemannian geometry, δ-invariants and Applications, World Scientific, Hackensack, NJ, 2011.
[2] Chen, B.-Y.: Classification of a family of Hamiltonian-stationary Lagrangian submanifolds in complex hyperbolic 3-space, Taiwanese J. Math. 12 (2008), 1261-1284.
[3] Chen, B.-Y.; Dillen, F.: Warped product decompositions of real space forms and Hamiltonian stationary Lagrangian submanifolds, Nonlinear Anal. 69 (2008), 3462-3494.
[4] Chen, B.-Y.; Dillen, F.; Verstraelen, L.; Vrancken, L.: Lagrangian isometric immersions of a real-space-form $M^{n}(c)$ into a complex-space-form $\tilde{M}^{n}(4 c)$, Math. Proc. Cambridge Philo. Soc. 124 (1998), 107-125.
[5] Chen, B.-Y.; Garay, O. J.: Classification of Hamiltonian-stationary Lagrangian submanifolds of constant curvature in $C P^{3}$ with positive relative nullity, Nonlinear Anal. 69 (2008), 747762.
[6] Chen, B.-Y.; Garay, O. J.; Zhou, Z.: Hamiltonian stationary Lagrangian surfaces of constant curvature ε in complex space form $\tilde{M}^{2}(4 \varepsilon)$, Nonlinear Anal. 71 (2009), 2640-2659.
[7] Dong, Y.; Han, Y.: Some explicit examples of Hamiltonian minimal Lagrangian submanifolds in complex space forms, Nonlinear Anal. 66 (2007), 1091-1099.

Bang-Yen Chen
Department of Mathematics, Michigan State University, 619 Red Cedar Road, East
Lansing, Michigan 48824-1027, USA
E-mail address: bychen@math.msu.edu

[^0]: 2000 Mathematics Subject Classification. 35N05, 35C07, 35C99.
 Key words and phrases. Over-determined PDE system; traveling wave solution;
 exact solution; Hamiltonian stationary Lagrangian surfaces.
 (C) 2012 Texas State University - San Marcos.

 Submitted December 1, 2011. Published May 23, 2012.

