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EXISTENCE AND CONCENTRATION OF SEMICLASSICAL
STATES FOR NONLINEAR SCHRÖDINGER EQUATIONS

SHAOWEI CHEN

Abstract. In this article, we study the semilinear Schrödinger equation

−ε2∆u + u + V (x)u = f(u), u ∈ H1(RN ),

where N ≥ 2 and ε > 0 is a small parameter. The function V is bounded
in RN , infRN (1 + V (x)) > 0 and it has a possibly degenerate isolated critical
point. Under some conditions on f , we prove that as ε→ 0, this equation has
a solution which concentrates at the critical point of V .

1. Introduction and statement of main result

In this article, we are concerned with the semilinear Schrödinger equation

− ε2∆u + u + V (x)u = f(u), u ∈ H1(RN ), (1.1)

where N ≥ 2 and ε > 0 is a small parameter. The function f : R → R satisfies
(F1) f ∈ C1(R) and there exist q ∈ (2, 2∗), 2 < p1 < p2 < 2∗ and a constant

C > 0 such that

|f ′(t)| ≤ C(|t|p1−2 + |t|p2−2), t ∈ R
and for any L > 0,

sup{|f ′(t)− f ′(s)|/|t− s|q−2| t, s ∈ [−L,L], t 6= s} < ∞, (1.2)

where 2∗ = 2N/(N − 2) if N ≥ 3 and 2∗ = ∞ if N = 2;
(F2) there exists µ > 2 such that f(t)t ≥ µF (t) > 0, t 6= 0, where F (t) =∫ t

0
f(s)ds;

(F3) f(t)/|t| is an increasing function on R \ {0};

Remark 1.1. A typical function which satisfies (F1)–(F3) is

f(t) =
m∑

i=1

ai|t|βi−2t

with 2 < β1 < · · · < βm < 2∗ and ai > 0, 1 ≤ i ≤ m.

The potential function V satisfies the following conditions:
(V0) infx∈RN (1 + V (x)) > 0 and maxx∈RN |V (x)| < ∞;
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(V1) V ∈ C2(RN ) has an isolated critical point x0 such that

V (x) = Qn∗(x− x0) + o(|x− x0|n
∗
)

in some neighborhood of x0, where n∗ ≥ 2 is an even integer and Qn∗ is an
n∗- homogeneous polynomial in RN which satisfies that ∆Qn∗ ≥ 0 in RN

or ∆Qn∗ ≤ 0 in RN and ∆Qn∗ 6≡ 0 in RN .

Remark 1.2. Without loss of generality, in what follows, we always assume that
x0 = 0. Typical examples for Qn∗ are ±|x|n∗ (n∗ ≥ 2).

Our main result of this article is the following theorem.

Theorem 1.3. Suppose that f satisfies (F1)–(F4) and V satisfies (V0), (V1). Then
there exist ε0 > 0 and a set K whose elements are radially symmetric solutions of
equation

−∆u + u = f(u), u ∈ H1(RN ) (1.3)

such that if 0 < ε < ε0, then equation (1.1) has a solution uε satisfying that

lim
ε→0

dist Y (vε,K) = 0,

where vε(x) = uε(εx), x ∈ RN and Y = H1(RN ).

The analysis of the semilinear Schrödinger equation (1.1) has recently attracted
a lot of attention due to its many applications in mathematical physics.

If v is a solution of (1.1), then v(εx) is a solution of the equation

−∆u + u + V (εx)u = f(u), u ∈ H1(RN ). (1.4)

Equation (1.4) is a perturbation of the limit equation (1.3). If (1.3) has a solution
w ∈ C2(RN ) satisfying the non-degeneracy condition:

ker L0 = span{ ∂ω

∂xi
: 1 ≤ i ≤ N},

where L0v = −∆v + v− f ′(ω)v, then in the celebrated paper [1] (see also [2]), Am-
brosetti, Badiale and Cingolani developed a kind of variational reduction method
and showed that if the potential function V has a strictly local minimizer or maxi-
mizer x0, then (1.4) admits a solution uε which converges to ω(· − x0) in H1(RN )
as ε → 0. In their argument, the non-degeneracy property of ω plays essential role.
Using the non-degeneracy condition and the reduction method, it was shown by
Kang and Wei [20] that, at a strict local maximum point x0 of V and for any posi-
tive integer k, (1.1) has a positive solution with k interacting bumps concentrating
near x0, while at a non-degenerate local minimum point of V (x) such solutions
do not exist. Moreover, under the assumption of the non-degeneracy condition,
multiplicity of solutions with one bump has also been considered by Grossi [16].

However, for a general nonlinearity f , it is very difficult to verify the non-
degeneracy condition for a solution of (1.3). An effective method to attack problem
(1.1) without using the non-degeneracy condition is variational method. In [21],
Rabinowitz used a global variational method to show the existence of least energy
solutions for (1.1) when ε > 0 is small, and the condition imposed on V is a global
one, namely

0 < inf
x∈RN

(1 + V (x)) < lim inf
|x|→∞

(1 + V (x)).
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Del Pino, Felmer and Gui [12, 13, 14, 15, 17] used different variational methods to
obtain nontrivial solution of (1.1) for small ε > 0 under local conditions which can
be roughly described as follows: V is local Hölder continuous on RN ,

inf
x∈RN

(1 + V (x)) > 0 (1.5)

and there exists k disjoint bounded regions Ω1, . . . ,Ωk in RN such that

inf
x∈∂Ωi

V (x) > inf
x∈Ωi

V (x). (1.6)

Their methods involve the deformation of nonlinearity f and some prior estimates.
Recently, Byeon, Jeanjean and Tanaka [5] [6] developed the variational methods
and made great advance in problem (1.1). Byeon and Jeanjean showed in [5] that
if N ≥ 3, V satisfies (1.5) and (1.6) with k = 1 and f satisfies

(f1) f : R → R is continuous and limt→0+ f(t)/t = 0;
(f2) there exists some p ∈ (1, 2∗ − 1) such that limt→∞ f(t)/tp < ∞;
(f3) there exists T > 0 such that 1

2mT 2 < F (T ), where F (t) =
∫ t

0
f(s)ds and

m = infx∈Ω1 V (x),
then (1.1) exists positive solution vε concentrating in the minimizers of V in Ω1 as
ε → 0. And in [6], Byeon, Jeanjean and Tanaka considered the case N = 1, 2 and
obtained similar results. Their conditions on the nonlinearity f are almost optimal.
Moreover, when V satisfies (1.5) and (1.6) with k > 1 and f satisfies (f1)–(f3), in
[10], Cingolani, Jeanjean and Secchi constructed multi-bump solutions for magnetic
nonlinear Schödinger equations which contain equation (1.1) as a special case.

Comparing to the variational methods mentioned above, the Lyapunov reduction
method of Ambrosetti and Badiale, although it need the non-degeneracy condition,
has its advantages that their method can be used to deal with elliptic equations
involving critical Sobolev exponent (see, for example, [3]) and other problems in-
volving concentration compactness (see, for example, [18]).

In this article, we indent to attack the problem (1.1) though a Lyapunov reduc-
tion method, but avoiding the non-degeneracy condition for the solutions of limit
equation (1.3). In this article, we develop a new reduction method for an isolated
critical set K of the functional corresponding to (1.3). This method can be regarded
as a generalization of Ambrosetti and Badiale’s method. The non-degeneracy con-
ditions for the solutions in this critical set are no longer necessary and it does
not involve the deformation of nonlinearity. By combination of the new reduction
method and Conley index theory which was developed by Chang and Ghoussoub
in [9](see also [8]), we obtain a solution of (1.4) in a neighborhood of K for suffi-
ciently small ε > 0. Our method is new and it can be used to other problems which
involve concentration compactness. In contrast with the results of Byeon, Jeanjean
and Tanaka, although the assumptions we imposed on the nonlinearity f are much
stronger, the assumptions we made on V seem weaker in a sense, because by the
assumption (V1), x0 can be a local maximum point of V .

This article is organized as follows: In section 2, we obtain a critical set of the
functional corresponding to (1.3) with nontrivial Topology. In section 3 and section
4, a reduction for the function corresponding to (1.4) is developed. In section 5, we
give the proof of Theorem 1.3. Section 6 and 7 are appendixes.

Notation. R, Z and N denote the sets of real number, integer and positive integer
respectively. Let E be a metric space. BE(a, ρ) denotes the open ball in E centered
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at a and having radius ρ. The closure of a set A ⊂ E is denoted by A or clE(A).
distE(a,A) denotes the distance from the point a to the set A ⊂ E. By → we
denote the strong and by ⇀ the weak convergence. By kerA denotes the null
space of the operator A. If g is a C2 functional defined on a Hilbert space H,
∇g (or Dg) and ∇2g (or D2g) denote the gradient of g and the second derivative
of g respectively. And for a, b ∈ R, we denote ga := {u ∈ H : g(u) ≤ a} and
gb := {u ∈ H : g(u) ≥ b} the sub- and super-level sets of the functional g, moreover,
ga

b := {u ∈ H : b ≤ g(u) ≤ a}. δi,j denotes the Kronecker notation; i.e., δi,j = 1
if i = j and 0 if i 6= j. For a Banach space E, denote L(E) the Banach space
consisting of all bounded linear operator from E to E. If H is a Hilbert space
and W is a closed subspace of H, we denote the orthogonal complement space
of W in H by W⊥. For a subset A ⊂ H, span{A} denotes the subspace of H
generated by A. For a topology pair (A,B) in metric space, Ȟ∗(A,B) denotes the
Čech-Alexander-Spanier cohomology with coefficient group Z2 (see [23]).

2. Critical sets of limit functional with nontrivial Topology

Throughout this article, we denote the Sobolev space H1(RN ) and the radially
symmetric function space

H1
r (RN ) := {u ∈ H1(RN ) : u is radially symmetric}

by Y and X respectively. The inner product of Y is

〈u, v〉 =
∫

RN

(∇u∇v + uv)dx,

and we use ‖·‖ to denote the norm of Y corresponding to this inner product. Define

I(u) =
1
2

∫
RN

(|∇u|2 + |u|2)dx−
∫

RN

F (u)dx, u ∈ X.

J(u) =
1
2

∫
RN

(|∇u|2 + |u|2)dx−
∫

RN

F (u)dx, u ∈ Y,

Eε(u) =
1
2

∫
RN

(|∇u|2 + |u|2 + V (εx)|u|2)dx−
∫

RN

F (u)dx, u ∈ Y.

For h ∈ H−1(RN ), let (−∆ + 1)−1h and (−∆ + 1 + V (εx))−1h be the solutions of

−∆u + u = h, u ∈ H1(RN ) (2.1)

and
−∆u + u + V (εx)u = h, u ∈ H1(RN ) (2.2)

respectively.
Under conditions (F1)–(F3), I satisfies Palais-Smale condition (see, for example,

[24]) and has a mountain pass geometry; that is,
(i) I(0) = 0,
(ii) there exist ρ0 > 0 and δ0 > 0 such that I(u) ≥ δ0 for all ‖u‖ = ρ0,
(iii) there exists u0 ∈ X such that ‖u0‖ > ρ0 and I(u0) < 0.

Thus the following minimax value is well defined and is larger than δ0,

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (2.3)

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, I(γ(1)) < 0}. (2.4)
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Lemma 2.1. For any σ ∈ (0, δ0), if a ∈ (c − σ, c) and b ∈ (c, c + σ) are regular
values of I, then Ȟ1(Ib, Ia) 6= 0.

Proof. Since b > c, by the definition of minimax value c, there exists γ ∈ Γ such
that

max
t∈[0,1]

I(γ(t)) < b. (2.5)

Let u0 = γ(1). We infer that 0 and u0 lie in different connected component of Ia.
It follows that the homomorphism

ι∗ : Ȟ0(Ia) → Ȟ0({0, u0}) ∼= Z2 ⊕ Z2

which is induced by the inclusion mapping ι : {0, u0} ↪→ Ia is a surjection. Con-
sider the following homomorphism which is induced by the inclusion mapping
j : {0, u0} ↪→ Ib,

j∗ : Ȟ0(Ib) → Ȟ0({0, u0}).
By (2.5), 0 and u0 lie in the same connected component of Ib. It follows that j∗ is
not a surjection.

Consider the following commutative diagram

Ȟ0(Ib) Ȟ1(Ib, Ia)Ȟ0(Ia)-

Ȟ0({0, u0})
?

Q
Q

Q
Q

QQs

i∗

ι∗j∗

-- -
α∗

Since j∗ is not a surjection and ι∗ is a surjection, by this communicative diagram,
we deduce that Image(i∗) 6= Ȟ0(Ia). Moreover, by the property of exact sequence,
we have Image(i∗) = kerα∗. Thus kerα∗ 6= Ȟ1(Ia). It follows that α∗ 6= 0.
Therefore, Ȟ1(Ib, Ia) 6= 0. �

From [24, Chapter 4], we have the following lemma.

Lemma 2.2. If ∇I(u) = 0 and I(u) < 2c, then u does not change sign in RN .

Let F be a C1 functional defined on a Hilbert space M with critical set KF .
And let V be a pesudo-gradient vector field with respect to DF on M . A pesudo-
gradient flow associated with V is the unique solution of the following ordinary
differential equation in M :

η̇ = −V (η(x, t)), η(x, 0) = x.

A subset W of M is said to have the mean value property (for short (MVP)) if
for any x ∈ M and any t0 < t1 we have η(x, [t0, t1]) ⊂ W whenever η(x, ti) ∈ W ,
i = 1, 2.

Definition 2.3 ([9, Def. I.10]). Let F be a C1 functional on a Hilbert space M .
A subset S of the critical set K of F is said to be a dynamically isolated critical
set if there exist a closed neighborhood O of S and regular values a < b of F such
that

O ⊂ F−1[a, b] (2.6)
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and
cl(Õ) ∩K ∩ F−1[a, b] = S, (2.7)

where Õ = ∪t∈Rη(O, t). (O, a, b) is called an isolating triplet for S.

Definition 2.4 ([9, Def. III.1]). Let F be a C1 functional on a Hilbet space M
and let S be a subset of the critical set KF for F . A pair (W,W−) of subset is
said to be a GM pair for S associated with a pesudo-gradient vector field V , if the
following conditions hold:

(1) W is a closed (MVP) neighborhood of S satisfying W∩K = S and W∩Fα =
∅ for some α.

(2) W− is an exit set for W , i.e., for each x0 ∈ W and t1 > 0 such that
η(x0, t1) 6∈ W , there exists t0 ∈ [0, t1) such that η(x0, [0, t0]) ⊂ W and
η(x0, t0) ∈ W−.

(3) W− is closed and is a union of a finite number of sub-manifolds that
transversal to the flow η.

For α, β ∈ R, define

Kβ
α := {u ∈ X : ∇I(u) = 0, α ≤ I(u) ≤ β}.

Let a and b BE the regular values which come from Lemma 2.1. Then by Definition
zheqingsabainiaotefr66yh, Kb

a is a dynamically isolated critical set of I. By Lemma
2.1 and [9, Theorem III.3], we have the following lemma.

Lemma 2.5. Let σ > 0 be sufficiently small and a ∈ (c − σ, c), b ∈ (c, c + σ) be
regular values of I. If (W,W−) is a GM pair of Kb

a associated with some pseudo-
gradient vector field of I, then Ȟ1(W,W−) 6= 0.

Remark 2.6. In this remark, we shall show that the set of regular values of I
is dense in R. Therefore, for any σ > 0, there always exist regular values of I in
(c− σ, c) and (c, c + σ). In fact, we shall show that I(C) is of first category, where
C is the set of critical points of I. It suffices to prove that for any u ∈ C, there
exists δu > 0 such that I(C ∩BX(u, δu)) does not contain interior points.

Let u ∈ C. Since u is radially symmetric, the dimension of the kernel space of
the following operator is at most one

∇2I(u) : X → X, h ∈ X 7→ h− (−∆ + 1)−1f ′(u)h.

If dim∇2I(u) = 0, then by Morse Lemma (see, e.g., [7, Lemma 4.1]), there exists
δu > 0 such that u is the unique critical point of I in BX(u, δu). Thus, in this case,
I(C ∩BX(u, δu)) = {I(u)}.

If dim∇2I(u) = 1, let N = ker∇2I(u) and note that I is a C2 functional, then
by [19, Lemma 1] (see also [7, Theorem 5.1]), there exist an origin preserving C1

diffeomorphism Φ of some BX(0, δu) into X and an origin preserving C1 map h
defined in N ∩BX(0, δu) into X such that

I ◦ Φ(z, y) = I(u) + ‖Pz‖2 − ‖(id− P )z‖2 + I(h(y) + y)

where P : N⊥ → N⊥ is an orthogonal projection and N⊥ is the orthogonal com-
plement of N in X. Let U = {y ∈ N ∩ BX(0, δu) : h(y) + y}. Then U is a C1

one-dimensional manifold. Let us restrict I to U . Then I : U → R is C1. Moreover,
C ∩ BX(0, δu) = C ∩ U , so I(C ∩ BX(0, δu)) = I(C ∩ U). Therefore, by classical
Sard theorem, I(C ∩BX(0, δu)) does not contain interior points.
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For r > 0, A ⊂ X, let

Nr(A) := {v ∈ X : distX(v,A) < r}. (2.8)

Lemma 2.7. Let c be the mountain pass value coming from Lemma 2.1. For any
r > 0, there exists σr > 0 such that if a ∈ (c − σr, c) and b ∈ (c, c + σr) are
regular values of I, then there exists a GM pair (W,W−) of the critical set Kb

a of
the functional I associated with the negative gradient vector field of I such that
W ⊂ Nr(Kb

a).

Proof. By (F1)–(F3), we know that I satisfies the Palais-Smale condition (see [24]).
Therefore, for any r > 0, there exists κr > 0 such that if a ∈ (c − 1, c) and
b ∈ (c, c + 1), then

‖∇I(v)‖ ≥ κr, ∀v ∈ I−1[a, b] \Nr/3(Kb
a). (2.9)

Let
0 < σr < min{rκr/6, 1} (2.10)

and a ∈ (c− σr, c) and b ∈ (c, c + σr) be regular values of I. For

u ∈ I−1[a, b] ∩Nr/3(Kb
a), (2.11)

consider the negative gradient flow:

η̇(t) = −∇I(η(t)), η(0) = u. (2.12)

Let
T+

u = sup{t ≥ 0 : for every s ∈ [0, t], I(η(s)) ≥ a}
and

T−u = inf{t ≤ 0 : for every s ∈ [t, 0], I(η(s)) ≤ b}.
Let

U = ∪t∈[T−u ,T+
u ]{η(t, u) : u ∈ I−1[a, b] ∩Nr/3(Kb

a)}.
Then [Kb

a] ⊂ U , where

[Kb
a] = {v ∈ X : ω(v) ∪ ω∗(v) ∈ Kb

a},

ω(v) = ∩t>0η(v, [t, +∞)) is the ω−limit set of v and ω∗(v) = ∩t>0η(v, (−∞,−t])
is the ω∗-limit set of v.

By [9, Proposition III.2], we deduce that there exists a GM pair (W,W−) of Kb
a

such that W ⊂ U . Thus, to prove this Lemma, it suffices to prove that if σr > 0 is
small enough, then for u which satisfies (2.11),

sup
t∈(T−u ,T+

u )

‖η(t)− u‖ ≤ 2
3
r. (2.13)

Since their arguments are similar, we only give the proof for

sup
t∈[0,T+

u )

‖η(t)− u‖ ≤ 2
3
r. (2.14)

If (2.14) were not true, then there exist 0 ≤ t1 < t2 < T+
u such that

r/3 ≤ ‖η(t)− u‖ ≤ 2r/3, ∀t ∈ [t1, t2]

‖η(t1)− u‖ = r/3, ‖η(t2)− u‖ = 2r/3.
(2.15)

According to (2.9), we have

b− a ≥ I(η(t1))− I(η(t2))
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=
∫ t1

t2

〈∇I(η(t)), η̇(t)〉dt =
∫ t2

t1

‖∇I(η(t))‖2dt ≥ κ2
r(t2 − t1).

It follows that
t2 − t1 ≤ (b− a)/κ2

r. (2.16)

Combining (2.15) and (2.16) leads to

r

3
≤ ‖η(t2)− η(t1)‖ ≤

∫ t2

t1

‖η̇(t)‖dt

≤ (t2 − t1)1/2
( ∫ t2

t1

‖η̇(t)‖2
)1/2

= (t2 − t1)1/2
( ∫ t2

t1

‖∇I(η(t))‖2
)1/2

≤ (t2 − t1)1/2(b− a)1/2 ≤ (b− a)/κr < 2σr/κr.

(2.17)

This contradicts (2.10). Thus, (2.14) holds. �

3. A variational reduction for the limiting functional I

Let σ > 0 be sufficiently small and a ∈ (c− σ, c), b ∈ (c, c + σ) be regular values
of I, where c is defined by (2.3). In what follows, for the sake of simplicity, we
denote the critical set Kb

a by K.
By [4], if u ∈ Y is a weak solution of

−∆u + u = f(u), (3.1)

then u and ∂u
∂xi

, 1 ≤ i ≤ N satisfy exponential decay at infinity. As a consequence,
K is a compact subset of W 2,2(RN ). If u ∈ Y is a solution of equation (3.1), then
∂u
∂xi

, i = 1, . . . , N are the eigenfunctions for the eigenvalue problem

−∆h + h = f ′(u)h. (3.2)

Remark 3.1. By [22, Theorem C. 3.4]), any eigenfunction of the eigenvalue prob-
lem (3.2) has exponential decay at infinity.

The argument in [11, Page 970-971] implies the following Lemma.

Lemma 3.2. Suppose that u ∈ X is a solution of equation (3.1) and it does not
change sign in RN . If v ∈ Y is a solution of (3.2) and satisfies

〈v,
∂u

∂xi
〉 = 0, i = 1, . . . , N,

then v ∈ X.

Remark 3.3. By Lemma 2.2, we infer that if u ∈ K, then u does not change sign
in RN .

As it has been mentioned above, K is a compact subset in W 2,2(RN ). Thus for
any u ∈ K and any ς > 0, there exists τu > 0 such that

N∑
j=1

∥∥ ∂v

∂xj
− ∂u

∂xj

∥∥ < ς, ∀v ∈ K ∩BX(u, 2τu). (3.3)

Therefore, we can choose a finite open sub-covering of K

A = {BX(ui, τui) : i = 1, . . . , s} (3.4)
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from the open covering {BX(u, τu) : u ∈ K}. Let ζ ∈ C∞([0,+∞)) be such that
0 ≤ ζ(t) ≤ 1 for all t, ζ(t) = 1 for t ∈ [0, 1/2] and ζ(t) = 0 for t ∈ [1,∞). Let

ξi(u) =
ζ(‖u− ui‖/τui

)∑s
i=1 ζ(‖u− ui‖/τui)

, 1 ≤ i ≤ s.

Then {ξi : 1 ≤ i ≤ s} is a C∞ partition of unity corresponding to the covering A.
For u ∈ K, let

Yu := {h ∈ X : ∇2I(u)h = 0}, Zu := span{ ∂u

∂xi
: 1 ≤ i ≤ N}.

Let

Y = span{∪s
i=1Yui}, (3.5)

q = dimY. (3.6)

Let {e1, e2, . . . , eq} be an orthogonal normal base of Y. As mentioned in Remark
3.1, for every 1 ≤ n ≤ q, en ∈ W 2,2

r (RN ) and en satisfies exponential decay at
infinity.

Let {e′1, e′2 . . . } be an orthogonal normal base of Y⊥, where Y⊥ is the orthogonal
complement space of Y in X. From the appendix A of this article, for every k ∈ N,
there exists

Ek := {ẽj,k : 1 ≤ j ≤ k}, (3.7)
such that

(i) For every k, Ek ⊂ X ∩W 2,2
r (RN ) and Ek⊥Y;

(ii) Every ẽj,k satisfies exponential decay at infinity, 〈ẽj,k, ẽj′,k〉 = δj,j′ and

sup
1≤j≤k

‖ẽj,k − e′j‖ ≤ 1/2k. (3.8)

For every k, denote
Xk := span{Ek} ⊕ Y. (3.9)

Let Pk : X → Xk and P⊥
k : X → X⊥

k be the orthogonal projections, where X⊥
k

is the orthogonal complement space of Xk in X. By the definition of Xk and the
properties (i) and (ii) mentioned above, we have the following Lemma which is easy
to prove.

Lemma 3.4. For every h ∈ X, limk→∞ ‖h− Pkh‖ = limk→∞ ‖P⊥
k h‖ = 0.

Lemma 3.5. For any r > 0, there exists lr ∈ N such that if k ≥ lr, then for every
v ∈ Nr(K), P⊥

k ∇2I(v)|X⊥
k

is invertible and

‖(P⊥
k ∇2I(v)|X⊥

k
)−1‖L(X⊥

k ) ≤ 2. (3.10)

Proof. For w ∈ X⊥
k ,

P⊥
k ∇2I(v)w = w − P⊥

k (−∆ + 1)−1f ′(v)w. (3.11)

Denote the operator w 7→ P⊥
k (−∆ + 1)−1f ′(v)w by Av,k. If we can prove that

lim sup
k→∞

sup
{
‖Av,k‖L(X⊥

k ) : v ∈ Nr(K)
}

= 0, (3.12)

then the conclusion of this Lemma follows. If (3.12) were not true, we can choose
vk ∈ Nr(K) and wk ∈ X⊥

k with ‖wk‖ = 1, k = 1, 2, . . . , such that

lim sup
k→∞

‖Avk,kwk‖ > 0. (3.13)



10 S. CHEN EJDE-2012/85

Without loss of generality, we assume that vk ⇀ v0 in X and wk ⇀ w0 in X as
k →∞. Since for any 2 ≤ p < 2∗, X can be compactly embedded into the radially
symmetric Lp space (see, for example, [24, Corollary 1.26])

Lp
r(RN ) := {u ∈ Lp(RN ) : u is radially symmetric},

combining the condition (F1), we can obtain

lim
k→∞

sup
{ ∫

RN

|f ′(vk)wkh− f ′(v0)w0h| : h ∈ X, ‖h‖ ≤ 1
}

= 0.

It follows that

lim
k→∞

‖(−∆ + 1)−1(f ′(vk)wk − f ′(v0)w0)‖ = 0. (3.14)

By (3.14) and Lemma 3.4, we deduce that limk→∞ ‖Avk,kwk‖ = 0. But this con-
tradicts (3.13). �

For u ∈ K, denote Xk⊕Zu by Wu,k and let W⊥
u,k be the orthogonal complement

space of Wu,k in Y . Let PWui,k
: Y → Wui,k and PW⊥

ui,k
: Y → W⊥

ui,k
be the

orthogonal projections.

Lemma 3.6. Suppose that κ := max{τui : 1 ≤ i ≤ s} is sufficiently small, where
τui comes from (3.4). Then there exist C > 0 and lκ ∈ N such that if k ≥ lκ and
v ∈ BX(ui, τui) for some 1 ≤ i ≤ s, then PW⊥

ui,k
∇2J(v)|W⊥

ui,k
is invertible and

‖(PW⊥
ui,k

∇2J(v)|W⊥
ui,k

)−1‖L(W⊥
ui,k) ≤ C. (3.15)

Proof. We note that for w ∈ W⊥
ui,k

,

PW⊥
ui,k

∇2J(v)w = w − PW⊥
ui,k

(−∆ + 1)−1f ′(u)w. (3.16)

Since for any p ∈ [2, 2∗), X can be compactly embedded into the radially symmetric
Lp space, by the condition (F1), we deduce that w 7→ PW⊥

ui,k
(−∆+1)−1f ′(v)w is a

compact operator. It follows that PW⊥
ui,k

∇2J(v)|W⊥
ui,k

is a Fredholm operator with
index zero. Therefore, if we can prove that there exists C > 0 which is independent
of k such that, for sufficiently large k,

‖PW⊥
ui,k

∇2J(v)w‖L(W⊥
ui,k) ≥

1
C
‖w‖, ∀w ∈ W⊥

ui,k, ∀v ∈ BX(ui, τui) (3.17)

then the conclusion of this Lemma follows.
Without loss of generality, we assume that ui ≡ u1 and for the sake of simplicity,

we denote the operator PW⊥
u1,k

∇2J(v)|W⊥
u1,k

by Hv,k. If such C > 0 does not exist,

then there exist sequences {τk
u1
}, {vk} ⊂ X and {wk} ⊂ Y such that τk

u1
→ 0 as

k →∞, vk ∈ BX(u1, τ
k
u1

), wk ∈ W⊥
u1,k, ‖wk‖ = 1, k = 1, 2, . . . and

lim
k→∞

‖Hvk,kwk‖ = 0. (3.18)

Passing to a subsequence, we may assume that wk ⇀ w0 in Y as k → ∞. By
τk
u1
→ 0 as k →∞ and the assumption that {vk} ⊂ BX(u1, τ

k
u1

), we obtain

lim
k→∞

‖vk − u1‖ = 0. (3.19)
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By wk ∈ W⊥
u1,k and wk ⇀ w0 in Y , we obtain w0⊥X ⊕ Zu1 . Combining the

condition (F1), (3.19) and the fact that wk ⇀ w0 in Y leads to

lim
k→∞

‖(−∆ + 1)−1(f ′(vk)wk − f ′(u1)wk)‖ = 0, (3.20)

lim
k→∞

‖(−∆ + 1)−1(f ′(u1)wk − f ′(u1)w0)‖ = 0. (3.21)

By (3.21) and (3.20), we obtain

lim
k→∞

‖(−∆ + 1)−1(f ′(vk)wk − f ′(u1)w0)‖ = 0. (3.22)

By Lemma 3.4, we deduce that

lim
k→∞

‖PW⊥
u1,k

h− P(X⊕Zu1
)⊥h‖ = 0, ∀h ∈ Y, (3.23)

where P(X⊕Zu1 )⊥ : Y → (X ⊕ Zu1
)⊥ is the orthogonal projection. By (3.22) and

(3.23), we obtain

lim
k→∞

‖PW⊥
u1,k

((−∆ + 1)−1f ′(vk)wk)− P(X⊕Zu1
)⊥((−∆ + 1)−1f ′(u1)w0)‖ = 0.

(3.24)
By definition,

Hvk,kwk = wk − PW⊥
u1,k

(−∆ + 1)−1f ′(vk)wk. (3.25)

By (3.24) and the assumption limk→∞ ‖Hvk,kwk‖ = 0, we deduce that {wk} is
compact in Y . Therefore, ‖wk − w0‖ → 0 as k → ∞. It follows that ‖w0‖ = 1,
since ‖wk‖ = 1 for every k.

Sending k into infinity in the equality (3.25), by w0 ∈ (X ⊕ Zu1
)⊥, (3.18) and

(3.24), we obtain

P(X⊕Zu1
)⊥(w0 − (−∆ + 1)−1f ′(u1)w0) = 0. (3.26)

By w0⊥X and u1 ∈ X, we have

〈w0 − (−∆ + 1)−1f ′(u1)w0, h〉
= 〈w0, h〉 − 〈(−∆ + 1)−1f ′(u1)h, w0〉 = 0, ∀h ∈ X.

(3.27)

Since for any h ∈ Zu1 , h− (−∆ + 1)−1f ′(u1)h = 0, we obtain

〈w0 − (−∆ + 1)−1f ′(u1)w0, h〉
= 〈h− (−∆ + 1)−1f ′(u1)h, w0〉 = 0, ∀h ∈ Zu1 .

(3.28)

By (3.27) and (3.28), we obtain

PX⊕Zu1
(w0 − (−∆ + 1)−1f ′(u1)w0) = 0. (3.29)

By (3.26) and (3.29), we obtain

w0 − (−∆ + 1)−1f ′(u1)w0 = 0,

that is, w0 is an eigenfunction of (3.2) with u = u1 ∈ K. But w0 satisfies w0⊥X ⊕
Zu1 and ‖w0‖ = 1. This contradicts Lemma 3.2. �

For v ∈ ∪s
i=1BX(ui, τui), let

Tv = span
{ s∑

i=1

ξi(v)
∂ui

∂xj
: 1 ≤ j ≤ N

}
. (3.30)

The space Xk ⊕ Tv is denoted by Ev,k. Let PE⊥v,k
: Y → E⊥

v,k be the orthogonal
projection.
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Lemma 3.7. Suppose that κ = max{τui : 1 ≤ i ≤ s} is sufficiently small.
Then there exist C ′ > 0 and lκ ∈ N such that if k ≥ lκ, then for every v ∈
∪s

i=1BX(ui, τui), the operator PE⊥v,k
∇2J(v)|E⊥v,k

is invertible and

‖(PE⊥v,k
∇2J(v)|E⊥v,k

)−1‖L(E⊥v,k) ≤ C ′. (3.31)

Proof. As in the proof of Lemma 3.6, it suffices to prove that there exists C ′ > 0
which is independent of k such that, for sufficiently large k,

‖PE⊥v,k
∇2J(v)w‖L(E⊥v,k) ≥

1
C ′ ‖w‖, ∀w ∈ E⊥

v,k, ∀v ∈ ∪s
i=1BX(ui, τui). (3.32)

Without loss of generality, we assume that v ∈ B(u1, τu1
). Let PXk

: Y → Xk and
PTv : Y → Tv be orthogonal projections. For h ∈ Y ,

PE⊥v,k
h = h− PXk

h− PTv
h, (3.33)

and

PTvh =
N∑

j=1

〈
h,

s∑
i=1

ξi(v)
∂ui

∂xj

〉 ∑s
i=1 ξi(v) ∂ui

∂xj

‖
∑s

i=1 ξi(v) ∂ui

∂xj
‖2

. (3.34)

Since {ξi : 1 ≤ i ≤ s} is a partition of unity, we obtain for every 1 ≤ j ≤ N ,

‖∂u1

∂xj
−

s∑
i=1

ξi(v)
∂ui

∂xj
‖ = ‖

s∑
i=1

ξi(v)
∂u1

∂xj
−

s∑
i=1

ξi(v)
∂ui

∂xj
‖

≤
s∑

i=1

ξi(v)‖∂u1

∂xj
− ∂ui

∂xj
‖.

(3.35)

If ξi(v) 6= 0, then v ∈ BX(ui, τui). Combining the assumption v ∈ BX(u1, τu1), we
obtain u1 ∈ BX(ui, 2τui) ∩ K. Therefore, by (3.3), we deduce that

s∑
i=1

‖∂u1

∂xj
− ∂ui

∂xj
‖ < ς, if ξi(v) 6= 0. (3.36)

Combining (3.35) and (3.36) leads to

‖∂u1

∂xj
−

s∑
i=1

ξi(v)
∂ui

∂xj
‖ < ς, for 1 ≤ j ≤ N. (3.37)

Thus, there exists C > 0 which is independent of k such that

‖PTv
h− PZu1

h‖ ≤ Cς‖h‖, ∀h ∈ Y, (3.38)

where

PZu1
: Y → Zu1 , h 7→

N∑
j=1

〈
h,

∂u1

∂xj

〉 ∂u1
∂xj

‖∂u1
∂xj

‖2

is orthogonal projection. By (3.33) and (3.38), we have

‖PE⊥v,k
h− PW⊥

u1 ,k
h‖ ≤ Cς‖h‖, ∀h ∈ Y. (3.39)
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For w ∈ E⊥
v,k, we have

‖PE⊥v,k
∇2J(v)w‖

≥ ‖PW⊥
u1,k

∇2J(v)w‖ − ‖(PE⊥v,k
− PW⊥

u1,k
)∇2J(v)w‖

≥ ‖PW⊥
u1,k

∇2J(v)w‖ − Cς‖∇2J(v)‖L(Y )‖w‖ (by (3.39))

≥ ‖PW⊥
u1,k

∇2J(v)(w − PZu1
w)‖ − ‖PW⊥

u1,k
∇2J(v)(PZu1

w)‖

− Cς‖∇2J(v)‖L(Y )‖w‖
≥ C‖w − PZu1

w‖ − ‖∇2J(v)‖L(Y )‖PZu1
w‖ − Cς‖∇2J(v)‖L(Y )‖w‖

(by w − PZu1
w ∈ W⊥

u1,k and (3.15))

≥ C‖w‖ − (C + ‖∇2J(v)‖L(Y ))‖PZu1
w‖ − Cς‖∇2J(v)‖L(Y )‖w‖

= C‖w‖ − (C + ‖∇2J(v)‖L(Y ))‖PTvw − PZu1
w‖

− Cς‖∇2J(v)‖L(Y )‖w‖ (since PTvw = 0)

≥ C‖w‖ − ςC(C + ‖∇2J(v)‖L(Y ))‖w‖ − Cς‖∇2J(v)‖L(Y )‖w‖,

(3.40)

the above inequality follows from (3.38). It follows that if κ > 0 is sufficiently small,
then there exist lκ ∈ N and C ′ > 0 such that for every k ≥ lκ, (3.32) holds. �

Recall that X⊥
k is the orthogonal complement of Xk in X and Pk : X → Xk,

P⊥
k : X → X⊥

k are orthogonal projections. Let

Nδ,τ,k := {u + v ∈ X : u ∈ Xk, distX(u, PkK) < δ, v ∈ X⊥
k , ‖v‖ < τ},

where PkK = {Pkv : v ∈ K}. By Lemma 3.4 and the fact that K is a compact
subset of X, we obtain as k →∞, the Hausdorff distance of K and PkK,

sup
v∈PkK

distX(v,K) + sup
u∈K

distX(u, PkK) → 0. (3.41)

Thus, for any δ > 0, τ > 0 and 0 < r < min{δ, τ}, if k is sufficiently large, then

Nr(K) ⊂ Nδ,τ,k, (3.42)

where Nr(K) comes from (2.8). And for any r > 0, if δ, τ ∈ (0, r/2), then for
sufficiently large k,

Nδ,τ,k ⊂ Nr(K). (3.43)

Let
Nδ,k := {u ∈ Xk : distX(u, PkK) < δ}. (3.44)

Lemma 3.8. If δ > 0 is sufficient small and k is sufficiently large, then there exists
a C1−mapping πk : Nδ,k → X⊥

k satisfying

(i) 〈∇I(v + πk(v)), φ〉 = 0, ∀φ ∈ X⊥
k ;

(ii) limk→∞ sup
{
‖πk(v)‖ : v ∈ Nδ,k

}
= 0;

(iii) limk→∞ sup
{
‖Dπk(v)h‖ : v ∈ Nδ,k, h ∈ Xk, ‖h‖ = 1

}
= 0;

(iv) If v is a critical point of I(v + πk(v)), then v + πk(v) is a critical point of
I.

Proof. By Lemma 3.5, if r > 0 is small enough, then the operator

Lv,k := P⊥
k ∇2I(v)|X⊥

k
: X⊥

k → X⊥
k
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is invertible and if k ≥ lκ,

‖L−1
v,k‖L(X⊥

k ) ≤ 2, ∀v ∈ Nr(K). (3.45)

Assume that 0 < δ < r, by (3.43), if k is large enough, then Nδ,k ⊂ Nr(K). For
ρ > 0 and v ∈ Nδ,k, define

Ψv,k : BX⊥
k

(0, ρ) → X⊥
k , w 7→ w − L−1

v,kP⊥
k ∇I(v + w).

For any wi ∈ BX⊥
k

(0, ρ), i = 1, 2, by the definition of Lv,k, we have w2 − w1 −
L−1

v,kP⊥
k ∇2I(v)(w2 − w1) = 0. Therefore,

‖Ψv,k(w2)−Ψv,k(w1)‖

= ‖w2 − w1 − L−1
v,kP⊥

k ∇2I(v + θw2 + (1− θ)w1)(w2 − w1)‖
(by the mean value theorem, 0 < θ = θ(x) < 1)

≤ ‖w2 − w1 − L−1
v,kP⊥

k ∇2I(v)(w2 − w1)‖

+ ‖L−1
v,kP⊥

k (∇2I(v + θw2 + (1− θ)w1)−∇2I(v))(w2 − w1)‖

= ‖L−1
v,kP⊥

k (∇2I(v + θw2 + (1− θ)w1)−∇2I(v))(w2 − w1)‖
≤ 2‖(∇2I(v + θw2 + (1− θ)w1)−∇2I(v))(w2 − w1)‖ (by (3.45)).

(3.46)

Since I ∈ C2(X, R) and K is compact in X, if δ and ρ are small enough, then for
any v ∈ Nδ,k and w ∈ BX⊥

k
(0, ρ),

‖∇2I(v + w)−∇2I(v)‖L(X) < 1/4.

Thus, by (3.46), we obtain for any wi ∈ BX⊥
k

(0, ρ), i = 1, 2,

‖Ψv,k(w2)−Ψv,k(w1)‖ ≤
1
2
‖w2 − w1‖. (3.47)

If δ > 0 is small enough and k is large enough, then for every v ∈ Nδ,k,

‖Ψv,k(0)‖ ≤ ρ/2.

Then by (3.47), we obtain for every w ∈ BX⊥
k

(0, ρ),

‖Ψv,k(w)‖ ≤ ‖Ψv,k(w)−Ψv,k(0)‖+ ‖Ψv,k(0)‖ ≤ ρ. (3.48)

By (3.47) and (3.48), Ψv,k is a contractive mapping in BX⊥
k

(0, ρ) if δ and ρ are small
enough and k is large enough. Thus, by Banach fixed point theorem, there exists
unique fixed point πk(v) ∈ BX⊥

k
(0, ρ). It is easy to verify that πk is a C1−mapping

and it satisfies the result (i).
Now, we give the proof of (ii). By P⊥

k ∇I(v + πk(v)) = 0 and πk(v) ∈ X⊥
k , we

obtain

0 = 〈∇I(v + πk(v)), πk(v)〉 = ‖πk(v)‖2 −
∫

RN

f(v + πk(v)) · πk(v). (3.49)

By Lemma 3.4, we deduce that for any sequence {vk} with vk ∈ Nδ,k, πk(vk) ⇀ 0
in X as k →∞. Combining the compact embedding X ↪→ Lp

r(RN ), we obtain

lim
k→∞

∫
RN

|f(vk + πk(vk))| · |πk(vk)| = 0.
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It follows that

lim
k→∞

sup
{ ∫

RN

f(v + πk(v)) · πk(v) : v ∈ Nδ,k

}
= 0. (3.50)

The conclusion (ii) follows from (3.49) and (3.50).
Differentiating equation P⊥

k ∇I(v +πk(v)) = 0 for the variable v in the direction
h ∈ Xk, we obtain

Dπk(v)h− P⊥
k (−∆ + 1)−1f ′(v + πk(v))(h + Dπk(v)h) = 0. (3.51)

Note that Dπk(v)h ∈ X⊥
k . By (3.45), (3.51) and limk→∞ ‖πk(v)‖ = 0, we obtain if

k is large enough, then
1
2
‖Dπk(v)h‖ ≤ ‖Dπk(v)h− P⊥

k (−∆ + 1)−1f ′(v + πk(v))Dπk(v)h‖

= ‖P⊥
k (−∆ + 1)−1f ′(v + πk(v))h‖

(3.52)

It follows that for sufficiently large k,

sup{‖Dπk(v)h‖ : v ∈ Nδ,k, h ∈ Xk, ‖h‖ ≤ 1} < ∞. (3.53)

By (3.51), we obtain

‖Dπk(v)h‖2 =
∫

RN

f ′(v + πk(v)) · (h + Dπk(v)h) ·Dπk(v)h. (3.54)

Inequality (3.53) and the same argument as (3.50) yield

lim
k→∞

sup
{ ∫

RN

f ′(v + πk(v)) · (h + Dπk(v)h) ·Dπk(v)h :

v ∈ Nδ,k, h ∈ Xk, ‖h‖ ≤ 1
}

= 0.

Combining (3.54), we get the conclusion (iii).
By (iii), if k is sufficiently large, then

{h + Dπk(v)h : h ∈ Xk}+ X⊥
k = X.

Combining the result (i), we obtain if v0 is a critical point of I(v + πk(v)), then
v0 + πk(v0) is a critical point of I. �

Remark 3.9. By (ii) and (iv) of Lemma 3.8, Nδ,τ,k is a neighborhood of K if

τ > sup{‖πk(v)‖ : v ∈ Nδ,k}. (3.55)

Lemma 3.10. Let Ik(u) = 1
2‖P

⊥
k u‖2 + I(Pku + πk(Pku)). Then

lim
k→∞

‖Ik − I‖C1(Nδ,τ,k) = 0.

Proof. By definition, we have

Ik(u) =
1
2
‖u‖2 +

1
2
‖πk(Pku)‖2 −

∫
RN

F (Pku + πk(Pku)).

For any sequence {uk} with uk ∈ Nδ,τ,k, by the mean value theorem, we obtain

F (Pkuk + πk(Pkuk))− F (uk) = ζ(uk, θ)(Pkuk + πk(Pkuk)− uk)

= ζ(uk, θ)(πk(Pkuk)− P⊥
k uk)

(3.56)

where
ζ(uk, θ) = f ′(θPkuk + θπk(Pkuk) + (1− θ)uk) (3.57)
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with 0 < θ(x) < 1, x ∈ RN . Then we have∫
RN

∣∣∣F (Pkuk + πk(Pkuk))− F (uk)
∣∣∣ =

∫
RN

|ζ(uk, θ)| · |πk(Pkuk)− P⊥
k uk|. (3.58)

By (ii) of Lemma 3.8, we obtain for 2 ≤ p < 2∗,

lim
k→∞

∫
RN

|πk(Pkuk)|p = 0. (3.59)

By Lemma 3.4, we have
P⊥

k uk ⇀ 0 in X. (3.60)
Since X can be compactly embedded into Lp

r(RN ), by (3.60), we obtain for 2 ≤
p < 2∗,

lim
k→∞

∫
RN

|P⊥
k uk|p = 0. (3.61)

By (3.58), (3.59), (3.61) and the condition (F1), we obtain

lim
k→∞

∫
RN

∣∣F (Pkuk + πk(Pkuk))− F (uk)
∣∣ = 0. (3.62)

Thus

lim
k→∞

sup
{ ∫

RN

∣∣F (Pku + πk(Pku))− F (u)
∣∣ : u ∈ Nδ,τ,k

}
= 0. (3.63)

By (ii) of Lemma 3.8 and (3.63), we obtain

lim
k→∞

‖Ik − I‖C0(Nδ,τ,k) = 0. (3.64)

For h ∈ X,
〈∇Ik(u), h〉 = 〈u, h〉+ 〈πk(Pku), Dπk(Pku)(Pkh)〉

−
∫

RN

f(Pku + πk(Pku)) · (Pkh + Dπk(Pku)(Pkh)).
(3.65)

By (iii) of Lemma 3.8 and the same argument as above, we can obtain

lim
k→∞

sup{〈∇Ik(u)−∇I(u), h〉 : u ∈ Nδ,τ,k, ‖h‖ ≤ 1} = 0. (3.66)

The result of this Lemma follows from (3.64) and (3.66). �

Remark 3.11. For r > 0, let σ ∈ (0, σr/2), where σr/2 comes from Lemma 2.7, and
let a ∈ (c−σ, c), b ∈ (c, c+σ) be regular values of I, where c comes from (2.3). By
Lemma 2.7, there exists a GM pair (W,W−) of Kb

a associated with some pseudo-
gradient vector field of I such that W ⊂ Nr/2(Kb

a). By (3.42), if 0 < r < min{δ, τ},
then Nr(K) ⊂ Nδ,τ,k if k is sufficiently large. Denote the critical set of Ik in Nδ,τ,k

by K̂k. By (i) and (iv) of Lemma 3.8, we deduce that K̂k = PkKb
a. Then by (3.41),

K̂k ⊂ int W if k is large enough. By [9, Theorem III.4] and Lemma 3.10, we infer
that for sufficiently large k, (W,W−) is also a GM pair of Ik for K̂k associated with
some pseudo-gradient vector filed of Ik.

For v ∈ Nδ,k, denote I(v + πk(v)) by gk(v). And denote the critical set of gk

in W by Kk. By (i) and (iv) of Lemma 3.8, we deduce that Kk = PkKb
a = K̂k.

Let (Wk,W−
k ) be a GM pair of gk for Kk. Note that for u = w + v ∈ Nδ,τ,k with

w ∈ X⊥
k , v ∈ Xk, Ik(u) = 1

2‖w‖
2 + gk(v). By shifting theorem (see Lemma 5.1 of

[7]), we have
Ȟq(Wk,W−

k ) = Ȟq(W,W−), q = 0, 1, 2, . . . . (3.67)
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Combining Lemma 2.5, we obtain, for sufficiently large k,

Ȟ1(Wk,W−
k ) = Ȟ1(W,W−) 6= 0. (3.68)

4. A variational reduction for the functional Eε

For v ∈ ∪s
i=1BX(ui, τui) and y ∈ RN , denote the space

Tv,y,k := {ζ(· − y) : ζ ∈ Xk} ⊕ Tv(· − y),

where Tv comes from (3.30). Denote the orthogonal complemental space of Tv,y,k

in Y by T⊥v,y,k.
Recall that (see (3.44))

Nδ,k = {u ∈ Xk : distX(u, PkK) < δ}. (4.1)

For v ∈ Nδ,k, define Lv,y,ε,k : T⊥v,y,k → T⊥v,y,k by

w ∈ T⊥v,y,k 7→ w − Sv,y,k(−∆ + 1 + V (εx))−1(f ′(v(· − y))w) (4.2)

where Sv,y,k : Y → T⊥v,y,k is orthogonal projection and the operator (−∆ + 1 +
V (εx))−1 is defined by (2.2).

Lemma 4.1. Given R > 0, there exist δ0 > 0, ε0 > 0, l∗ > 0 and C > 0 which
are independent of k, such that if k ≥ l∗, 0 < δ ≤ δ0 and 0 ≤ ε ≤ ε0, then for any
v ∈ Nδ,k and y ∈ BRN (0, R), Lv,y,ε,k is invertible and

‖Lv,y,ε,kw‖ ≥ C‖w‖, ∀|y| ≤ R, ∀w ∈ T⊥v,y,k. (4.3)

Proof. Suppose κ = max{τui : 1 ≤ i ≤ s} is small enough such that Lemma
3.7 holds. By (3.43), for sufficiently small δ0 > 0, there exists l′κ > 0 such that
Nδ0,k ⊂ ∪s

i=1BX(ui, τui) if k ≥ l′κ. Note that Lv,0,0,k is exactly the operator
PE⊥v,k

∇2J(v)|E⊥v,k
which has been defined in Lemma 3.7 and for every w ∈ T⊥v,y,k,

Lv,y,0,kw = Lv,0,0,kw(· − y).

Thus, by Lemma 3.7, there exists C ′ > 0 such that if k ≥ l∗ := max{lκ, l′κ}, then
for any v ∈ Nδ0,k,

‖Lv,y,0,kw‖ ≥ C ′‖w‖, ∀|y| ≤ R, ∀w ∈ T⊥v,y,k, (4.4)

where lκ is the constant comes from Lemma 3.7. Therefore, to prove (4.3), it suffices
to prove that

lim
ε→0

sup
{
‖Lv,y,ε,kw − Lv,y,0,kw‖ : w ∈ T⊥v,y,k, ‖w‖ ≤ 1,

v ∈ Nδ0,k, y ∈ BRN (0, R), k ≥ l∗
}

= 0.
(4.5)

If we can prove that for any given sequences {kn} ⊂ N, {εn} ⊂ (0,+∞), {yn} ⊂
BRN (0, R), {vn} and {wn} which satisfy that εn → 0 as n → ∞, vn ∈ Nδ0,kn

,
wn ∈ T⊥vn,yn,kn

and ‖wn‖ ≤ 1, n = 1, 2, . . . ,

lim
n→∞

‖Lvn,yn,εn,knwn − Lvn,yn,0,knwn‖ = 0, (4.6)

then (4.5) holds. We only give the proof of (4.6) in the case kn → ∞, n → ∞,
since the proofs in other cases are similar. Without loss of generality, we assume
that {kn} is exactly the sequence {k} and we shall denote εn, yn, vn and wn by εk,
yk, vk and wk respectively, k = 1, 2, . . . .
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Passing to a subsequence, we may assume that as k →∞, yk → y0, vk ⇀ v0 in
X and wk ⇀ w0 in Y . Let

ηk = (−∆ + 1 + V (εkx))−1(f ′(vk(· − yk))wk).

It is easy to verify that {ηk} is bounded in Y and

ηk = (−∆ + 1)−1(f ′(vk(· − yk))wk)− (−∆ + 1)−1V (εk)ηk. (4.7)

Passing to a subsequence, we may assume that ηk ⇀ η0 in Y as k →∞.
By the definition of Lv,y,ε,k and (4.7), we obtain

Lvk,yk,ε,kw − Lvk,yk,0,kw = Svk,yk,k(−∆ + 1)−1V (εkx)ηk. (4.8)

The condition (V1) implies that V (0) = 0. It follows that for any h ∈ Y ,

lim
k→∞

∫
RN

V (εkx)ηkh = 0. (4.9)

Since ηk is a weak solution of the equation

−∆ηk + ηk + V (εkx)ηk = f ′(vk(· − yk))wk, (4.10)

by (4.9), yk → y0, ηk ⇀ η0 and wk ⇀ w0 in Y , we obtain η0 is a weak solution of
the equation:

−∆η0 + η0 = f ′(v0(· − y0))w0. (4.11)

From (4.10) and (4.11), we obtain

−∆(ηk − η0) + (ηk − η0) + V (εkx)(ηk − η0)

= (f ′(vk(· − yk))wk − f ′(v0(· − y0))w0)− V (εkx)η0.
(4.12)

Multiplying the above equation by ηk − η0 and integrating, we obtain that there
exists a constant C > 0 such that

C‖ηk − η0‖2

≤ ‖ηk − η0‖2 +
∫

RN

V (εkx)(ηk − η0)2 (by the condition (V0))

=
∫

RN

(
f ′(vk(· − yk))wk − f ′(v0(· − y0))w0 − V (εkx)η0

)
· (ηk − η0)

≤
∫

RN

∣∣∣f ′(vk(· − yk))wk − f ′(v0(· − y0))w0

∣∣∣ · |ηk − η0|

+
( ∫

RN

V 2(εkx)η2
0

)1/2

· ‖ηk − η0‖L2(RN ).

(4.13)

Since vk ⇀ v0 in X and yk → y0 as k →∞, by the fact that X can be compactly
embedding into Lp

r(RN ) (∀p ∈ [2, 2∗)), we obtain

lim
k→∞

‖vk(· − yk)− v0(· − y0)‖Lp(RN ) = 0, ∀p ∈ [2, 2∗). (4.14)

By (4.14) and the condition (F1), we obtain

lim
k→∞

∫
RN

∣∣f ′(vk(· − yk))wk − f ′(v0(· − y0))w0

∣∣ · |ηk − η0| = 0. (4.15)

By (4.13), (4.15) and

lim
k→∞

∫
RN

V 2(εkx)η2
0 = 0, (4.16)
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we obtain
lim

k→∞
‖ηk − η0‖ = 0. (4.17)

Equalities (4.16) and (4.17) yield

lim
k→∞

∫
RN

V 2(εkx)η2
k = 0. (4.18)

It follows that
lim

k→∞
‖(−∆ + 1)−1V (εkx)ηk‖ = 0. (4.19)

Combining (4.19) and (4.8) leads to (4.6).
Finally, by definition, Lv,y,ε,k is a Fredholm operator with index zero and by

(4.3), it is an injection. Therefore, it is invertible. �

Theorem 4.2. Given R > 0. There exist δ∗ > 0 and ε∗ > 0 such that if 0 < δ ≤ δ∗

and 0 ≤ ε ≤ ε∗, then there exist k(δ) and a C1-mapping

wδ,k(·, ·, ε) : Nδ,k ×BRN (0, R) → Y, (u, y) 7→ wδ,k(u, y, ε)

for k ≥ k(δ), satisfying

(i) wδ,k(u, y, ε) ∈ T⊥u,y,k, for all (u, y) ∈ Nδ,k ×BRN (0, R);
(ii) 〈∇Eε(u(· − y) + wδ,k(u, y, ε)), φ〉 = 0, for all φ ∈ T⊥u,y,k;
(iii) wδ,k(u, y, 0) = (πk(u))(· − y), ∀(u, y) ∈ Nδ,k ×BRN (0, R);
(iv) for any r > 0, there exists δr > 0 such that if 0 < δ ≤ δr, u ∈ Nδ,k,

y ∈ BRN (0, R) and k ≥ k(δ), then ‖wδ,k(u, y, ε)‖ ≤ r;
(v) for any n > 0,

sup
{
‖(1 + |x|)nwδ,k(u, y, ε)‖L∞(RN ) : (u, y) ∈ Nδ,k ×BRN (0, R), 0 ≤ ε ≤ ε∗

}
< ∞.

Proof. By Lemma 4.1, we know that for any R > 0, Lu,y,ε,k is invertible if 0 < δ ≤
δ0, 0 ≤ ε ≤ ε0 and k ≥ l∗. Moreover, the upper bound of ‖L−1

u,y,ε,k‖ is independent
of u, y, ε and k. For u ∈ Nδ,k and r > 0, let

Φu,y,ε,k : BT⊥u,y,k
(0, r) → T⊥u,y,k,

w 7→ w − L−1
u,y,ε,kSu,y,k∇Eε(u(· − y) + w).

Now, we show that if r, δ and ε are small enough and k is large enough, then for
any u ∈ Nδ,k, Φu,y,ε,k is a contractive mapping in BT⊥u,y,k

(0, r). Using

∇Eε(u(· − y) + w) = u(· − y) + w − (−∆ + 1 + V (εx))−1f(u(· − y) + w)

and the mean value theorem, we obtain for any w1, w2 ∈ BT⊥u,y,k
(0, r), Φu,y,ε,k(w1)−

Φu,y,ε,k(w2), we have

(w1 − w2)− L−1
u,y,ε,kSu,y,k

{
(w1 − w2)

− (−∆ + 1 + V (εx))−1(f ′(u(· − y) + w̃) · (w1 − w2))
}

= (w1 − w2)− L−1
u,y,ε,kSu,y,k

{
(w1 − w2)

− (−∆ + 1 + V (εx))−1f ′(u(· − y))(w1 − w2)

− (−∆ + 1 + V (εx))−1(f ′(u(· − y) + w̃)− f ′(u(· − y)))(w1 − w2)
}

(4.20)
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where w̃ = θw1 + (1 − θ)w2 for some 0 < θ < 1. By the condition (F1), we can
prove that

lim
r→0

sup
{
‖(−∆ + 1 + V (εx))−1(f ′(u(· − y) + w̃)− f ′(u(· − y)))ϕ‖

u ∈ Nδ,k, |y| ≤ R, ϕ ∈ Y, ‖ϕ‖ ≤ 1, 0 ≤ ε ≤ ε0
}

= 0.
(4.21)

By ‖L−1
u,y,ε,k‖L(Y ) ≤ 1/C (see Lemma 4.1), ‖Su,y,k‖L(Y ) ≤ 1 and (4.21), we deduce

that if r is small enough, then

‖L−1
u,y,ε,kSu,y,k(−∆ + 1 + V (εx))−1(f ′(u(· − y) + w̃)

− f ′(u(· − y)))(w1 − w2)‖

≤ 1
C
‖(−∆ + 1 + V (εx))−1(f ′(u(· − y) + w̃)− f ′(u(· − y)))(w1 − w2)‖

≤ 1
2
‖w1 − w2‖.

(4.22)

By the definition of Lu,y,ε,k,

L−1
u,y,ε,kSu,y,k

{
(w1 − w2)− (−∆ + 1 + V (εx))−1(f ′(u(· − y))(w1 − w2))

}
= (w1 − w2).

(4.23)

Combining (4.22), (4.23) and (4.20), we deduce that there exists r0 > 0 such that if
0 < r ≤ r0, 0 < δ ≤ δ0, 0 ≤ ε ≤ ε0 and k ≥ l∗, then for any (u, y) ∈ Nδ,k×BRN (0, R)
and w1, w2 ∈ BT⊥u,y,k

(0, r),

‖Φu,y,ε,k(w1)− Φu,y,ε,k(w2)‖ ≤
1
2
‖w1 − w2‖. (4.24)

Claim: For any 0 < r ≤ r0, there exist εr, δr and k(δ, r) such that if 0 < δ ≤ δr,
0 ≤ ε ≤ εr and k ≥ k(δ, r), then

‖Φu,y,ε,k(0)‖ ≤ r/2, ∀(u, y) ∈ Nδ,k ×BRN (0, R). (4.25)

Let hu,y,ε = (−∆ + 1 + V (εx))−1f(u(· − y)). It is easy to verify

hu,y,ε = (−∆ + 1)−1f(u(· − y))− (−∆ + 1)−1V (εx)hu,y,ε. (4.26)

The same argument as in (4.18) yields

lim
ε→0

sup
{ ∫

RN

V 2(εx)h2
u,y,ε : u ∈ Nδ0 ,k, y ∈ BRN (0, R), k ≥ l∗

}
= 0.

Thus, by (4.26), as ε → 0,

sup
{
‖(−∆ + 1 + V (εx))−1f(u(· − y))− (−∆ + 1)−1f(u(· − y))‖ :

u ∈ Nδ0 ,k, y ∈ BRN (0, R), k ≥ l∗
}
→ 0.

(4.27)

It follows that as ε → 0,

sup
{
‖∇Eε(u(· − y))−∇J(u(· − y))‖ : u ∈ Nδ0 ,k, y ∈ BRN (0, R), k ≥ l∗

}
→ 0.

(4.28)
Therefore, for 0 < r ≤ r0, there exists εr > 0 such that for any u ∈ Nδ0 ,k,
y ∈ BRN (0, R) and k ≥ l∗,

‖∇Eε(u(· − y))−∇J(u(· − y))‖ <
C

4
r if 0 ≤ ε ≤ εr, (4.29)
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where the constant C comes from Lemma 4.1. Since ∇J(v(· − y)) = ∇J(v) = 0,
∀v ∈ K, we obtain for any 0 < r ≤ r0, there exists δr such that for any 0 < δ ≤ δr

and any u ∈ N2δ(K),

‖∇J(u(· − y))‖ <
C

4
r. (4.30)

By (4.30) and the fact that (see (3.41))

lim
k→∞

Nδ,k ⊂ N2δ(K),

we deduce that there exists k(δ, r) such that if k ≥ k(δ, r), then for any 0 < δ ≤ δr

and any u ∈ Nδ,k,

‖∇J(u(· − y))‖ <
C

4
r. (4.31)

Thus, the claim follows from (4.29), (4.31) and the fact that

‖Φu,y,ε,k(0)‖ ≤ 1
C
‖∇Eε(u(· − y))‖.

Combining (4.24) and (4.25) leads to ‖Φu,y,ε,k(w)‖ ≤ r for every w ∈ BT⊥u,y,k
(0, r).

Therefore, Φu,y,ε,k is a contractive mapping in BT⊥u,y,k
(0, r). By Banach fixed point

theorem, there exists unique fixed point wδ,k(u, y, ε) of Φu,y,ε,k. Denote δr0
by δ∗,

εr0
by ε∗ and k(δ, r0) by k(δ). It is easy to verify that the conclusions (i) − (iv)

hold for wδ,k(u, y, ε).
Now, we prove that wδ,k : Nδ,k × BRN (0, R) → Y is C1. For any (u0, y0) ∈

Nδ,k ×BRN (0, R) and (u, y) close to (u0, y0), both Su0,y0,k|T⊥u,y,k
: T⊥u,y,k → T⊥u0,y0,k

and Su,y,k|T⊥u0,y0,k
: T⊥u0,y0,k → T⊥u,y,k are isomorphisms, and finding a solution w ∈

T⊥u,y,k to the equation Su,y,k∇Eε(u(·−y)+w) = 0 is equivalent to finding a solution
w ∈ T⊥u0,y0,k to the equation Su0,y0,kSu,y,k∇Eε(u(· − y) + Su,y,kw) = 0. Note that
Su0,y0,kSu,y,k∇Eε(u(· − y) + Su,y,kw) is C1 near (u0, y0, w0) ∈ Nδ,k ×BRN (0, R)×
T⊥u0,y0,k and the Fréchet partial derivative of Su0,y0,kSu,y,k∇Eε(u(· − y) + Su,y,kw)
at (u0, y0, w0) with respect to w is Lu0,y0,ε,k which is invertible. Therefore, the
implicit functional theorem implies that

wδ,k(·, ·, ε) : Nδ,k ×BRN (0, R) → Y

is a C1 function.
Finally, we give the proof of (v). Let

ϕu,y,ε,k = u(· − y) + wδ,k(u, y, ε)− PTu,y,k
(∇Eε(u(· − y) + wδ,k(u, y, ε))), (4.32)

where PTu,y,k
: Y → Tu,y,k is orthogonal projection. By the conclusion (ii) of this

Theorem, we obtain

PTu,y,k
(∇Eε(u(· − y) + wδ,k(u, y, ε))) = ∇Eε(u(· − y) + wδ,k(u, y, ε)). (4.33)

Thus, by (4.32) and (4.33), ϕu,y,ε,k satisfies

−∆ϕu,y,ε,k + ϕu,y,ε,k + V (εx)ϕu,y,ε,k = f(u(· − y) + wδ,k(u, y, ε)). (4.34)
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By the definition of Tu,y,k, we have

PTu,y,k
(∇Eε(u(· − y) + wδ,k(u, y, ε)))

=
N∑

j=1

〈
∇Eε(u(· − y) + wδ,k(u, y, ε)),

s∑
i=1

ξi(u)
ui(· − y)

∂xj

〉

×
∑s

i=1 ξi(u)ui(·−y)
∂xj

‖
∑s

i=1 ξi(u)ui(·−y)
∂xj

‖2

+
k∑

i=1

〈∇Eε(u(· − y) + wδ,k(u, y, ε)), ẽi,k(· − y)〉ẽi,k(· − y)

+
q∑

i=1

〈∇Eε(u(· − y) + wδ,k(u, y, ε)), ei(· − y)〉ei(· − y).

(4.35)

Since ẽi,k, ei, u and ∂ui

∂xj
satisfy exponential decay at infinity, by (4.35), for any

given k ≥ k(δ) and n ≥ 0, there exists C ′
n,k > 0 such that

sup
{
‖(1 + |x|)n(PTu,y,k

(∇Eε(u(· − y) + wδ,k(u, y, ε))))‖L∞(RN ) :

u ∈ Nδ,k, y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗
}
≤ C ′

k,n

(4.36)

and
sup

u∈Nδ,k,y∈BRN (0,R)

‖(1 + |x|)nu(· − y)‖L∞(RN ) ≤ C ′
k,n. (4.37)

Note that ϕu,y,ε,k satisfies the elliptic equation (4.34). Therefore, by the bootstrap
argument and the fact that

{wδ,k(u, y, ε)) : u ∈ Nδ,k, y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗}

is compact in Y (because for fixed k, Nδ,k is compact), we obtain

sup{‖ϕu,y,ε,k‖L∞(RN ) : u ∈ Nδ,k, y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗} < ∞ (4.38)

and

lim
ρ→∞

sup{‖ϕu,y,ε,k‖L∞(RN\BRN (0,ρ))
: u ∈ Nδ,k, y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗} = 0.

(4.39)
By (4.38), (4.39) and (4.32), we obtain

sup{‖wδ,k(u, y, ε)‖L∞(RN ) : u ∈ Nδ,k, y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗} < ∞. (4.40)

and

lim
ρ→∞

sup{‖wδ,k(u, y, ε)‖
L∞(RN\BRN (0,ρ))

: u ∈ Nδ,k, y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗} = 0.

(4.41)
Let d(t) = f(t)/t, t ∈ R. Then by (4.40), (4.37) and the condition (F1), we have

sup
{
‖d(u(·−y)+wδ,k(u, y, ε))‖L∞(RN ) : u ∈ Nδ,k, y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗

}
< ∞.

(4.42)
By conditions (V0) and (F1), and (4.41), we deduce that there exists ρ0 such that

inf
{
1 + V (εx)− d(u(x− y) + wδ,k(u, y, ε)) : |x| > ρ0, u ∈ Nδ,k,

y ∈ BRN (0, R), 0 ≤ ε ≤ ε∗
}

> 0.
(4.43)
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Let η be a cut-off function which satisfies η ≡ 1 in BRN (0, ρ0) and η ≡ 0 in
RN \BRN (0, ρ0 + 1). We can rewrite equation (4.34) as

−∆ϕu,y,ε,k + (1 + V (εx)− (1− η(x))d(u(x− y) + wδ,k(u, y, ε)))ϕu,y,ε,k

= fu,y,ε,k
(4.44)

with
fu,y,ε,k = d(u(· − y) + wδ,k(u, y, ε)) · u(· − y)

+ η(x) · d(u(· − y) + wδ,k(u, y, ε)) · wδ,k(u, y, ε)

− (1− η(x)) · d(u(· − y) + wδ,k(u, y, ε))

× (u(· − y)− PTu,y,k
(∇Eε(u(· − y) + wδ,k(u, y, ε))).

(4.45)

By (4.37), (4.36), (4.42) and the fact that

η(x)d(u(· − y) + wδ,k(u, y, ε)) · wδ,k(u, y, ε)

has compact support, we deduce that there exists C ′′′
n,k > 0 such that

sup
u∈Nδ,k,y∈BRN (0,R)

‖(1 + |x|)nfu,y,ε,k‖L∞(RN ) ≤ C ′′′
k,n. (4.46)

By (4.46), (4.43), (4.44) and [25, Proposition 4.2], we obtain that there exists
C ′′

n,k > 0 such that

sup
u∈Nδ,k,y∈BRN (0,R)

‖(1 + |x|)nϕu,y,ε,k‖L∞(RN ) ≤ C ′′
k,n. (4.47)

Then conclusion (v) follows from (4.32), (4.47), (4.36) and (4.37). �

By conclusion (iii) of Theorem 4.2, we obtain

J(u(· − y) + wδ,k(u, y, 0)) ≡ I(u + πk(u)), ∀(u, y) ∈ Nδ,k ×BRN (0, R). (4.48)

In what follows, for a C1 mapping f defined in Nδ,k × BRN (0, R), we use the
the symbols Df , Duf and Dyf to denote the derivatives of f with respect to (u, y)
variable, u variable and y variable respectively and use Df(u, y)[ū, ȳ] to denote the
derivative of f at the point (u, y) along the vector (ū, ȳ) ∈ Xk ×RN . Furthermore,
we use Duf(u, y)[ū] and Dyf(u, y)[ȳ] to denote the Fréchet partial derivatives with
respect to the u and y variables along the vectors ū and ȳ respectively.

Condition (V1) for the potential V yields

lim
ε→0

V (εx)
εn∗

= Qn∗(x). (4.49)

The proof of the following proposition will be given in the appendix.

Proposition 4.3. Let δ > 0 be sufficiently small and k ≥ k(δ). If ι < n∗, then

lim
ε→0

sup
{ 1

ει
Λk(u, y, ε) : (u, y) ∈ Nδ,k ×BRN (0, R)

}
= 0 (4.50)

where
Λk(u, y, ε) = ‖wδ,k(u, y, ε)− πk(u)(· − y)‖

+ sup
ȳ∈RN ,|ȳ|≤1

‖Dwδ,k(u, y, ε)[0, ȳ]−D(πk(u)(· − y))[0, ȳ]‖

+ sup
v∈Xk,‖v‖≤1

‖Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]‖.
(4.51)
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Moreover, there exists a constant M > 0 which is independent of (u, y) and ε such
that for every (u, y) ∈ Nδ,k ×BRN (0, R) and 0 ≤ ε ≤ ε∗,

Λk(u, y, ε) ≤ Mεn∗ . (4.52)

For 0 < δ ≤ δ∗ and 0 ≤ ε ≤ ε∗, denote the functional

Ψk(u, y, ε) := Eε(u(· − y) + wδ,k(u, y, ε)), (u, y) ∈ Nδ,k ×BRN (0, R). (4.53)

Theorem 4.4. Suppose that 0 < δ ≤ δ∗ and k ≥ k(δ). Then there exists εk > 0
such that if 0 ≤ ε ≤ εk and (uε, yε) ∈ Nδ,k × BRN (0, R) is a critical point of the
functional Ψk(u, y, ε); that is,

DΨk(uε, yε, ε)[v, ȳ] = 0, ∀(v, ȳ) ∈ Xk × RN , (4.54)

then uε(· − yε) + wδ,k(uε, yε, ε) is a critical point of Eε.

Proof. By conclusion (ii) of Theorem 4.2 and hypothesis (4.54), we deduce that to
prove uε(· − yε) + wδ,k(uε, yε, ε) is a critical point of Eε, it suffices to prove that for
sufficiently small ε > 0,{
v(·−yε)−(ȳ ·∇xuε)(·−yε)+Dwδ,k(uε, yε, ε)[v, ȳ] : v ∈ Xk, ȳ ∈ RN

}
+T⊥uε,yε,k = Y.

(4.55)
If (4.55) were not true, then there exist εn → 0 as n →∞ such that Yn 6= Y , where
Yn denotes the space appeared in the left side of (4.55) with ε = εn. Passing to a
subsequence, we may assume that yεn → yk and uεn

→ uk in Y as n → ∞, since
{(uεn , yεn)} is a bounded sequence in the finite dimensional space Xk × RN . By
the hypothesis (4.54) and Proposition 4.3, we deduce that uk is a critical point of
I(v + πk(v)). Then by the conclusion (iv) of Lemma 3.8, uk + πk(uk) is a critical
point of I. We denote it by ũk. Since Dπk(uk)v ∈ X and Tuk

⊂ X⊥, we get
Dπk(uk)v⊥Tuk

, where Tuk
comes from (3.30). Moreover, by Lemma 3.8, we obtain

Dπk(uk)v ∈ X⊥
k . Thus,

Dπk(uk)v⊥Xk ⊕ Tuk
= Tuk,0,k.

It follows that the subspace of Y ,

{v − ȳ∇xuk − ȳ∇xπk(uk) + Dπk(uk)v : v ∈ Xk, ȳ ∈ RN}+ T⊥uk,0,k (4.56)

is equal to

{v − ȳ∇xuk − ȳ∇xπk(uk) : v ∈ Xk, ȳ ∈ RN}+ T⊥uk,0,k

= {v − ȳ∇xũk : v ∈ Xk, ȳ ∈ RN}+ T⊥uk,0,k.
(4.57)

As it has been mentioned above, ũk = uk + πk(uk) ∈ K. Therefore, by (3.3), we
obtain for every 1 ≤ j ≤ N ,

‖∂ũk

∂xj
−

s∑
i=1

ξi(ũk)
∂ui

∂xj
‖ ≤

s∑
i=1

ξi(ũk)‖∂ũk

∂xj
− ∂ui

∂xj
‖ ≤ ς. (4.58)

By (ii) of Lemma 3.8 and the fact that every ξi is a Lipschitz function, we deduce
that for every 1 ≤ j ≤ N , as k →∞,

‖
s∑

i=1

ξi(ũk)
∂ui

∂xj
−

s∑
i=1

ξi(uk)
∂ui

∂xj
‖ ≤

s∑
i=1

|ξi(ũk)− ξi(uk)| · ‖ ∂ui

∂xj
‖

≤ C

s∑
i=1

‖ũk − uk‖ · ‖
∂ui

∂xj
‖ → 0,

(4.59)



EJDE-2012/85 EXISTENCE AND CONCENTRATION 25

where C is the the Lipschitz constant of ξi. By (4.58) and (4.59), we obtain that
for every 1 ≤ j ≤ N ,

lim sup
k→∞

‖∂ũk

∂xj
−

s∑
i=1

ξi(uk)
∂ui

∂xj
‖ ≤ ς.

It follows that

lim sup
k→∞

sup
|ȳ|≤1

‖ȳ∇xũk −
N∑

j=1

ȳj

s∑
i=1

ξi(uk)
∂ui

∂xj
‖ ≤ ς. (4.60)

Thus, when ς is sufficiently small and k is sufficiently large, the space defined
by (4.57) is equal to Y . As a consequence, when ς is sufficiently small and k is
sufficiently large, the space defined by (4.56) is also Y . Therefore, the space{

v(· − yk)− (ȳ∇xuk)(· − yk)− (ȳ∇xπk(uk))(· − yk) + (Dπk(uk)v)(· − yk) :

v ∈ Xk, ȳ ∈ RN
}

+ T⊥uk,y,k

(4.61)

is equal to Y . Then we can define a bounded linear operator Hn : Y → Y ,

w = v(· − yk)− (ȳ∇xuk)(· − yk)− (ȳ∇xπk(uk))(· − yk) + (Dπk(uk)v)(· − yk) + φ

7→ Hn(w) = v(· − yεn
)− (ȳ∇xuεn

)(· − yεn
) + Dwδ,k(uεn

, yεn
, εn)[v, ȳ] + φ,

(4.62)

where φ ∈ T⊥uk,y,k. It satisfies Yn = Hn(Y ), where Yn denotes the space appeared
in the left side of (4.55) with ε = εn. By uεn → uk, yεn → yk and Proposition
4.3, as n → ∞ we obtain ‖Hn − id‖L(Y ) → 0. Therefore, when n is large enough,
Hn(Y ) = Y . It follows that Yn = Y , which contradicts the assumption. Thus,
when k(δ) is large enough and k ≥ k(δ), there exists εk > 0 such that if 0 ≤ ε ≤ εk,
then (4.55) holds. �

5. Proof of Theorem 1.3

By conclusions (iii) and (v) of Theorem 4.2, if u ∈ Nδ,k, then πk(u) decays
exponentially at infinity. Therefore, for u ∈ Nδ,k and y ∈ RN , we can define

Γk(u, y) =
∫

RN

Qn∗(x + y)(u + πk(u))2dx.

By the same argument as [1, Lemma 3.2] and by (4.49), (4.37) and the Lebesgue
Convergence Theorem, we can get the following Lemma.

Lemma 5.1. For any given k ≥ k(δ), as ε → 0,

sup
{∣∣ 1

εn∗

∫
RN

V (ε(x+y))(u+πk(u))2dx−Γk(u, y)
∣∣ : (u, y) ∈ Nδ,k×BRN (0, R)

}
→ 0

and

sup
{∣∣D( 1

εn∗

∫
RN

V (ε(x + y))(u + πk(u))2dx− Γk(u, y)
)
[v, ȳ]

∣∣ :

v ∈ Xk, ‖v‖ ≤ 1, ȳ ∈ RN , |ȳ| ≤ 1, (u, y) ∈ Nδ,k ×BRN (0, R)
}
→ 0.

(5.1)

For the rest of this article, for the condition (V1), we assume that ∆Qn∗ ≥ 0
and ∆Qn∗ 6≡ 0 in RN , since the proof for the other case is similar.
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Lemma 5.2. If δ > 0 is small enough, then for any u ∈ Nδ,k, Γk(u, ·) has a
strict local minimum at y = 0 and D2

yΓk(u, 0) is a positive-definite matrix. More
precisely, there exists a constant Ak > 0 such that

D2
yΓk(u, 0)y · y ≥ Ak|y|2, ∀u ∈ Nδ,k, ∀y ∈ RN . (5.2)

Proof. By [1, Lemma 4.1], we know that y = 0 is a critical point of Γk(u, ·) for every
u ∈ Nδ,k. If (5.2) were not true, then there exist δn > 0, un ⊂ Nδn,k, n = 1, 2, . . .
and {yn} ⊂ SN−1 such that δn → 0 as n →∞ and

lim
n→∞

|D2
yΓk(un, 0)yn · yn| = 0. (5.3)

Since (un, yn) is bounded in the finite dimensional space Xk × RN , passing to a
subsequence, we may assume that un → u0 in Xk, and yn → y0 ∈ SN−1 as n →∞.
Let DiiΓk(un, y) be the second derivative of Γk(un, y) with respect to the variable
yi and diag{D11Γk(un, 0), . . . , DNNΓk(un, 0)} be diagonal matrix with diagonal
elements D11Γk(un, 0), . . . , DNNΓk(un, 0). By the appendix of [1], we obtain

DiiΓk(un, 0) = − 2
N

∫
RN

(un + πk(un))∇Qn∗(x) · ∇(un + πk(un))dx, (5.4)

where 1 ≤ i ≤ N . Therefore,

D2
yΓk(un, 0)yn · yn = yT

n · diag{D11Γk(un, 0), . . . , DNNΓk(un, 0)} · yn

= − 2
N
|yn|2

∫
RN

(un + πk(un))∇Qn∗(x) · ∇(un + πk(un))dx

= − 1
N
|yn|2

∫
RN

∇Qn∗(x) · ∇(un + πk(un))2dx

=
1
N
|yn|2

∫
RN

∆Qn∗(x) · (un + πk(un))2dx

(5.5)

By (5.3) and (5.5), we infer that

lim
n→∞

D2
yΓk(un, 0)yn · yn =

1
N
|y0|2

∫
RN

∆Qn∗(x) · (u0 + πk(u0))2dx = 0.

It is a contradiction, since we have assumed that ∆Qn∗(x) ≥ 0 and ∆Qn∗ 6≡ 0 in
RN . �

In the rest of this section, we assume that δ > 0 is sufficiently small and k ≥ k(δ)
is sufficiently large such that (3.68) holds, where the constant k(δ) comes from
Theorem 4.2.

Proof of Theorem 1.3. By the definition of Ψk(u, y, ε) (see (4.53)), for (u, y) ∈
Nδ,k ×BRN (0, R), we have

Ψk(u, y, ε)

=
1
2
‖u(· − y) + wδ,k(u, y, ε)‖2 +

1
2

∫
RN

V (εx)|u(· − y) + wδ,k(u, y, ε)|2dx

−
∫

RN

F (u(· − y) + wδ,k(u, y, ε))dx

=
1
2
‖u(· − y) + wδ,k(u, y, 0)‖2 +

1
2
‖wδ,k(u, y, ε)− wδ,k(u, y, 0)‖2

+ 〈u(· − y) + wδ,k(u, y, 0), wδ,k(u, y, ε)− wδ,k(u, y, 0)〉



EJDE-2012/85 EXISTENCE AND CONCENTRATION 27

+
1
2

∫
RN

V (εx)|u(· − y) + wδ,k(u, y, 0)|2dx

+
1
2

∫
RN

V (εx)|wδ,k(u, y, ε)− wδ,k(u, y, 0)|2dx

+
∫

RN

V (εx)(u(· − y) + wδ,k(u, y, 0)) · (wδ,k(u, y, ε)− wδ,k(u, y, 0))dx

−
∫

RN

F (u(· − y) + wδ,k(u, y, 0))dx

−
∫

RN

f(u(· − y) + wδ,k(u, y, 0)) · (wδ,k(u, y, ε)− wδ,k(u, y, 0))dx

− η1(u, y, ε), (5.6)

where
η1(u, y, ε)

=
∫

RN

F (u(· − y) + wδ,k(u, y, ε))dx−
∫

RN

F (u(· − y) + wδ,k(u, y, 0))dx

−
∫

RN

f(u(· − y) + wδ,k(u, y, 0)) · (wδ,k(u, y, ε)− wδ,k(u, y, 0))dx.

(5.7)

By Taylor expansion, we deduce that there exists 0 < θ = θ(x) < 1, ∀x ∈ RN such
that

η1(u, y, ε) =
1
2

∫
RN

f ′(u(· − y) + θwδ,k(u, y, 0) + (1− θ)wδ,k(u, y, ε))

× (wδ,k(u, y, ε)− wδ,k(u, y, 0))2dx

(5.8)

By condition (F1), Proposition 4.3 and (5.8), we deduce that

lim
ε→0

sup{ 1
εn∗

|η1(u, y, ε)| : (u, y) ∈ Nδ,k ×BRN (0, R)} = 0. (5.9)

Note that for v ∈ Xk, ȳ ∈ RN ,
Dη1(u, y, ε)[v, ȳ]

=
∫

RN

f(u(· − y) + wδ,k(u, y, ε))

× (v(· − y)− ȳ(∇xu)(· − y) + Dwδ,k(u, y, ε)[v, ȳ])dx

−
∫

RN

f(u(· − y) + wδ,k(u, y, 0))

× (v(· − y)− ȳ(∇xu)(· − y) + Dwδ,k(u, y, 0)[v, ȳ])dx

−
∫

RN

f ′(u(· − y) + wδ,k(u, y, 0)) · (wδ,k(u, y, ε)− wδ,k(u, y, 0))

× (v(· − y)− ȳ(∇xu)(· − y) + Dwδ,k(u, y, 0)[v, ȳ])dx

−
∫

RN

f(u(· − y) + wδ,k(u, y, 0)) · (Dwδ,k(u, y, ε)[v, ȳ]−Dwδ,k(u, y, 0)[v, ȳ])

(5.10)

Then by conclusion (iii) of Theorem 4.2, Proposition 4.3 and condition (F1), we
deduce that

lim
ε→0

sup
{ 1

εn∗
‖Dη1(u, y, ε)‖ : (u, y) ∈ Nδ,k ×BRN (0, R)

}
= 0. (5.11)
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Combining (5.9) and (5.11) yields

lim
ε→0

sup{ 1
εn∗

(|η1(u, y, ε)|+ ‖Dη1(u, y, ε)‖) : (u, y) ∈ Nδ,k ×BRN (0, R)} = 0. (5.12)

By conclusion (ii) of Theorem 4.2 and the fact that wδ,k(u, y, ε)−wδ,k(u, y, 0) ∈
T⊥u,y,k, we obtain

〈u(· − y) + wδ,k(u, y, 0), wδ,k(u, y, ε)− wδ,k(u, y, 0)〉

=
∫

RN

f(u(· − y) + wδ,k(u, y, 0)) · (wδ,k(u, y, ε)− wδ,k(u, y, 0))dx.
(5.13)

By Proposition 4.3, we deduce that

η2(u, y, ε)

:=
1
2
‖wδ,k(u, y, ε)− wδ,k(u, y, 0)‖2 +

1
2

∫
RN

V (εx)|wδ,k(u, y, ε)− wδ,k(u, y, 0)|2dx

+
∫

RN

V (εx)(u(· − y) + wδ,k(u, y, 0))(wδ,k(u, y, ε)− wδ,k(u, y, 0))dx

(5.14)

also satisfies (5.12). By conclusion (iii) of Theorem 4.2, we infer that

J(u(· − y) + wδ,k(u, y, 0)) = J(u(· − y) + πk(u)(· − y)) = I(u + πk(u)). (5.15)

Finally, by conclusions (iii) and (v) of Theorem 4.2 and (4.37), we have

1
2

∫
RN

V (εx)|u(· − y) + wδ,k(u, y, 0)|2dx

=
1
2

∫
RN

V (εx)(u(· − y) + πk(u)(· − y))2dx

=
1
2
εn∗Γk(u, y) + η3(u, y, ε),

(5.16)

where

Γk(u, y) =
∫

RN

Qn∗(x)(u(· − y) + πk(u)(· − y))2dx

=
∫

RN

Qn∗(x + y)(u + πk(u))2dx.

(5.17)

By Lemma 5.1, conclusion (v) of Theorem 4.2 and (4.37), we deduce that η3 satisfies
(5.12). By (5.6)-(5.16), we obtain

Ψk(u, y, ε) = I(u + πk(u)) +
1
2
εn∗Γk(u, y) + η(u, y, ε), (5.18)

where η = η1 + η2 + η3 satisfies (5.12).
By Lemma 5.2, for every u ∈ Nδ,k, Γk(u, y) has a strict local minimum at y = 0

and there is a constant Ak > 0 such that

D2
yΓk(u, 0) ≥ AkId (5.19)

where Id denotes the N × N identity matrix. By (5.19) and (5.18), we deduce
that there exists ε′k > 0 such that if 0 ≤ ε ≤ ε′k, then for every u ∈ Nδ,k, there
exists yε(u) ∈ BRN (0, R/2) such that yε(u) is the unique minimizer of Ψk(u, ·, ε) in
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BRN (0, R). Moreover, by implicit functional theorem, yε(·) ∈ C1(Nδ,k). By (5.18),
we obtain

lim
ε→0

‖Ψk(u, yε(u), ε)− I(u + πk(u))‖C1(Nδ,k) = 0. (5.20)

By [9, Theorem IV.3], a GM pair is a special kind of Conley index pair which is
associated with some pseudo-gradient flow of a functional. Therefore, the GM pair
(Wk,W−

k ) which was defined in Remark 3.11 is a Conley index pair associated with
some pseudo-gradient flow of the functional gk(u) = I(u + πk(u)). Then by (5.20)
and [9, Theorem III.4], we deduce that if ε is small enough, then (Wk,W−

k ) is also
a Conley index pair associated with some pseudo-gradient flow of the functional
Ψk(·, yε(·), ε). By (3.68) and [8, Theorem 5.5.18], we infer that if ε is sufficiently
small, then Ψk(·, yε(·), ε) has at least a critical point uε ∈ Nδ,k. Then by Theorem
4.4, ũε := uε(· − yε(uε)) + wδ,k(uε, yε(uε), ε) is a critical point of Eε. Moreover, by
(5.20), we have

lim
ε→0

distY (ũε,K) = 0

with K = Kb
a. This completes the proof of Theorem 1.3.

6. Appendix A

In this appendix, we shall give the proof of the existence of {ẽj,k} which satisfies
the conditions (i) and (ii) in Section 3.

Since X ∩ C∞
0 (RN ) is dense in X, for any µk > 0, we can choose {ēj,k} ⊂

X ∩ C∞
0 (RN ) such that

sup
1≤j≤k

‖ēj,k − e′j‖ ≤ µk and ‖ēj,k‖ = 1, 1 ≤ j ≤ k. (6.1)

We show that if µk is small enough, then {ēj,k : 1 ≤ j ≤ k} ∪ {ej : 1 ≤ j ≤ q} is
linearly independent. If it were not true, without loss of generality, we may assume
that

ēk,k =
k−1∑
j=1

αj ēj,k +
q∑

j=1

βjej , (6.2)

then

ēk,k =
k−1∑
j=1

αje
′
j +

k−1∑
j=1

αj(ēj,k − e′j) +
q∑

j=1

βjej .

It follows that if µk < 1/4
√

2, then

1 = ‖ēk,k‖2 =
k−1∑
j=1

α2
j + ‖

k−1∑
j=1

αj(ēj,k − e′j)‖2 + 2〈
k−1∑
j=1

αje
′
j ,

k−1∑
j=1

αj(ēj,k − e′j)〉

+
q∑

j=1

β2
j + 2〈

q∑
j=1

βjej ,

k−1∑
j=1

αj(ēj,k − e′j)〉

≥ 3
4

k−1∑
j=1

α2
j +

3
4

q∑
j=1

β2
j + ‖

k−1∑
j=1

αj(ēj,k − e′j)‖2 − 8
k−1∑
j=1

α2
j‖ēj,k − e′j‖2

≥ 1
2

k−1∑
j=1

α2
j +

1
2

q∑
j=1

β2
j .

(6.3)
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By (6.2),

e′k =
k−1∑
j=1

αje
′
j +

k−1∑
j=1

αj(ēj,k − e′j) +
q∑

j=1

βjej + (e′k − ēk,k),

combining (6.3), we obtain

1 = ‖e′k‖2 =
k−1∑
j=1

αj〈ēj,k − e′j , e
′
k〉+ 〈e′k − ēk,k, e′k〉

≤ µk

k−1∑
j=1

|αj |+ µk ≤ (
√

2k + 1)µk.

(6.4)

This induces a contradiction if we assume (
√

2k + 1)µk < 1. Thus, {ēj,k : 1 ≤ j ≤
k} ∪ {ej : 1 ≤ j ≤ k} is linearly independent if µk < min{1/(

√
2k + 1), 1/4

√
2}.

By (6.1) and

〈ēj,k, ēj′,k〉 = 〈e′j + (ēj,k − e′j), e
′
j′ + (ēj′,k − e′j′)〉, 〈ēj,k, ej′〉 = 〈e′j + (ēj,k − e′j), ej′〉,

we obtain

sup
1≤j,j′≤k,j 6=j′

|〈ēj,k, ēj′,k〉| ≤ 2µk + µ2
k, sup

j 6=j′
|〈ēj,k, ej′〉| ≤ µk. (6.5)

Therefore, if µk is sufficiently small, using Gram-Schmidt orthogonalizing process
to {ej : 1 ≤ j ≤ q}∪ {ēj,k : 1 ≤ j ≤ k}, we get {ẽj,k : 1 ≤ j ≤ k} which satisfies the
conditions (i) and (ii) in Section 3.

7. Appendix B

In this appendix, we give the proof of Proposition 4.3. Let

ηu,y,k = (−∆ + 1)−1f(u(· − y) + πk(u)(· − y)). (7.1)

Then

ηu,y,k = (−∆+1+V (εx))−1f(u(·−y)+πk(u)(·−y)))+(−∆+1+V (εx))−1V (εx)ηu,y,k.
(7.2)

Subtracting equation

Su,y,k∇Eε(u(· − y) + wδ,k(u, y, ε)) = 0

from equation
Su,y,k∇J(u(· − y) + πk(u)(· − y)) = 0,

by (7.2) and the mean value theorem, we obtain

Lu,y,ε,k

(
wδ,k(u, y, ε)− πk(u)(· − y)

)
= −Su,y,k(−∆ + 1 + V (εx))−1V (εx)ηu,y,k

+ Su,y,k(−∆ + 1 + V (εx))−1
(
(f ′(u(· − y) + w̃)− f ′(u(· − y)))

× (wδ,k(u, y, ε)− πk(u)(· − y))
)

(7.3)

where w̃ lies between wδ,k(u, y, ε) and πk(u)(· − y). By conclusion (iv) of Theorem
4.2, we obtain ‖wδ,k(u, y, ε)‖ ≤ r if 0 < δ ≤ δr and k ≥ k(δ). And by (ii) of Lemma
3.8, we deduce that if k(δ) is large enough and k ≥ k(δ), then ‖πk(u)(· − y)‖ ≤ r.
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Therefore, ‖w̃‖ ≤ r if 0 < δ ≤ δr and k ≥ k(δ). Moreover, by (4.21), we deduce
that if r is small enough, 0 < δ ≤ δr and k ≥ k(δ), then∥∥∥(−∆ + 1 + V (εx))−1

(
(f ′(u(· − y) + w̃)

− f ′(u(· − y)) · (wδ,k(u, y, ε)− πk(u)(· − y))
)∥∥∥

≤ C

2
‖wδ,k(u, y, ε)− πk(u)(· − y)‖,

(7.4)

where C is the constant in Lemma 4.1. By (7.4), (7.3) and Lemma 4.1, we obtain

C‖wδ,k(u, y, ε)− πk(u)(· − y)‖ ≤ 2‖(−∆ + 1)−1V (εx)ηu,y,k‖. (7.5)

By (4.37), conclusion (v) of Theorem 4.2 and [25, Proposition 4.2], we obtain that
for any n > 0,

sup{‖(1 + |x|)nηu,y,k‖L∞(RN ) : (u, y) ∈ Nδ,k ×BRN (0, R)} < ∞. (7.6)

By (7.6), using the same argument as in [1, Lemma 3.2], we can obtain that if
ι < n∗, then

lim
ε→0

{ ∫
RN

V 2(εx)
ε2ι

η2
u,y,k : (u, y) ∈ Nδ,k ×BRN (0, R)

}
= 0 (7.7)

and

sup
{ ∫

RN

V 2(εx)
ε2n∗

η2
u,y,k : (u, y) ∈ Nδ,k ×BRN (0, R), 0 ≤ ε ≤ ε∗

}
< ∞.

Thus, for ι < n∗,

lim
ε→0

sup{ 1
ει
‖(−∆ + 1)−1V (εx)ηu,y,k‖ : (u, y) ∈ Nδ,k ×BRN (0, R)} = 0 (7.8)

and

sup
{ 1

εn∗
‖(−∆ + 1)−1V (εx)ηu,y,k‖ : (u, y) ∈ Nδ,k ×BRN (0, R), 0 ≤ ε ≤ ε∗

}
< ∞.

(7.9)
Combining (7.5), (7.8) and (7.9) yields that for ι < n∗, if δ > 0 is small enough and
k ≥ k(δ), then

lim
ε→0

{ 1
ει
‖wδ,k(u, y, ε)− πk(u)(· − y)‖ : (u, y) ∈ Nδ,k ×BRN (0, R)} = 0 (7.10)

and

sup
{ 1

εn∗
‖wδ,k(u, y, ε)−πk(u)(·−y)‖ : (u, y) ∈ Nδ,k×BRN (0, R), 0 ≤ ε ≤ ε∗

}
< ∞.

(7.11)
Recall that Su,y,k : Y → T⊥u,y,k is an orthogonal projection. Therefore, for h ∈ Y ,

Su,y,kh = h−
q∑

j=1

〈h, ej(· − y)〉ej(· − y)−
k∑

j=1

〈h, ẽj,k(· − y)〉ẽj,k(· − y)

−
N∑

j=1

〈
h,

s∑
i=1

ξi(u)
∂ui

∂xj
(· − y)

〉∑s
i=1 ξi(u) ∂ui

∂xj
(· − y)

‖
∑s

i=1 ξi(u) ∂ui

∂xj
‖2

.

(7.12)
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Thus, the Fréchet partial derivative of Su,y,kh with respect to u along the vector
v ∈ Xk is

Du(Su,y,kh)[v]

= −
N∑

j=1

〈
h,

s∑
i=1

Dξi(u)[v] · ∂ui

∂xj
(· − y)

〉∑s
i=1 ξi(u) ∂ui

∂xj
(· − y)

‖
∑s

i=1 ξi(u) ∂ui

∂xj
‖2

−
N∑

j=1

〈
h,

s∑
i=1

ξi(u)
∂ui

∂xj
(· − y)

〉∑s
i=1(Dξi(u)[v]) · ∂ui

∂xj
(· − y)

‖
∑s

i=1 ξi(u) ∂ui

∂xj
‖2

+ 2
N∑

j=1

(〈
h,

s∑
i=1

ξi(u)
∂ui

∂xj
(· − y)

〉 〈∑s
i=1 ξi(u) ∂ui

∂xj
,
∑s

i=1(Dξi(u)[v]) ∂ui

∂xj
〉

‖
∑s

i=1 ξi(u) ∂ui

∂xj
‖4

×
s∑

i=1

ξi(u)
∂ui

∂xj
(· − y)

)

(7.13)

and the Fréchet partial derivative of Su,y,kh with respect to y along the vector
ȳ ∈ RN is

Dy(Su,y,kh)[ȳ]

=
q∑

j=1

〈h, (ȳ∇xej)(· − y)〉ej(· − y) +
k∑

j=1

〈h, (ȳ∇xẽj,k)(· − y)〉ẽj,k(· − y)

+
q∑

j=1

〈h, ej(· − y)〉(ȳ∇xej)(· − y) +
k∑

j=1

〈h, ẽj,k(· − y)〉(ȳ∇xẽj,k)(· − y)

+
N∑

j=1

〈
h,

s∑
i=1

ξi(u) · (ȳ∇x(
∂ui

∂xj
))(· − y)

〉∑s
i=1 ξi(u) ∂ui

∂xj
(· − y)

‖
∑s

i=1 ξi(u) ∂ui

∂xj
‖2

+
N∑

j=1

〈
h,

s∑
i=1

ξi(u)
∂ui

∂xj
(· − y)

〉∑s
i=1 ξi(u) · (ȳ∇x( ∂ui

∂xj
))(· − y)

‖
∑s

i=1 ξi(u) ∂ui

∂xj
‖2

.

(7.14)

Differentiating the equation Su,y,k(∇Eε(u(· − y) + wδ,k(u, y, ε))) = 0 and the equa-
tion Su,y,k(∇J(u(·−y)+πk(u)(·−y)) = 0 with respect to u along the vector v ∈ Xk,
we obtain

Su,y,k(∇2Eε(u(· − y) + wδ,k(u, y, ε))(v(· − y)

+ Dwδ,k(u, y, ε)[v, 0])) + Du(Su,y,kh1)[v] = 0
(7.15)

and

Su,y,k(∇2J(u(· − y) + πk(u)(· − y))(v(· − y)

+ Dπk(u)(· − y)[v, 0])) + Du(Su,y,kh2)[v] = 0,
(7.16)

where h1 = ∇Eε(u(· − y) + wδ,k(u, y, ε)) and h2 = ∇J(u(· − y) + πk(u)(· − y)). By
(7.2) and (7.4), it is easy to verify that there exists a constant C > 0 such that

‖h1 − h2‖ ≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖+ C‖(−∆ + 1)−1V (εx)ηu,y,k‖. (7.17)
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By (7.17) and (7.13), we obtain for ‖v‖ ≤ 1, there exists a constant C > 0 such
that

‖Du(Su,y,kh2)[v]−Du(Su,y,kh1)[v]‖
≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖+ C‖(−∆ + 1)−1V (εx)ηu,y,k‖.

(7.18)

A direct computation shows that

Su,y,k(∇2Eε(u(· − y) + wδ,k(u, y, ε))(v(· − y) + Dwδ,k(u, y, ε)[v, 0]))

− Su,y,k(∇2J(u(· − y) + πk(u)(· − y))(v(· − y) + Dπk(u)(· − y)[v, 0]))

= Su,y,k(∇2J(u(· − y) + πk(u)(· − y))(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]))

− Su,y,k(−∆ + 1)−1
{(

f ′(u(· − y) + wδ,k(u, y, ε))

− f ′(u(· − y) + πk(u)(· − y))
)
× (v(· − y) + Dwδ,k(u, y, ε)[v, 0])

}
+ Su,y,k(−∆ + 1)−1V (εx)η̄u,y,ε,k(v)

(7.19)

where

η̄u,y,ε,k(v) = (−∆ + 1 + V (εx))−1(f ′(u(· − y) + wδ,k(u, y, ε))) · (v(· − y)

+ Dwδ,k(u, y, ε)[v, 0])).

By (4.37), conclusion (v) of Theorem 4.2 and (1.2) in (F1), we obtain for any
v, h ∈ Y , ‖v‖ = ‖h‖ = 1,∫

RN

∣∣∣f ′(u(· − y) + wδ,k(u, y, ε))− f ′(u(· − y) + πk(u)(· − y))
∣∣∣

× |v(· − y) + Dwδ,k(u, y, ε)[v, 0]| · |h|dx

≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖.

(7.20)

It follows that∥∥∥(−∆ + 1)−1
{(

f ′(u(· − y) + wδ,k(u, y, ε))

− f ′(u(· − y) + πk(u)(· − y))
)
× (v(· − y) + Dwδ,k(u, y, ε)[v, 0])

}∥∥∥
≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖.

(7.21)

By (7.15), (7.16) and (7.18)–(7.21), we deduce that

‖Su,y,k(∇2J(u(· − y) + πk(u)(· − y))(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]))‖
≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖+ C‖(−∆ + 1)−1V (εx)ηu,y,k‖

+ C‖(−∆ + 1)−1V (εx)η̄u,y,ε,k(v)‖.
(7.22)

By conclusion (ii) of Lemma 3.8 and (4.21), we deduce that

lim
k→∞

sup
{
‖∇2J(u(· − y) + πk(u)(· − y))−∇2J(u(· − y))‖L(Y ) :

(u, y) ∈ Nδ,k ×BRN (0, R)
}

= 0.
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Therefore, as k →∞,

‖Su,y,k(∇2J(u(· − y) + πk(u)(· − y))(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]))

− Su,y,k(∇2J(u(· − y))(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]))‖
= o(1)‖Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]‖.

(7.23)

By (7.22) and (7.23), we obtain that as k →∞,

‖Su,y,k(∇2J(u(· − y))(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]))‖
≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖+ C‖(−∆ + 1)−1V (εx)ηu,y,k‖

+ C‖(−∆ + 1)−1V (εx)η̄u,y,ε,k(v)‖
+ o(1)‖Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]‖.

(7.24)

Let Tu(·−y) = {h(·−y) : h ∈ Tu} and T ⊥u (·−y) be the orthogonal complement space
in Y , where Tu is defined in (3.30). Let PT ⊥u (·−y) : Y → T ⊥u (· − y) and PTu(·−y) :
Y → Tu(· − y) be orthogonal projections. Since Dwδ,k(u, y, ε)[v, 0]⊥Xk(· − y) and
D(πk(u)(· − y))[v, 0]⊥Xk(· − y), where Xk(· − y) = {v(· − y) | v ∈ Xk}, we deduce
that

PT ⊥u (·−y)(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]) ∈ T⊥u,y,k.

Therefore, by Lemma 4.1, we have

‖Su,y,k(∇2J(u(· − y))PT ⊥u (·−y)(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]))‖
= ‖Lu,y,0,kPT ⊥u (·−y)(Dwδ,k(u, y, ε)[v, 0]−Dπk(u)(· − y))[v, 0])‖
≥ C‖PT ⊥u (·−y)(Dwδ,k(u, y, ε)[v, 0]−D(πk(u)(· − y))[v, 0]‖.

(7.25)

Differentiating the following equation with respect to u, along the vector v,〈
wδ,k(u, y, ε)− πk(u)(· − y),

s∑
i=1

ξi(u)
ui(· − y)

∂xj

〉
= 0

we obtain 〈
D(wδ,k(u, y, ε)− πk(u)(· − y))[v, 0],

s∑
i=1

ξi(u)
ui(· − y)

∂xj

〉
= −

〈
wδ,k(u, y, ε)− πk(u)(· − y),

s∑
i=1

(Dξi(u)[v])
ui(· − y)

∂xj

〉
.

(7.26)

It follows that there exists a constant C > 0 such that

‖PTu(·−y)(D(wδ,k(u, y, ε)− πk(u)(· − y))[v, 0])‖ ≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖.
(7.27)

By (7.24)–(7.27), we deduce that when k is large enough, then there exists a con-
stant C > 0 such that

‖D(wδ,k(u, y, ε)− πk(u)(· − y))[v, 0]‖
≤ C‖wδ,k(u, y, ε)− πk(u)(· − y)‖+ C‖(−∆ + 1)−1V (εx)ηu,y,ε,k‖

+ C‖(−∆ + 1)−1V (εx)η̄u,y,ε,k(v)‖.
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Then by (7.8)–(7.11) and the fact that for ι < m,

lim
ε→0

sup
{ 1

ει
‖(−∆ + 1)−1V (εx)η̄u,y,ε,k(v)‖ :

(u, y) ∈ Nδ,k ×BRN (0, R), v ∈ Xk, ‖v‖ ≤ 1
}

= 0
(7.28)

and

sup
{ 1

εn∗
‖(−∆ + 1)−1V (εx)η̄u,y,ε,k(v)‖ : (u, y) ∈ Nδ,k ×BRN (0, R),

v ∈ Xk, ‖v‖ ≤ 1, 0 ≤ ε ≤ ε∗} < ∞,
(7.29)

we obtain for ι < n∗,

lim
ε→0

sup
{ 1

ει
‖D(wδ,k(u, y, ε)− πk(u)(· − y))[v, 0]‖ :

(u, y) ∈ Nδ,k ×BRN (0, R), v ∈ Xk, ‖v‖ ≤ 1
}

= 0
(7.30)

and

sup
{ 1

εn∗
‖D(wδ,k(u, y, ε)− πk(u)(· − y))[v, 0]‖ :

(u, y) ∈ Nδ,k ×BRN (0, R), v ∈ Xk, ‖v‖ ≤ 1, 0 ≤ ε ≤ ε∗
}

< ∞.
(7.31)

Differentiating the two equations Su,y,k(∇Eε(u(· − y) + wδ,k(u, y, ε))) = 0 and
Su,y,k(∇J(u(· − y) + πk(u)(· − y)) = 0 with respect to y, along the vector ȳ ∈ RN ,
we obtain

Su,y,k(∇2Eε(u(· − y) + wδ,k(u, y, ε))(−ȳ∇xu(· − y)

+ Dwδ,k(u, y, ε)[0, ȳ])) + Dy(Su,y,kh1)[ȳ] = 0
(7.32)

and

Su,y,k(∇2J(u(· − y) + πk(u)(· − y))(−ȳ∇xu(· − y)

+ D(πk(u)(· − y))[0, ȳ])) + Dy(Su,y,kh2)[ȳ] = 0.
(7.33)

The same arguments as (7.30) and (7.31) yield that for ι < n∗,

lim
ε→0

sup
{ 1

ει
‖D(wδ,k(u, y, ε)− πk(u)(· − y))[0, ȳ]‖ :

(u, y) ∈ Nδ,k ×BRN (0, R), ȳ ∈ RN , |ȳ| ≤ 1
}

= 0
(7.34)

and

sup
{ 1

εn∗
‖D(wδ,k(u, y, ε)− πk(u)(· − y))[0, ȳ]‖ :

(u, y) ∈ Nδ,k ×BRN (0, R), ȳ ∈ RN , |ȳ| ≤ 1, 0 ≤ ε ≤ ε∗} < ∞.
(7.35)
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