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RANDOM DYNAMICAL SYSTEMS ON TIME SCALES

CRISTINA LUNGAN, VASILE LUPULESCU

Abstract. The purpose of this paper is to prove the existence and uniqueness
of solution for random dynamic systems on time scales.

1. Introduction

The theory of dynamic systems on time scales allows us to study both continu-
ous and discrete dynamic systems simultaneously. Since Hilger’s initial work [10]
there has been significant growth in the theory of dynamic systems on time scales,
covering a variety of different qualitative aspects. We refer to the books [3, 4],
and the papers [1, 2, 14, 15]. In recent years, some authors studied stochastic dif-
ferential equations on time scales [5, 7, 13]. The main theoretical and practical
aspects of probability theory and stochastic differential equations can be found in
books [6, 12]. The organization of this paper is as follows. Section 2 presents a few
definitions and concepts of time scales. Also, the notion of stochastic process on
a time scale is introduced. In Section 3 we prove the existence and uniqueness of
solution for the random dynamic systems on time scales.

Preliminaries. By a time scale T we mean any closed subset of R. Then T is a
complete metric space with the metric defined by d(t, s) := |t−s| for t, s ∈ T. Since
a time scale T is not connected in generally, we need the concept of jump operators.
The forward jump operator σ : T → T is defined by σ(t) := inf{s ∈ T : s > t}, while
the backward jump operator ρ : T → T is defined by ρ(t) := sup{s ∈ T : s < t}.
In this definition we put inf ∅ = sup T and sup ∅ = inf T. The graininess function
µ : T → [0,∞) is defined by µ(t) := σ(t)− t. If σ(t) > t, we say t is a right-scattered
point, while if ρ(t) < t, we say t is a left-scattered point. Points that are right-
scattered and left-scattered at the same time will be called isolated points. A point
t ∈ T such that t < sup T and σ(t) = t, is called a right-dense point. A point t ∈ T
such that t > inf T and ρ(t) = t, is called a left-dense point. Points that are right-
dense and left-dense at the same time will be called dense points. The set Tκ is
defined to be Tκ = T\{m} if T has a left-scattered maximum m, otherwise Tκ = T.
Given a time scale interval [a, b]T := {t ∈ T : a ≤ t ≤ b}, then [a, b]κT denoted the
interval [a, b]T if a < ρ(b) = b and denote the interval [a, b)T if a < ρ(b) < b. In
fact, [a, b)T = [a, ρ(b)]T. Also, for a ∈ T, we define [a,∞)T = [a,∞) ∩ T. If T is a
bounded time scale, then T can be identified with [inf T, sup T]T.
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If t0 ∈ T and δ > 0, then we define the following neighborhoods of t0: UT(t0, δ) :=
(t0 − δ, t0 + δ) ∩ T, U+

T (t0, δ) := [t0, t0 + δ) ∩ T, and U−T (t0, δ) := (t0 − δ, t0] ∩ T.

Definition 1.1 ([3]). A function f : T → R is called regulated if its right-sided
limits exist (finite) at all right-dense points in T, and its left-sided limits exist
(finite) at all left-dense points in T. A function f : T → R is called rd-continuous
if it is continuous at all right-dense points in T and its left-sided limits exist (finite)
at all left-dense points in T.

Obviously, a continuous function is rd-continuous, and a rd-continuous function
is regulated ([3, Theorem 1.60]).

Definition 1.2. A function f : [a, b]T × R → R is called Hilger continuous if f is
continuous at each point (t, x) where t is right-dense, and the limits

lim
(s,y)→(t−,x)

f(s, y) and lim
y→x

f(t, y)

both exist and are finite at each point (t, x) where t is left-dense.

Definition 1.3 ([3]). Let f : T → R and t ∈ Tκ. Let f∆(t) ∈ R (provided it exists)
with the property that for every ε > 0, there exists δ > 0 such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| (1.1)

for all s ∈ UT(t, δ). We call f∆(t) the delta (or Hilger) derivative (∆-derivative for
short) of f at t. Moreover, we say that f is delta differentiable (∆-differentiable for
short) on Tκ provided f(t) exists for all t ∈ Tκ.

The following result will be very useful.

Proposition 1.4 ([3, Theorem 1.16]). Assume that f : T → R and t ∈ Tκ.
(i) If f is ∆-differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is ∆-differentiable at

t with

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
.

(iii) If f is ∆-differentiable at t and t is right-dense then

f∆(t) = lim
s→t

f(t)− f(s)
t− s

.

(iv) If f is ∆-differentiable at t, then f(σ(t)) = f(t) + µ(t)f∆(t).

It is known [9] that for every δ > 0 there exists at least one partition P : a = t0 <
t1 < · · · < tn = b of [a, b)T such that for each i ∈ {1, 2, . . . , n} either ti − ti−1 ≤ δ
or ti − ti−1 > δ and ρ(ti) = ti−1. For given δ > 0 we denote by P([a, b)T, δ) the set
of all partitions P : a = t0 < t1 < · · · < tn = b that possess the above property.

Let f : T → R be a bounded function on [a, b)T, and let P : a = t0 < t1 < · · · <
tn = b be a partition of [a, b)T. In each interval [ti−1, ti)T,where 1 ≤ i ≤ n, we
choose an arbitrary point ξi and form the sum

S =
n∑

i=1

(ti − ti−1)f(ξi).

We call S a Riemann ∆-sum of f corresponding to the partition P .
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Definition 1.5 ([8]). We say that f is Riemann ∆-integrable from a to b (or on
[a, b)T) if there exists a number I with the following property: for each ε > 0 there
exists δ > 0 such that |S − I| < ε for every Riemann ∆-sum S of f corresponding
to a partition P ∈ P([a, b)T, δ) independent of the way in which we choose ξi ∈
[ti−1, ti)T, i = 1, 2, . . . , n. It is easily seen that such a number I is unique. The
number I is the Riemann ∆-integral of f from a to b, and we will denote it by∫ b

a
f(t)∆t.

Proposition 1.6 ([8, Theorem 5.8]). A bounded function f : [a, b)T → R is Rie-
mann ∆-integrable on [a, b)T if and only if the set of all right-dense points of [a, b)T
at which f is discontinuous is a set of ∆-measure zero.

It is no difficult to see that every regulated function on a compact interval is
bounded (see [3, Theorem 1.65]). Then we get that every regulated function f :
[a, b]T → R, is Riemann ∆-integrable from a to b.

Proposition 1.7 ([11, Theorem 5.8]). Assume that a, b ∈ T, a < b and f : T → R
is rd-continuous. Then the integral has the following properties.

(i) If T = R, then
∫ b

a
f(t)∆t =

∫ b

a
f(t)dt, where the integral on the right-hand

side is the Riemann integral.
(ii) If T consists of isolated points, then∫ b

a

f(t)∆t =
∑

t∈[a,b)T

µ(t)f(t).

If f, g : T → R are Riemann ∆-integrable on [a, b)T, then λf , f + g and |f | are
are Riemann ∆-integrable on [a, b)T, and the following properties are true [3]:∫ b

a

(λf)(t)∆t = λ

∫ b

a

f(t)∆t, λ ∈ R,∫ b

a

(f + g)(t)∆t =
∫ b

a

f(t)∆t +
∫ b

a

g(t)∆t,∫ b

a

f(t)∆t = −
∫ a

b

f(t)∆t

|
∫ b

a

f(t)∆t| ≤
∫ b

a

|f(t)|∆t,∫ b

a

f(t)∆t =
∫ c

a

f(t)∆t +
∫ b

c

f(t)∆t, a < c < b,

(1.2)

Definition 1.8 ([3]). A function g : T → R is called a ∆-antiderivative of f : T →
R if g∆(t) = f(t) for all t ∈ Tκ.

One can show that each rd-continuous function has a ∆-antiderivative [3, The-
orem 1.74].

Proposition 1.9 ([8, Theorem 4.1]). Let f : T → R be Riemann ∆-integrable
function on [a, b)T. If f has a ∆-antiderivative g : [a, b]T → R, then

∫ b

a
f(t)∆t =

g(b)−g(a). In particular,
∫ σ(t)

t
f(s)∆s = µ(t)f(t) for all t ∈ [a, b)T (see [3, Theorem

1.75])
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Proposition 1.10 ([8, Theorem 4.3]). Let f : T → R be a function which is
Riemann ∆-integrable from a to b. For t ∈ [a, b]T, let g(t) =

∫ t

a
f(t)∆t. Then

g is continuous on [a, b]T. Further, let t0 ∈ [a, b)T and let f be arbitrary at t0 if
t0 is right-scattered, and let f be continuous at t0 if t0 is right-dense. Then g is
∆-differentiable at t0 and g∆(t0) = f(t0).

Lemma 1.11. Let g : R → R be a continuous and nondecreasing function. If
s, t ∈ T with s ≤ t, then ∫ t

s

g(τ)∆τ ≤
∫ t

s

g(τ)dτ.

Stochastic process on time scales. Denote by B the σ-algebra of all Borel
subsets of R. Let (Ω,F , P ) be a complete probability measure space. A function
X(·) : Ω → R is called a random variable if X is a measurable function from (Ω,F)
into (R,B); that is, X−1(B) := {ω ∈ Ω; X(ω) ∈ B} ∈ F for all B ∈ B. A time scale
stochastic process is a function X(·, ·) : [a, b]T × Ω → R such that X(t, ·) : Ω → R
is a random variable for each t ∈ T. For each point ω ∈ Ω, the function on T
given by t 7→ X(t, ω) is will be called a trajectory (or a sample path) of the time
scale stochastic process X(·, ·) corresponding to ω. A time scale stochastic process
X(·, ·) is said to be regulated (rd-continuous, continuous) if there exists Ω0 ⊂ Ω with
P (Ω0) = 1 and such that the trajectory t 7→ X(t, ω) is a regulated (rd-continuous,
continuous) function on [a, b]T for each ω ∈ Ω0. Let X(·) and Y (·) be two random
variables. If there exists Ω0 ⊂ Ω with P (Ω0) = 1 and such that X(ω) = Y (ω) for
all ω ∈ Ω0, then we will write X(ω) =P Y (ω). Similarly for the inequalities. Let
X(·, ·) and Y (·, ·) be two time scale stochastic processes. If there exists Ω0 ⊂ Ω
with P (Ω0) = 1 and such that for each ω ∈ Ω0 we have X(t, ω) = Y (t, ω) for all
t ∈ [a, b]T, then we will write X(t, ω) =P Y (t, ω), t ∈ [a, b]T. Similarly for the
inequalities.

Lemma 1.12. Let X(·, ·) : [a, b]T × Ω → R be a time scale stochastic process. If
there exists Ω0 ⊂ Ω with P (Ω0) = 1 such that the function t 7→ X(t, ω) is Riemann
∆-integrable on [a, b)T for every ω ∈ Ω0, then the function Y (·, ·) : [a, b]T × Ω → R
given by

Y (t, ω) =
∫ t

a

X(s, ω)∆s, t ∈ [a, b]T

is a continuous time scale stochastic process.

Proof. From Proposition 1.10, it follows that the function t 7→
∫ t

a
X(s, ω)∆s is

continuous for each ω ∈ Ω0. Since the Riemann ∆-integral is a limit of the finite
sum S(ω) =

∑n
i=1(ti − ti−1)X(ξi, ω) of measurable functions, we have that ω 7→∫ t

a
X(s, ω)∆s is a measurable function. Therefore, Y (·, ·) is a continuous time scale

stochastic process. �

2. Random initial value problem on time scales

In the following, consider an initial value problem of the form

X∆(t, ω) =P f(t, X(t, ω), ω), t ∈ [a, b]κT
X(a, ω) =P X0(ω),

(2.1)

where X0 : Ω → R is a random variable and f : [a, b]κT × R × Ω → R satisfies the
following assumptions:
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(H1) f(t, x, ·) : Ω → R is a random variable for all (t, x) ∈ [a, b]κT × R,
(H2) with P.1, the function f(·, ·, ω) : [a, b]κT × R → R is a Hilger continuous

function at every point (t, x) ∈ [a, b]κT×R; that is, there exists Ω0 ⊂ Ω with
P (Ω0) = 1 and such that for each ω ∈ Ω0, the function (t, x) 7→ f(t, x, ω)
is Hilger continuous.

Definition 2.1. By a solution of (2.1) we mean a time scale stochastic process
X(·, ·) : [a, b]κT × Ω → R that satisfies conditions in (2.1). A solution X(·, ·) is
unique if X(t, ω) =P Y (t, ω), t ∈ [a, b]κT for any time scale stochastic process Y (·, ·) :
[a, b]κT × Ω → R which is a solution of (2.1).

Obviously, if there exists Ω0 ⊂ Ω with P (Ω0) = 1 and such that for each ω ∈ Ω0

we have |X(t, ω)−Y (t, ω)| = 0 for all t ∈ [a, b]T, then X(t, ω) =P Y (t, ω), t ∈ [a, b]κT;
that is, if |X(t, ω) − Y (t, ω)| =P 0 for all t ∈ [a, b]κT, then X(t, ω) =P Y (t, ω),
t ∈ [a, b]κT.

Remark 2.2. We can consider the random differential equation (2.1) as a family
(with respect to parameter ω) of deterministic differential equations, namely

X∆(t, ω) = f(t, X(t, ω), ω), t ∈ [a, b]κT
X(a, ω) = X0(ω).

(2.2)

Generally, is not correct to solve each problem (2.2) to obtain the solutions of
(2.1). Let us give two examples.

Example 2.3. Let (Ω,F , P ) be a complete probability measure space. Consider
an initial value problem of the form

X∆(t, ω) = K(ω)X2(t, ω), t ∈ [0,∞)R

X(0, ω) = 1,
(2.3)

where K : Ω → (0,∞) is a random variable. It is easy to see that, for each ω ∈ Ω,
X(t, ω) = 1

1−K(ω)t is a solution of (2.3) on the interval [0, 1/K(ω)]. Since for each
a ≥ 0 we have that P (1/K(ω) > a) < 1, it follows that not all solutions X(·, ω) are
well defined on some common interval [0, a).

Example 2.4. Let (Ω,F , P ) be a complete probability measure space and let Ω0 /∈
F . It is easy to check that, for each ω ∈ Ω, the function X(·, ·) : [0, 1]R × Ω → R,
given by

X(t, ω) =

{
0 if ω ∈ Ω0

t3/2 if ω ∈ Ω \ Ω0,

is a solution of the initial-value problem

X∆(t, ω) =
3
2
X(t, ω), t ∈ [0,∞)R

X(0, ω) = 0.

But X(·, ·) is not a stochastic process. Indeed, we have that

{ω ∈ Ω; X(1, ω) ∈ [−1
2
,
1
2
]} = Ω0 /∈ F ,

that is, ω 7→ X(1, ω) is not a measurable function.

Using Propositions 1.9 and 1.10 and [15, Lemma 2.3], it is easy to prove the
following result.
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Lemma 2.5. . A time scale stochastic process X(·, ·) : [a, b]κT ×Ω → R is the solu-
tion of the problem (2.1) if and only if X(·, ·) is a continuous time scale stochastic
process and it satisfies the following random integral equation

X(t, ω) =P X0(ω) +
∫ t

a

f(s,X(s, ω), ω)∆s, t ∈ [a, b]T. (2.4)

The following results is known as Gronwall’s inequality on time scale and will be
used in this paper.

Lemma 2.6 ([14, Lemma 3.1]). Let an rd-continuous time scale stochastic processes
X(·, ·), Y (·, ·) : [a, b]κT × Ω → R+ be such that

X(t, ω) ≤P Y (t, ω) +
∫ t

a

q(s)X(s, ω)∆s, t ∈ [a, b]T,

where 1 + µ(t)q(t) 6= 0, for all t ∈ [a, b]T. Then we have

X(t, ω) ≤P Y (t, ω) + eq(t, a)
∫ t

a

q(s)Y (s, ω)
1

eq(σ(s), a)
∆s, t ∈ [a, b]T.

Theorem 2.7. Let f : [a, b]κT × R × Ω → R satisfy (H1)–(H2) and assume that
there exists a rd-continuous time scale stochastic process L(·, ·) : [a, b]κT × Ω → R
such that

|f(t, x, ω)− f(t, y, ω)| ≤ L(t, ω)|x− y| (2.5)
for every t ∈ [a, b]κT and every x, y ∈ R with P.1. Let X0 : Ω → R a random variable
such that

|f(t, X0(ω), ω)| ≤P M, t ∈ [a, b]κT, (2.6)
where M > 0 is a constant. Then problem (2.1) has a unique solution.

Proof. . To prove the theorem we apply the method of successive approximations
(see [14]). For this, we define a sequence of functions Xn(·, ·) : [a, b]κT × Ω → R,
n ∈ N, as follows:

X0(t, ω) = X0(ω)

Xn(t, ω) = X0(ω) +
∫ t

a

f(s,Xn−1(s, ω), ω)∆s, n ≥ 1,
(2.7)

for every t ∈ [a, b]κT and every ω ∈ Ω. First, using (2.6) and the Lemma 1.11, we
observe that

|X1(t, ω)−X0(t, ω)| ≤
∣∣ ∫ t

a

f(s,X0(ω), ω)∆s
∣∣ ≤ ∫ t

a

|f(s,X0(ω), ω)|∆s

≤
∫ t

a

|f(s,X0(ω), ω)|ds ≤P M(t− a)

≤ M(b− a), t ∈ [a, b]T.

We prove by induction that for each integer n ≥ 2 the following estimate holds

|Xn(t, ω)−Xn−1(t, ω)| ≤P ML̃(ω)
(t− a)n

n!
≤ ML̃(ω)

(b− a)n

n!
, t ∈ [a, b]T, (2.8)

where L̃(ω) = sup[a,b]T L(t, ω). Suppose that (2.8) holds for n = k ≥ 2. Then, using
(2.5), (2.6) and Lemma 1.11, we obtain

|Xk+1(t, ω)−Xk(t, ω)| ≤
∫ t

a

|f(s,Xk(s, ω), ω)− f(s,Xk−1(s, ω), ω)|∆s
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≤P L̃(ω)
∫ t

a

|Xk(s, ω)−Xk−1(s, ω)|∆s

≤P L̃(ω)
M

k!

∫ t

a

(s− a)k∆s

≤ L̃(ω)
M

k!

∫ t

a

(s− a)kds

= ML̃(ω)
(t− a)k+1

(k + 1)!

≤ ML̃(ω)
(b− a)k+1

(k + 1)!
, t ∈ [a, b]T.

Thus, (2.8) is true for n = k + 1 and so (2.8) holds for all n ≥ 2. Further, we show
that for every n ∈ N the functions Xn(·, ω) : [a, b]T → R are continuous with P.1.
Let ε > 0 and t, s ∈ [a, b]T be such that |t− s| < ε/M . We have

|X1(t, ω)−X1(s, ω)| = |
∫ t

a

f(τ,X0(ω), ω)∆τ −
∫ s

a

f(τ,X0(ω), ω)∆τ |

= |
∫ t

s

f(τ,X0(ω), ω)∆τ |

≤
∫ t

s

|f(τ,X0(ω), ω)|∆τ

≤
∫ t

s

|f(τ,X0(ω), ω)|dτ

≤P M |t− s| < ε

and so t 7→ X1(t, ω) is continuous with P.1. Since for each n ≥ 2

|Xn(t, ω)−Xn(s, ω)|

= |
∫ t

a

f(τ,Xn−1(τ, ω), ω)∆τ −
∫ s

a

f(τ,Xn−1(τ, ω), ω)∆τ |

≤
∫ t

s

|f(τ,Xn−1(τ, ω), ω)|∆τ

≤
∫ t

s

|f(τ,X0(ω), ω)|∆τ +
∫ t

s

|f(τ,Xn−1(τ, ω), ω)− f(τ,X0(ω), ω)|∆τ

≤
∫ t

s

|f(τ,X0(ω), ω)|∆τ

+
n−1∑
k=1

∫ t

s

|f(τ,Xk(τ, ω), ω)− f(τ,Xk−1(τ, ω), ω)|∆τ

then, by induction, we obtain

|Xn(t, ω)−Xn(s, ω)| ≤P M(1 +
n−1∑
k=1

L̃(ω)k−1(b− a)k

k!
)|t− s| → 0

as s → t with P.1. Therefore, for every n ∈ N the function Xn(·, ω) : [a, b]T×Ω → R
is continuous with P.1. Now, using Lemma 2.5 and (2.7), we deduce that the
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functions Xn(t, ·) : Ω → R are measurable. Consequently, it follows that for every
n ∈ N the function Xn(·, ·) : [a, b]T × Ω → R is a time scale stochastic process.

Further, we shall show that the sequence (Xn(t, ·))n∈N is uniformly convergent
with P.1. Denote

Yn(t, ω) = |Xn+1(t, ω)−Xn(t, ω)|, n ∈ N.

Since

Yn(t, ω)− Yn(s, ω) ≤P L̃(ω)
∫ t

s

|Xn(τ, ω)−Xn−1(τ, ω)|∆τ

then, reasoning as above, we deduce that the functions t 7→ Yn(t, ω) are continuous
with P.1. Now, using (2.8), we obtain

sup
t∈[a,b]T

|Xn(t, ω)−Xm(t, ω)| ≤
n−1∑
k=m

sup
t∈[a,b]T

Yk(t, ω) ≤P M

n−1∑
k=m

L̃(ω)k(b− a)k+1

(k + 1)!

for all n > m > 0. Since the series
∑∞

n=1 L̃(ω)n−1(b − a)n/n! converges with P.1,
then for each ε > 0 there exists n0 ∈ N such that

sup
t∈[a,b]T

|Xn(t, ω)−Xm(t, ω)| ≤P ε for all n, m ≥ n0. (2.9)

Hence, since ([a, b]T, | · |) is a complete metric space, it follows that there exists
Ω0 ⊂ Ω such that P (Ω0) = 1 and for every ω ∈ Ω0 the sequence (Xn(t, ·))n∈N is
uniformly convergent. For ω ∈ Ω0 denote X̃(t, ω) = lim

n→∞
Xn(t, ω). Next, we define

the function X(·, ·) : [a, b]T × Ω → R as follows: X(·, ω) = X̃(·, ω) if ω ∈ Ω0, and
X(·, ω) as an arbitrary function if ω ∈ Ω \Ω0. Obviously, X(·, ω) is continuos with
P.1. Since, by Lemma 1.12 and (2.7), the functions ω → Xn(·, ω) are measurable
and X(t, ω) = lim

n→∞
Xn(t, ω) for every t ∈ [a, b]T with P.1, we deduce that ω →

X(t, ω) is measurable for every t ∈ [a, b]T. Therefore, X(·, ·) : [a, b]T × Ω → R
is a continuous time scale stochastic process. We show that X(·, ·) satisfies the
random integral equation (2.4). For each n ∈ N we put Gn(t, ω) = f(t, Xn(t, ω), ω),
t ∈ [a, b]T, ω ∈ Ω. Then Gn(t, ω) is rd-continuous time scale stochastic process, and
we have that

sup
t∈[a,b]T

|Gn(t, ω)−Gm(t, ω)| ≤P L̃(ω) sup
t∈[a,b]T

|Xn(t, ω)−Xm(t, ω)|, t ∈ [a, b]T

for all n, m ≥ n0. Using (2.9) we infer that the sequence (Gn(·, ω))n∈N is uniformly
convergent with P.1. If we take m → ∞, then for each ε > 0 there exists n0 ∈ N
such that for every n ≥ n0 we have

sup
t∈[a,b]T

|Gn(t, ω)− f(t, X(t, ω), ω)| ≤P L̃(ω) sup
t∈[a,b]T

|Xn(t, ω)−X(t, ω)|, t ∈ [a, b]T

and so limn→∞ |Gn(t, ω)− f(t, X(t, ω), ω)| = 0 for all t ∈ [a, b]T with P.1. Also, it
easy to see that

sup
t∈[a,b]T

|
∫ t

a

Gn(s, ω)∆s−
∫ t

a

f(s,X(s, ω), ω)∆s| ≤P L̃(ω)
∫ t

a

|Xn(s, ω)−X(s, ω)|∆s.

Since the sequence X(t, ω) = limn→∞Xn(t, ω) uniformly with P.1, then it follows
that

lim
n→∞

|
∫ t

a

Gn(s, ω)∆s−
∫ t

a

f(s,X(s, ω), ω)∆s| = 0 ∀t ∈ [a, b]T with P.1.
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Now, we have

sup
t∈[a,b]T

|X(t, ω)− (X0(ω) +
∫ t

a

f(s,X(s, ω), ω)∆s)|

≤ sup
t∈[a,b]T

|X(t, ω)−Xn(t, ω)|

+ sup
t∈[a,b]T

|Xn(t, ω)− (X0(ω) +
∫ t

a

f(s,Xn−1(s, ω), ω)∆s)|

+ sup
t∈[a,b]T

|
∫ t

a

f(s,Xn−1(s, ω), ω)∆s−
∫ t

a

f(s,X(s, ω), ω)∆s|.

Using the two previous convergence∣∣X(t, ω)−
(
X0(ω) +

∫ t

a

f(s,X(s, ω), ω)∆s
)∣∣ = 0 for all t ∈ [a, b]T with P.1;

that is, X(·, ·) satisfies the random integral equation (2.4). Then, by Lemma 2.5,
it follows that X(·, ·) is the solution of (2.1).

Finally, we show the uniqueness of the solution. For this, we assume that
X(·, ·), Y (·, ·) : [a, b]T × Ω → R are two solutions of (2.4). Since

|X(t, ω)− Y (t, ω)| ≤P

∫ t

a

L̃(ω)|X(s, ω)− Y (s, ω)|ds, t ∈ [a, b]T,

from Lemma 2.6, it follows that |X(t, ω) − Y (t, ω)| ≤P 0, t ∈ [a, b]T and so, the
proof is complete. �

Let T be an upper unbounded time scale. Then under suitable conditions we
can extend the notion of the solution of (2.1) from [a, b]κT to [a,∞)T := [a,∞) ∩ T,
if we define f on [a,∞)T × R× Ω and show that the solution exists on each [a, b]T
where b ∈ (a,∞)T, a < ρ(b).

Theorem 2.8. Assume that f : [a,∞)T × R × Ω → R satisfies the assumptions
of Theorem 2.7 on each interval [a, b]T with b ∈ (a,∞)T, a < ρ(b). If there is a
constant M > 0 such that |f(t, x, ω)| ≤P M for all (t, x) ∈ [a, b)T × R, then the
problem (2.1) has a unique solution on [a,∞)T.

Proof. Let X(t, ·) be the solution of (2.1) which exists on [a, b)T with b ∈ (a,∞)T,
a < ρ(b), and the value of b cannot be increased. First, we observe that b is a
left-scattered point, then ρ(b) ∈ (a, b)T and the solution X(t, ·) exists on [a, ρ(b)]T.
But then the solution X(t, ·) exists also on [a, b]T, namely by putting

X(b, ω) =P X(ρ(b), ω) + µ(b)X∆(ρ(b), ω)

=P X(ρ(b), ω) + µ(b)f(ρ(b), X(ρ(b), ω), ω).

If b is a left-dense point, then their neighborhoods contain infinitely many points
to the left of b. Then, for any t, s ∈ (a, b)T such that s < t, we have

|X(t, ω)−X(s, ω)| ≤
∫ t

s

|f(τ,X(τ, ω), ω)|∆τ ≤P M |t− s|.

Taking limit as s, t → b− and using Cauchy criterion for convergence, it fol-
lows limt→b− X(t, ω) exists and is finite with P.1. Further, we define Xb(ω) =P

limt→b− X(t, ω) and consider the initial value problem

X∆(t, ω) =P f(τ,X(τ, ω), ω), t ∈ [b, b1]T, b1 > σ(b),
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X(b, ω) =P Xb(ω).

By Theorem 2.7, one gets that X(t, ω) can be continued beyond b, contradicting
our assumptions. Hence every solution X(t, ω) of e2.1 exists on [a,∞)T and the
proof is complete. �

3. Random linear systems on time scales

Let a : Ω → R be a positively regressive random variable; that is, 1+µ(t)a(ω) > 0
for all t ∈ T and ω ∈ Ω. Then, by Lemma 1.12, the function (t, ω) 7→ ea(ω)(t, t0)
defined by

ea(ω)(t, t0) =P

( ∫ t

t0

log(1 + µ(τ)a(ω))
µ(τ)

∆τ
)
, t0, t ∈ T,

is a continuous time scale stochastic process. For each fixed ω ∈ Ω, the sample
path t 7→ ea(ω)(t, t0) is the exponential function on time scales (see [3]). It easy
to check that the stochastic process (t, ω) 7→ ea(ω)(t, t0) is a solution of the initial
value problem (for deterministic case, see [3, Theorem 2.33])

X∆(t, ω) =P a(ω)X(t, ω), t ∈ [t0, b]κT
X(t0, ω) =P 1.

(3.1)

If a : Ω → R is bounded with P.1 then, by the Theorems 2.7] and 2.8, it follows
that (3.1) has a unique solution on [t0,∞)T.

Further, consider the following nonhomogeneous initial value problem

X∆(t, ω) =P a(ω)X(t, ω) + h(t, ω), t ∈ [t0, b]κT
X(t0, ω) =P X0(ω),

(3.2)

where a : Ω → R is a positively regressive random variable, X0 : Ω → R is a
bounded random variable, and h(, ·, ) : [a, b]κT×Ω → R is a rd-continuous time scale
stochastic process.

Theorem 3.1. Suppose that a : Ω → R is a positively regressive and bounded
random variable, X0 : Ω → R is a bounded random variable, and h(, ·, ) : [t0,∞)T×
Ω → R is a rd-continuous time scale stochastic process. If there is a constant ν > 0
such that |h(t, ω)| ≤P ν for all t ∈ [t0, b)T with b ∈ (t0,∞)T, t0 < ρ(b), then the
initial-value problem (3.2) has a unique solution on [t0,∞)T.

Proof. First, we observe that we put f(t, x, ω) := a(ω)x + h(t, ω), then f satisfies
the conditions (H1) and (H2). Moreover,

|f(t, x, ω)− f(t, y, ω)| ≤P |a(ω)||x− y|

for every t ∈ [t0,∞)T and every x, y ∈ R. Therefore, by the Theorem 2.7, it follows
that (3.2) has a unique solution on [t0, b]κT. Further, let X(t, ·) be the solution of
(3.2) which exists on [t0, b)T with b ∈ (t0,∞)T, t0 < ρ(b). Also, let N > 0 be such
that |a(ω)| ≤P N . Then we have

|X(t, ω)| ≤ |X(t0, ω)|+
∫ t

t0

|a(ω)X(s, ω)|∆s +
∫ t

t0

|h(s, ω)|∆s ≤P

1 + ν(t− t0) + N

∫ t

t0

|X(s, ω)|∆s.
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Then, by the [3, Corollary 6.8], it follows that

|X(t, ω)| ≤P (1 +
ν

N
)eN (t, t0)−

ν

N
≤ (1 +

ν

N
)eN (b, t0).

Hence |f(t, X(t, ω), ω)| ≤P M := ν+(1+ ν
N )eN (b, t0). Proceeding as in the proof of

the Theorem 2.8 it follows that the unique solution of (3.2) exists on [t0,∞)T. �

Theorem 3.2 (Variation of Constants). A continuous time scale stochastic process
X(·, ·) : [t0,∞)T×Ω → R is a solution of the initial-value problem (3.2) if and only
if

X(t, ω) =P ea(ω)(t, t0)X0(ω) +
∫ t

t0

ea(ω)(t, σ(s))h(s, ω)∆s, t ∈ [t0,∞)T.

Proof. Multiplying X∆(t, ω) =P a(ω)X(t, ω) + h(t, ω) by ea(ω)(t0, σ(t)), we obtain
that

X∆(t, ω)ea(ω)(t0, σ(t))− a(ω)X(t, ω)ea(ω)(t0, σ(t)) =P h(t, ω)ea(ω)(t0, σ(t));

that is,
[X(t, ω)ea(ω)(t0, t)]∆ =P h(t, ω)ea(ω)(t0, σ(t)).

Integrating both sides of the last equality from t0 to t, it follows that

X(t, ω)ea(ω)(t0, t)−X(t0, ω)ea(ω)(t0, t0) =P

∫ t

t0

ea(ω)(t0, σ(s))h(s, ω)∆s.

Multiplying the last equality by ea(ω)(t, t0), we obtain (3.2). �

Corollary 3.3. Let X0 : Ω → R be a bounded random variable. If the positively
regressive random variable a : Ω → R is bounded with P.1, then the unique solution
of the initial-value problem

X∆(t, ω) =P a(ω)X(t, ω), t ∈ [t0,∞)T

X(t0, ω) =P X0(ω)

is given by
X(t, ω) =P ea(ω)(t, t0)X0(ω), t ∈ [t0,∞)T.

Remark 3.4. Let X0 : Ω → R be a bounded random variable. If the positively
regressive random variable a : Ω → R is bounded with P.1, then the unique solution
of the initial-value problem

X∆(t, ω) =P −a(ω)Xσ(t, ω), t ∈ [t0,∞)T

X(t0, ω) =P X0(ω)

is given by
X(t, ω) =P e	a(ω)(t, t0)X0(ω), t ∈ [t0,∞)T,

where 	a(ω) = − a(ω)
1+µ(t)a(ω) (see [3]) and Xσ(t, ω) = X(σ(t), ω). Indeed, we have

(see [3])

X∆(t, ω) =P

( 1
e	a(ω)(t, t0)

)∆

X0(ω) =P − a(ω)
ea(ω)(σ(t), t0)

X0(ω)

=P −a(ω)e	a(ω)(σ(t), t0)X0(ω) =P −a(ω)Xσ(t, ω).
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Theorem 3.5 (Variation of Constants). Suppose that a : Ω → R is a positively
regressive and bounded random variable, X0 : Ω → R is a bounded random variable,
and h(, ·, ) : [t0,∞)T × Ω → R is a rd-continuous time scale stochastic process. If
there is a constant ν > 0 such that |h(t, ω)| ≤P ν for all t ∈ [t0, b)T with b ∈
(t0,∞)T, t0 < ρ(b), then the initial-value problem

X∆(t, ω) =P −a(ω)Xσ(t, ω) + h(t, ω), t ∈ [t0,∞)T

X(t0, ω) =P X0(ω),
(3.3)

has a unique solution on [t0,∞)T given by

X(t, ω) =P e	a(ω)(t, t0)X0(ω) +
∫ t

t0

e	a(ω)(t, s)h(s, ω)∆s, t ∈ [t0,∞)T. (3.4)

Proof. Multiplying the both sides of the equation in (3.3) by ea(ω)(t, t0). Then we
have

(ea(ω)(t, t0)X(t, ω))∆ =P ea(ω)(t, t0)X∆(t, ω) + a(ω)ea(ω)(t, t0)Xσ(t, ω)

=P ea(ω)(t, t0)[X∆(t, ω) + a(ω)Xσ(t, ω)]

=P ea(ω)(t, t0)h(t, ω).

Next, we integrate both sides from t0 to t and we infer that

ea(ω)(t, t0)X(t, ω)− ea(ω)(t0, t0)X(t0, ω) =P

∫ t

t0

ea(ω)(s, t0)h(s, ω)∆s;

that is,

ea(ω)(t, t0)X(t, ω) =P X0(ω) +
∫ t

t0

ea(ω)(s, t0)h(s, ω)∆s.

Since

ea(ω)(t0, t) =
1

ea(ω)(t, t0)
= e	a(ω)(t, t0), ea(ω)(t0, t)ea(ω)(t, t0) = 1

(see [3, Theorem 2.36]), then multiplying the both sides of the last equality by
ea(ω)(t0, t), we obtain (3.4). �

Example 3.6. Let us consider Ω = (0, 1), F the σ-algebra of all Borel subsets of
Ω, P the Lebesgue measure on Ω, and the following initial-value problem

X∆(t, ω) =P ωX(t, ω) + eω(t, 0), t ∈ [0,∞)T

X(0, ω) =P 1− ω.
(3.5)

Then, by the Theorems 2.8 and 3.1, the initial value problem (3.5) has a unique
solution on [0,∞)T, given by

X(t, ω) =P (1− ω)eω(t, 0) +
∫ t

0

eω(t, σ(s))eω(s, 0)∆s;

that is,

X(t, ω) =P eω(t, 0)
[
1− ω +

∫ t

0

1
1 + µ(s)ω

∆s
]
, t ∈ [0,∞)T.
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Next, consider two particular cases.
If T = R, then µ(t) = 0 for all t ∈ N, and eω(t, 0) = eωt. Moreover, in this case

we have ∫ t

0

1
1 + µ(s)ω

∆s =
∫ t

0

ds = t.

It follows that the initial-value problem

X∆(t, ω) =P ωX(t, ω) + eωt, t ∈ [0,∞)

X(0, ω) =P 1− ω,

has the solution X(t, ω) = (1− ω + t)eωt, t ∈ [0,∞).
If T = N, then µ(n) = 1 for all n ∈ N, and eω(n, 0) = (1 + ω)n. Moreover, in

this case we have ∫ t

0

1
1 + µ(s)ω

∆s =
∑

s∈[0,n)

1
1 + ω

=
n

1 + ω
.

It follows that the difference initial-value problem

Xn+1(ω) =P (1 + ω)Xn(ω) + (1 + ω)n, n ∈ N
X0(ω) =P 1− ω,

has the solution Xn(ω) = (1− ω + n
1+ω )(1 + ω)n, n ∈ N.

Example 3.7. Let us consider Ω = (0, 1), F the σ-algebra of all Borel subsets of
Ω, P the Lebesgue measure on Ω, and the initial-value problem

X∆(t, ω) =P −ωXσ(t, ω) + e	ω(t, t0), t ∈ [t0,∞)T

X(t0, ω) =P 1− ω.
(3.6)

The initial-value problem (3.6) has a unique solution on [t0,∞)T, given by

X(t, ω) =P (1− ω)e	ω(t, t0) +
∫ t

0

e	ω(t, s)e	ω(s, t0)∆s;

that is,
X(t, ω) =P (1− ω − t0 + t)e	ω(t, t0), t ∈ [t0,∞)T.

If T = hN with h > 0, then µ(t) = h for all t ∈ hN, and e	ω(t, 0) = (1 + ωh)−t/h.
It follows that the h-difference initial-value problem

Xt+h(ω) =P
1

1 + ωh
Xt(ω) + h(1 + ωh)−t/h−1, t ∈ hN

X0(ω) =P 1− ω,

has the unique solution Xt(ω) =P (1− ω + t)(1 + ωh)−t/h, t ∈ hN.
If T = 2N, then µ(t) = t for all t ∈ 2N, and e	ω(t, 0) =

∏
s∈[0,t)(1 + ωs)−1. It

follows that the 2-difference initial value problem

Xt(ω) =P (1 + ωt)X2t(ω)− t
∏

s∈[1,t)

(1 + ωs)−1, t ∈ 2N

X1(ω) =P 1− ω,

has the unique solution Xt(ω) =P (1− ω + t)
∏

s∈[1,t)(1 + ωs)−1, t ∈ 2N.
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