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EXISTENCE OF SOLUTIONS FOR A FRACTIONAL NEUTRAL
INTEGRO-DIFFERENTIAL EQUATION WITH UNBOUNDED

DELAY

BRUNO DE ANDRADE, JOSÉ PAULO CARVALHO DOS SANTOS

Abstract. In this article, we study the existence of mild solutions for frac-
tional neutral integro-differential equations with infinite delay.

1. Introduction

In this article, we study the existence of mild solutions for the neutral fractional
integral evolutionary equation

Dα
t (x(t) + f(t, xt)) = Ax(t) +

∫ t

0

B(t− s)x(s)ds+ g(t, xt), t > 0, (1.1)

x0 = ϕ, x′(0) = x1, (1.2)

where α ∈ (1, 2); A, (B(t))t≥0 are closed linear operators defined on a common
domain which is dense in a Banach spaceX, Dα

t h(t) represent the Caputo derivative
of α > 0 defined by

Dα
t h(t) :=

∫ t

0

gn−α(t− s)
dn

dsn
h(s)ds,

where n is the smallest integer greater than or equal to α and gβ(t) := tβ−1

Γ(β) , t >

0, β ≥ 0. The history xt : (−∞, 0] → X given by xt(θ) = x(t+ θ) belongs to some
abstract phase space B defined axiomatically and f, g : I ×B → X are appropriate
functions.

The literature related to ordinary neutral functional differential equations is very
extensive and we refer the reader to the Hale and Lunel book [8] and the references
therein. Partial neutral differential equations arise, for instance, in the transmission
line theory, see Wu and Xia [18] and the study of material with fanding memory,
see [7, 16]. In the paper [9], Hernandez and Henriquez, study the existence of mild
and strong solutions for the partial neutral system

d

dt

(
x(t) + g(t, xt)

)
= Ax(t) + f(t, xt), t ∈ I = [0, a], (1.3)

x0 = ϕ, (1.4)
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where A : D(A) ⊂ X → X is a generator of analytic semigroup and the history
xt : (−∞, 0] → X given by xt(θ) = x(t+θ) belongs to some abstract phase space B
defined axiomatically and f, g : I×B → X are appropriate functions. Very recently,
Hernandez et al, [11], study the existence of mild, strong and classical solutions for
the integro-differential neutral systems

d

dt
(x(t) + f(t, xt)) = Ax(t) +

∫ t

0

B(t− s)x(s)ds+ g(t, xt), t ∈ I = [0, b], (1.5)

x0 = ϕ, ϕ ∈ B, (1.6)

where A : D(A) ⊂ X → X and B(t) : D(B(t)) ⊂ X → X, t ≥ 0, are closed linear
operators; (X, ‖ · ‖) is a Banach space; the history xt : (−∞, 0] → X, defined by
xt(θ) := x(t + θ) belongs to an abstract phase space B defined axiomatically and
f, g : I × B → X are appropriated functions. In the paper [1], Dos Santos et al.
study the existence of mild and classical solutions for the partial neutral systems
with unbounded delay

d

dt
[x(t) +

∫ t

−∞
N(t− s)x(s)ds] = Ax(t) +

∫ t

−∞
B(t− s)x(s)ds+ f(t, xt), t ∈ [0, a],

(1.7)

x0 = ϕ, ϕ ∈ B, (1.8)

where A,B(t) for t ≥ 0 are closed linear operators defined on a common domain
D(A) which is dense in X, N(t) (t ≥ 0) are bounded linear operators on X, without
to use many of the strong restrictions considered in the literature. To the best
of our knowledge, the existence of mild solutions for abstract fractional partial
evolutionary integral equations with unbounded delay is an untreated topic in the
literature and this fact is the main motivation of the present work.

2. Preliminaries

In what follows we recall some definitions, notation and results that we need in
the sequel. Throughout this paper, (X, ‖ · ‖) is a Banach space and A,B(t), t ≥ 0,
are closed linear operators defined on a common domain D = D(A) which is dense
in X. The notation [D(A)] represents the domain of A endowed with the graph
norm. Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. In this paper, the notation
L(Z,W ) stands for the Banach space of bounded linear operators from Z into W
endowed with the uniform operator topology and we abbreviate this notation to
L(Z) when Z = W . Furthermore, for appropriate functions K : [0,∞) → Z the
symbol K̂ denotes the Laplace transform of K. Thesymbol Br(x,Z) stands for
the closed ball with center at x and radius r > 0 in Z. On the other hand, for a
bounded function γ : [0, a] → Z and t ∈ [0, a], the symbol ‖γ‖Z,t is given by

‖γ‖Z,t = sup{‖γ(s)‖Z : s ∈ [0, t]}, (2.1)

and we simplify this notation to ‖γ‖t when no confusion about the space Z arises.
To obtain our results, we assume that the abstract fractional integro-differential

problem

Dα
t x(t) = Ax(t) +

∫ t

0

B(t− s)x(s)ds, (2.2)

x(0) = z ∈ X, x′(0) = 0, (2.3)
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has an associated α-resolvent operator of bounded linear operators (Rα(t))t≥0 on
X.

Definition 2.1. A one parameter family of bounded linear operators (Rα(t))t≥0

on X is called a α-resolvent operator of (2.2)-(2.3) if the following conditions are
satisfied.

(a) The functionRα(·) : [0,∞) → L(X) is strongly continuous andRα(0)x = x
for all x ∈ X and α ∈ (1, 2).

(b) For x ∈ D(A), Rα(·)x ∈ C([0,∞), [D(A)])
⋂
C1((0,∞), X), and

Dα
t Rα(t)x = ARα(t)x+

∫ t

0

B(t− s)Rα(s)xds, (2.4)

Dα
t Rα(t)x = Rα(t)Ax+

∫ t

0

Rα(t− s)B(s)xds, (2.5)

for every t ≥ 0.

The existence of a α-resolvent operator for problem (2.2)-(2.3) was studied in
[4]. In this work we consider the following conditions.

(P1) The operator A : D(A) ⊆ X → X is a closed linear operator with [D(A)]
dense in X. Let α ∈ (1, 2), for some φ0 ∈ (0, π

2 ] for each φ < φ0 there is
positive constants C0 = C0(φ) such that λ ∈ ρ(A) for each

λ ∈ Σ0,αϑ = {λ ∈ C : λ 6= 0, | arg(λ)| < αϑ},

where ϑ = φ+ π
2 and ‖R(λ,A)‖ ≤ C0

|λ| for all λ ∈ Σ0,αϑ.
(P2) For all t ≥ 0, B(t) : D(B(t)) ⊆ X → X is a closed linear operator,

D(A) ⊆ D(B(t)) and B(·)x is strongly measurable on (0,∞) for each x ∈
D(A). There exists b(·) ∈ L1

loc(R+) such that b̂(λ) exists for Re(λ) > 0 and
‖B(t)x‖ ≤ b(t)‖x‖1 for all t > 0 and x ∈ D(A). Moreover, the operator
valued function B̂ : Σ0,π/2 → L([D(A)], X) has an analytical extension (still
denoted by B̂) to Σ0,ϑ such that ‖B̂(λ)x‖ ≤ ‖B̂(λ)‖ ‖x‖1 for all x ∈ D(A),
and ‖B̂(λ)‖ = O( 1

|λ| ), as |λ| → ∞.
(P3) There exists a subspace D ⊆ D(A) dense in [D(A)] and positive constants

Ci, i = 1, 2, such that A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A), ‖AB̂(λ)x‖ ≤
C1‖x‖ for every x ∈ D and all λ ∈ Σ0,ϑ.

In the sequel, for r > 0 and θ ∈ (π
2 , ϑ),

Σr,θ = {λ ∈ C : λ 6= 0, |λ| > r, |arg(λ)| < θ},

for Γr,θ,Γi
r,θ, i = 1, 2, 3, are the paths

Γ1
r,θ = {teiθ : t ≥ r},

Γ2
r,θ = {reiξ : −θ ≤ ξ ≤ θ},

Γ3
r,θ = {te−iθ : t ≥ r},

and Γr,θ =
⋃3

i=1 Γi
r,θ oriented counterclockwise. In addition, ρα(Gα) are the sets

ρα(Gα) = {λ ∈ C : Gα(λ) := λα−1(λαI −A− B̂(λ))−1 ∈ L(X)}.
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We now define the operator family (Rα(t))t≥0 by

Rα(t) =

{
1

2πi

∫
Γr,θ

eλtGα(λ)dλ, t > 0,

I, t = 0.
(2.6)

Lemma 2.2 ([4, Lemma 2.2]). There exists r1 > 0 such that Σr1,ϑ ⊆ ρα(Gα) and
the function Gα : Σr1,ϑ → L(X) is analytic. Moreover,

Gα(λ) = λα−1R(λα, A)[I − B̂(λ)R(λα, A)]−1, (2.7)

and there exist constants Mi for i = 1, 2 such that

‖Gα(λ)‖ ≤ M1

|λ|
, (2.8)

‖AGα(λ)x‖ ≤ M2

|λ|
‖x‖1, x ∈ D(A), (2.9)

‖AGα(λ)‖ ≤ M4

|λ|1−α
, (2.10)

for every λ ∈ Σr1,ϑ.

The following result was established in [4, Theorem 2.1].

Theorem 2.3. Assume that conditions (P1)–(P3) are fulfilled. Then there exists
a unique α-resolvent operator for problem (2.2)-(2.3).

Theorem 2.4 ([4, Lemma 2.5] ). The function Rα : [0,∞) → L(X) is strongly
continuous and Rα : (0,∞) → L(X) is uniformly continuous.

In what follows, we assume that the conditions (P1)–(P3) are satisfied. We
consider now the non-homogeneous problem

Dα
t x(t) = Ax(t) +

∫ t

0

B(t− s)x(s)ds+ f(t), t ∈ [0, a], (2.11)

x(0) = x0, x′(0) = 0, (2.12)

where α ∈ (1, 2) and f ∈ L1([0, a], X). In the sequel, Rα(·) is the operator function
defined by (2.6). We begin by introducing the following concept of classical solution.

Definition 2.5. A function x : [0, a] → X, 0 < a, is called a classical solu-
tion of (2.11)-(2.12) on [0, a] if x ∈ C([0, a], [D(A)]) ∩ C([0, a], X), gn−α ∗ x ∈
C1([0, a], X), n = 1, 2, the condition (2.12) holds and the equations (2.11) is verified
on [0, a].

Definition 2.6. Let α ∈ (1, 2), we define the family (Sα(t))t≥0 by

Sα(t)x :=
∫ t

0

gα−1(t− s)Rα(s)xds,

for each t ≥ 0.

Lemma 2.7 ([4, Lemma 3.9]). If the function Rα(·) is exponentially bounded in
L(X), then Sα(·) is exponentially bounded in L(X).

Lemma 2.8 ([4, Lemma 3.10]). If the function Rα(·) is exponentially bounded in
L([D(A)]), then Sα(·) is exponentially bounded in L([D(A)]).

We now establish a variation of constants formula for the solutions of (2.11)-
(2.12).
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Theorem 2.9 ([4, Theorem 3.2] ). Let z ∈ D(A). Assume that f ∈ C([0, a], X)
and u(·) is a classical solution of (2.11)–(2.12) on [0, a]. Then

u(t) = Rα(t)z +
∫ t

0

Sα(t− s)f(s) ds, t ∈ [0, a]. (2.13)

It is clear from the preceding definition that Rα(·)z is a solution of problem
(2.2)-(2.3) on (0,∞) for z ∈ D(A).

Definition 2.10. Let f ∈ L1([0, a], X). A function u ∈ C([0, a], X) is called a mild
solution of (2.11)-(2.12) if

u(t) = Rα(t)z +
∫ t

0

Sα(t− s)f(s) ds, t ∈ [0, a].

The next results are proved in [4] and [5].

Theorem 2.11 ([4, Theorem 3.3] ). Let z ∈ D(A) and f ∈ C([0, a], X). If f ∈
L1([0, a], [D(A)]) then the mild solution of (2.11)-(2.12) is a classical solution.

Theorem 2.12 ([4, Theorem 3.4]). Let z ∈ D(A) and f ∈ C([0, a], X). If f ∈
W 1,1([0, a], X), then the mild solution of (2.11)–(2.12) is a classical solution.

Lemma 2.13 ([5, Lemma 2.3]). If R(λα
0 , A) is compact for some λα

0 ∈ ρ(A), then
Rα(t) and Sα(t) are compact for all t > 0.

We will herein define the phase space B axiomatically, using ideas and notations
developed in [14]. More precisely, B will denote the vector space of functions defined
from (−∞, 0] into X endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞, σ+b) → X, b > 0, σ ∈ R, is continuous on [σ, σ+b) and xσ ∈ B,
then for every t ∈ [σ, σ + b) the following conditions hold:
(i) xt is in B.
(ii) ‖x(t)‖ ≤ H‖xt‖B.
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,
where H > 0 is a constant; K,M : [0,∞) → [1,∞), K(·) is continuous,
M(·) is locally bounded and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), the function t→ xt is continuous from [σ, σ+b)
into B.

(B) The space B is complete.

Example 2.14. (The phase space Cr × Lp(g,X)) Let r ≥ 0, 1 ≤ p < ∞ and
let g : (−∞,−r] → R be a nonnegative measurable function which satisfies the
conditions (g-5), (g-6) in the terminology of [14]. Briefly, this means that g is
locally integrable and there exists a non-negative, locally bounded function γ on
(−∞, 0] such that g(ξ + θ) ≤ γ(ξ)g(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r) \Nξ, where
Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero. The space Cr × Lp(g,X)
consists of all classes of functions ϕ : (−∞, 0] → X such that ϕ is continuous on
[−r, 0], Lebesgue-measurable, and g‖ϕ‖p is Lebesgue integrable on (−∞,−r). The
seminorm in Cr × Lp(g,X) is defined by

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}+
(∫ −r

−∞
g(θ)‖ϕ(θ)‖pdθ

)1/p

.
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The space B = Cr×Lp(g;X) satisfies axioms (A), (A-1), (B). Moreover, when r = 0

and p = 2, we can take H = 1, M(t) = γ(−t)1/2 and K(t) = 1 +
(∫ 0

−t
g(θ) dθ

)1/2

,
for t ≥ 0. (see [14, Theorem 1.3.8] for details).

For additional details concerning phase space we refer the reader to [14].

3. Neutral problem

In the next result we denote by (−A)ϑ the fractional power of the operator −A,
(see [17] for details).

Lemma 3.1. Suppose that the conditions (P1)–(P3) are satisfied. Let α ∈ (1, 2)
and ϑ ∈ (0, 1) such that αϑ ∈ (0, 1), then there exists positive number C such that

‖(−A)ϑRα(t)‖ ≤ Certt−αϑ, (3.1)

‖(−A)ϑSα(t)‖ ≤ Certtα(1−ϑ)−1, (3.2)

for all t > 0.

Proof. Let ϑ ∈ (0, 1). From [17, Theorem 6.10], there exist Cϑ > 0 such that

‖(−A)ϑx‖ ≤ Cϑ‖Ax‖ϑ‖x‖1−ϑ, x ∈ D(A).

From Gα(·) is valued D(A), for all x ∈ X

‖(−A)ϑGα(λ)x‖ ≤ Cϑ‖AGα(λ)x‖ϑ‖Gα(λ)x‖1−ϑ

≤ Cϑ
Mϑ

3

|λ|ϑ−αϑ
‖x‖ϑM

1−ϑ
1

|λ|1−ϑ
‖x‖1−ϑ

≤ Mϑ

|λ|1−αϑ
‖x‖,

(3.3)

where Mϑ is independent of λ. From (3.3), we obtain for t ≥ 1, make the change
λt = γ. From the Cauchy’s theorem we obtain that

‖(−A)ϑR(t)‖ ≤ ‖ 1
2πi

∫
Γr,θ

eγ(−A)ϑG(t−1γ)t−1dγ‖

≤ Mϑ

π

∫ ∞

r

es cos θ t−1ds

(t−1s)1−αϑ
+
Mϑ

2π

∫ θ

−θ

er cos ξ t−1rdξ

(t−1r)1−αϑ

≤
( Mϑ

πr1−αϑ| cos θ|
+
Mϑθr

αϑ

π

) ert

tαϑ

≤ C
ert

tαϑ
.

On the other hand, using that G(·) is analytic on Σr,θ, for t ∈ (0, 1) we obtain

‖(−A)ϑR(t)‖ = ‖ 1
2πi

∫
Γ r

t
,θ

eλt(−A)ϑG(λ)dλ‖

≤ Mϑ

π

∫ ∞

r
t

ets cos θ ds

s1−αϑ
+
Mϑ

2π

∫ θ

−θ

er cos ξ rt−1dξ

r1−αϑtαϑ−1

≤ Mϑ

π

∫ ∞

r

eu cos θ t−1du

u1−αϑtαϑ−1
+
Mϑ

2π

∫ θ

−θ

er cos ξ rt−1dξ

r1−αϑtαϑ−1
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≤
( Mϑ

πr1−αϑ| cos θ|
+
Mϑθr

αϑ

π
er
) 1
tαϑ

≤ C
ert

tαϑ
.

By the definition of (Sα(t))t≥0, we obtain

‖(−A)ϑSα(t)‖ ≤
∫ t

0

gα−1(t− s)‖(−A)ϑRα(s)‖ds

≤
∫ t

0

gα−1(t− s)Cerss−αϑds

≤ ert

∫ t

0

(t− s)α−2

Γ(α− 1)
Cs−αϑds

≤ ert

Γ(α− 1)

∫ t

0

(t− s)α−2Cs−αϑds

≤ ert

Γ(α− 1)

∫ t

0

(t− s)(α−1)−1Cs(1−αϑ)−1ds.

From inequality [17, 6.24], we obtain

‖(−A)ϑSα(t)‖ ≤ ertΓ(1− αϑ)
Γ(α− αϑ)

Ctα(1−ϑ)−1 ≤ Certtα(1−ϑ)−1.

�

Remark 3.2. If B̂(λ)(−A)−ϑy = (−A)−ϑB̂(λ)y for y ∈ [D(A)]. We can see that
for ϑ ∈ (0, 1) and x ∈ [D((−A)ϑ)]

(−A)ϑGα(λ)x = λα−1(−A)ϑR(λα, A)[I − B̂(λ)R(λα, A)]−1x

= λα−1(−A)ϑR(λα, A)[I − B̂(λ)R(λα, A)]−1(−A)−ϑ(−A)ϑx.

Since

B̂(λ)R(λα, A)(−A)−ϑ(−A)ϑx = (−A)−ϑB̂(λ)R(λα, A)(−A)−ϑx,

we obtain

(−A)ϑGα(λ)x = λα−1(−A)ϑR(λα, A)(−A)−ϑ[I − B̂(λ)R(λα, A)]−1(−A)ϑx

= Gα(λ)(−A)ϑx.

As consequences of before it is easy to see that

(−A)ϑRα(t)x = Rα(t)(−A)ϑx and (−A)ϑSα(t)x = Sα(t)(−A)ϑx,

if x ∈ [D((−A)ϑ)].

If x ∈ C(I;X) we define x : (−∞, b] → X is the extension of x to (−∞, b] such
that x0 = ϕ. In the sequel we introduce the following conditions:

(H1) The following conditions are satisfied.
(a) B(·)x ∈ C(I,X) for every x ∈ [D((−A)1−ϑ)].
(b) There is function µ(·) ∈ L1(I; R+), such that

‖B(s)Sα(t)‖L([D((−A)ϑ)],X) ≤Mµ(s)tαϑ−1, 0 ≤ s < t ≤ b.
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(H2) The function f(·) is (−A)ϑ-valued, f : I ×B → [D((−A)−ϑ)] is continuous
and there exists Lf such that for all (ti, ψj) ∈ I × B,

‖(−A)ϑf(t1, ψ1)− (−A)ϑf(t2, ψ2)‖ ≤ Lf (|t1 − t2|+ ‖ψ1 − ψ2‖B). (3.4)

(H3) The function g : I × B → X satisfies the following properties.
(a) The function g(·, ψ) : I → X is strongly measurable for every ψ ∈ B.
(b) The function g(t, ·) : B → X is continuous for each t ∈ I.
(c) There exists an integrable function mg : I → [0,∞) and a continuous

nondecreasing function Ωg : [0,∞) → (0,∞) such that

‖g(t, ψ)‖ ≤ mg(t)Ωg(‖ψ‖B), (t, ψ) ∈ I × B.

Remark 3.3. In the rest of this section, Mb and Kb are the constants Mb =
sups∈[0,b]M(s) and Kb = sups∈[0,b]K(s).

Definition 3.4. A function u : (−∞, b] → X, 0 < b ≤ a, is called a mild solution of
(1.5) on [0, b], if u0 = ϕ; u|[0,b] ∈ C([0, b] : X); the function τ → ASα(t− τ)f(τ, uτ )
and τ →

∫ τ

0
B(τ − ξ)Sα(t− τ)f(ξ, uξ)dξ is integrable on [0, t) for all t ∈ (0, b] and

for t ∈ [0, b],

u(t) = Rα(t)(ϕ(0) + f(0, ϕ))− f(t, ut)−
∫ t

0

ASα(t− s)f(s, us)ds

−
∫ t

0

∫ s

0

B(s− ξ)Sα(t− s)f(ξ, uξ)dξds+
∫ t

0

Sα(t− s)g(s, us)ds.
(3.5)

Theorem 3.5. Let conditions (H1), (H2), (H3) hold. If

Kb

[
Lf

(
‖(−A)−ϑ‖+Mbαϑ

αϑ
+
Mbαϑ

αϑ

∫ b

0

µ(ξ)dξ
)
+M lim inf

ξ→∞

Ωg(ξ)
ξ

∫ b

0

mg(s)ds
]
< 1,

then there exists a mild solution of (1.5) on [0, b].

Proof. Consider the space S(b) = {u ∈ C(I;X) : u(0) = ϕ(0)} endowed with the
uniform convergence topology and define the operator Γ : S(b) → S(b) by

Γx(t) = Rα(t)(ϕ(0) + f(0, ϕ))− f(t, xt)−
∫ t

0

ASα(t− s)f(s, xs)ds

−
∫ t

0

∫ s

0

B(s− ξ)Sα(t− s)f(ξ, xξ)dξds+
∫ t

0

Sα(t− s)g(s, xρ(t,xs))ds,

for t ∈ [0, b]. From our assumptions, it is easy to see that ΓS(b) ⊂ S(b).
Let ϕ̄ : (−∞, b] → X be the extension of ϕ to (−∞, b] such that ϕ̄(θ) = ϕ(0) on

I. We prove that there exists r > 0 such that Γ(Br(ϕ̄|I , S(b))) ⊆ Br(ϕ̄|I , S(b)). If
this property is false, then for every r > 0 there exist xr ∈ Br(ϕ̄|I , S(b)) and tr ∈ I
such that r < ‖Γxr(tr)− ϕ(0)‖. Then, we find that

‖Γxr(tr)− ϕ(0)‖
≤ ‖Rα(tr)(ϕ(0) + f(0, ϕ))‖+ ‖f(tr, xr

tr )‖

+
∫ tr

0

‖(−A)1−ϑSα(tr − s)‖‖(−A)ϑf(s, xr
s)‖ds

+
∫ tr

0

∫ s

0

‖B(s− ξ)Sα(tr − s)f(ξ, xr
ξ)‖dξds+

∫ t

0

‖Sα(t− s)‖‖g(s, xs)‖ds

≤ ‖Rα(tr)ϕ(0)− ϕ(0)‖+ ‖Rα(tr)f(0, ϕ)− f(0, ϕ)‖
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+ ‖(−A)−ϑ‖‖(−A)ϑf(tr, (xr)tr )− (−A)ϑf(0, ϕ)‖

+
∫ tr

0

M(tr − s)αϑ−1‖(−A)ϑf(sr, (xr)s)− (−A)ϑf(0, ϕ)‖ds

+
∫ tr

0

M(tr − s)αϑ−1‖(−A)ϑf(0, ϕ)‖ds

+
∫ tr

0

∫ s

0

µ(s− ξ)M(tr − s)αϑ−1‖(−A)ϑf(ξr, (xr)ξ)− (−A)ϑf(0, ϕ)‖dξds

+
∫ tr

0

∫ s

0

µ(s− ξ)M(tr − s)αϑ−1‖(−A)ϑf(0, ϕ)‖dξds

+M

∫ tr

0

mg(tr − s)Ωg(‖xr
s‖B)ds

≤ (M + 1)H‖ϕ‖B + ‖Rα(tr)f(0, ϕ)− f(0, ϕ)‖

+
(Mbαϑ

αϑ
+
Mbαϑ

αϑ

∫ b

0

µ(ξ)dξ
)
‖(−A)ϑf(0, ϕ)‖

+ ‖(−A)−ϑ‖Lf

(
tr + ‖(xr)tr − ϕ‖B

)
+
∫ tr

0

M(tr − s)αϑ−1Lf

(
s+ ‖(xr)s − ϕ‖B

)
ds

+
∫ tr

0

∫ s

0

µ(s− ξ)M(tr − s)αϑ−1Lf

(
ξ + ‖(xr)ξr − ϕ‖B

)
dξds

+ Ωg (Kbr + (Mb +HKb + 1)‖ϕ‖B)
∫ b

0

mg(s)ds

≤ (M + 1)H‖ϕ‖B + ‖R(tr)f(0, ϕ)− f(0, ϕ)‖

+
(Mbαϑ

αϑ
+
Mbαϑ

αϑ

∫ b

0

µ(ξ)dξ
)
‖(−A)ϑf(0, ϕ)‖

+
(
‖(−A)−ϑ‖+

Mbαϑ

αϑ
+
Mbαϑ

αϑ

∫ b

0

µ(ξ)dξ
)
(Lf (b+ (Mb +HKb + 1)‖ϕ‖B))

+
(
‖(−A)−ϑ‖+

Mbαϑ

αϑ
+
Mbαϑ

αϑ

∫ b

0

µ(ξ)dξ
)
LfKbr

+ Ωg (Kbr + (Mb +HKb + 1)‖ϕ‖B)
∫ b

0

mg(s)ds,

where ic : Y → X represents the continuous inclusion of Y on X. Therefore

1 ≤ Kb

[
Lf

(
‖(−A)−ϑ‖+Mbαϑ

αϑ
+
Mbαϑ

αϑ

∫ b

0

µ(ξ)dξ
)
+M lim inf

ξ→∞

Ωg(ξ)
ξ

∫ b

0

mg(s)ds
]
,

which contradicts our assumption.
Let r > 0 be such that Γ(Br(ϕ̄|I , S(b))) ⊆ Br(ϕ̄|I , S(b)). In the sequel, r∗

and r∗∗ are the numbers defined by r∗ := (Kbr + (Mb + HKb + 1)‖ϕ‖B) and
r∗∗ := Ωg(r∗)

∫ b

0
mg(s)ds.



10 B. DE ANDRADE, J. P. C. DOS SANTOS EJDE-2012/90

To prove that Γ is a condensing operator, we introduce the decomposition Γ =
Γ1 + Γ2, where, for t ∈ I,

Γ1x(t) = Rα(t)(ϕ(0) + f(0, ϕ))− f(t, xt)−
∫ t

0

ASα(t− s)f(s, xs)ds

−
∫ t

0

∫ s

0

B(s− ξ)Sα(t− s)f(ξ, xξ)dξds,

Γ2x(t) =
∫ t

0

Sα(t− s)g(s, xs)ds .

On the other hand, for u, v ∈ Br(ϕ̄|I , S(b)) and t ∈ [0, b] we see that

‖Γ1u(t)− Γ1v(t)‖

≤ ‖(−A)−ϑ‖‖(−A)ϑf(t, ut)− (−A)ϑf(t, vt)‖

+
∫ t

0

‖(−A)1−ϑSα(t− s)‖‖(−A)ϑf(s, us)− (−A)ϑf(s, vs)‖Y ds

+
∫ t

0

∫ s

0

‖B(s− ξ)Sα(t− s)f(ξ, uξ)− f(ξ, vξ)‖dξds

≤ ‖(−A)−ϑ‖LfKb‖u− v‖b + LfKb

∫ t

0

M(t− s)αυ−1ds‖u− v‖b

+ LfKb

∫ t

0

∫ s

0

µ(s− ξ)M(t− s)αϑ−1dξds‖u− v‖b,

≤ LfKb

(
‖(−A)−ϑ‖+

Mbαϑ

αϑ
+
Mbαϑ

αϑ

∫ b

0

µ(ξ)dξ

)
‖u− v‖b,

which show that Γ1(·) is a contraction on Br(ϕ̄|I , S(b)).
Next we prove that Γ2(·) is a completely continuous function from Br(ϕ̄|I , S(b))

to Br(ϕ̄|I , S(b)).
Step 1. The set Γ2(Br(ϕ̄|I , S(b))(t) is relatively compact on X for every t ∈ [0, b].
The case t = 0 is trivial. Let 0 < ε < t < b. From the assumptions, we can fix
numbers 0 = t0 < t1 < · · · < tn = t − ε such that ‖Sα(t − s) − Sα(t − s′)‖ ≤ ε if
s, s′ ∈ [ti, ti+1], for some i = 0, 1, 2, · · · , n− 1. let x ∈ Br(ϕ̄|I , S(b)). Under theses
conditions, from the mean value theorem for the Bochner Integral (see [15, Lemma
2.1.3]) we see that

Γ2x(t) =
n∑

i=1

∫ ti

ti−1

Sα(t− ti)g(s, xs)ds

+
n∑

i=1

∫ ti

ti−1

(Sα(t− s)− Sα(t− ti))g(s, xρ(t,xs))ds

+
∫ t

tn

Sα(t− s)g(s, xs)ds

∈
n∑

i=1

(ti − ti−1)co({Sα(t− ti)g(s, ψ) : ψ ∈ Br∗(0,B), s ∈ [0, b]})

+ ε r∗∗ +MΩg(r∗)
∫ t

t−ε

mg(s)ds
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∈
n∑

i=1

(ti − ti−1)co({W 2
r∗(t− ti)}) + εBr∗∗(0, X) + Cε,

where diam(Cε) → 0 when ε → 0. This prove that Γ2(Bq(0, S(b)))(t) is totally
bounded and hence relatively compact in X for every t ∈ [0, b].
Step 2. The set Γ2(Br(ϕ̄|I , S(b))) is equicontinuous on [0, b]. Let 0 < ε < t < b
and 0 < δ < ε such that ‖Sα(s)−Sα(s′)‖ ≤ ε for every s, s′ ∈ [ε, b] with |s−s′| ≤ δ.
Under these conditions, for x ∈ Br(ϕ̄|I , S(b)) and 0 < h ≤ δ with t+ h ∈ [0, b], we
obtain

‖Γ2x(t+ h)− Γ2x(t)‖

≤
∫ t−ε

0

[Sα(t+ h− s)− Sα(t− s)]g(s, xs)ds

+
∫ t

t−ε

[Sα(t+ h− s)− Sα(t− s)]g(s, xs)ds+
∫ t+h

t

Sα(t+ h− s)g(s, xs)ds

≤ εr∗∗ + 2MΩ(r∗)
∫ t

t−ε

mg(s)ds+MΩ(r∗)
∫ t+h

t

mg(s)ds

which shows that the set of functions Γ2(Br(ϕ̄|I , S(b))) is right equicontinuity at
t ∈ (0, b). A similar procedure permit to prove the right equicontinuity at zero and
the left equicontinuity at t ∈ (0, b]. Thus, Γ2(Br(ϕ̄|I , S(b))) is equicontinuous. By
using a similar procedure to proof of [10, Theorem 2.3], we prove that that Γ2(·)
is continuous on Br(ϕ̄|I , S(b)), which completes the proof that Γ2(·) is completely
continuous.

To complete the prove that Γ1(·) is continuous, let (xn)n∈N be a sequence in
Br(ϕ̄|I , S(b)) and x ∈ Br(ϕ̄|I , S(b)) such that xn → x in Br(ϕ̄|I , S(b)). From the
phase space axioms we infer that (xn)s → xs uniformly for s ∈ I as n → ∞.
Consequently, from (3.4), ‖(−A)−ϑf(s, (xn)s) − (−A)−ϑf(s, xs)‖ → 0, uniformly
on [0, b] as n → ∞. Now, a standard application of the Lebesgue dominated
convergence Theorem permits to conclude that Γ1(·) is continuous on Br(ϕ̄|I , S(b)).
The existence of a mild solution for (1.5) is now a consequence of [15, Theorem
4.3.2]. This completes the proof. �

4. Applications

To complete this paper, we discuss the existence of solutions for the partial
integro-differential system

∂α

∂tα

(
u(t, ξ) +

∫ t

−∞

∫ π

0

b(t− s, η, ξ)u(s, η)dηds
)

=
∂2

∂ξ2
u(t, ξ) +

∫ t

0

(t− s)δe−γ(t−s) ∂
2

∂ξ2
u(s, ξ)ds+

∫ t

−∞
a0(s− t)u(s, ξ)ds,

(t, ξ) ∈ I × [0, π],

(4.1)

u(t, 0) = u(t, π) = 0, t ∈ [0, b], (4.2)

u(θ, ξ) = φ(θ, ξ), θ ≤ 0, ξ ∈ [0, π]. (4.3)

Where ∂α

∂tα = Dα
t , α ∈ (1, 2). To treat this system in the abstract form (1.1)-(1.2),

we choose the space X = L2([0, π]), B = C0 × Lp(g,X) is the space introduced
in Example 2.14 and A : D(A) ⊆ X → X is the operator defined by Ax = x′′,
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with domain D(A) = {x ∈ X : x′′ ∈ X,x(0) = x(π) = 0}. It is well known
that A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 on X.
Moreover, A has a discrete spectrum with eigenvalues of the form −n2, n ∈ N, and
corresponding normalized eigenfunctions given by zn(ξ) := ( 2

π )1/2 sin(nξ) and the
following properties hold

(a) {zn : n ∈ N} is an orthonormal basis of X.
(b) For x ∈ X,T (t)x =

∑∞
n=1 e

−n2t〈x, zn〉zn.
(c) For α ∈ (0, 1), the fractional power (−A)α : D((−A)α) ⊂ X → X of A

is given by (−A)αx =
∑∞

n=1 n
2α〈x, zn〉zn, where D((−A)α) = {x ∈ X :

(−A)αx ∈ X}.
Hence, A is sectorial of type and the properties (P1) hold. We also consider the
operator B(t) : D(A) ⊆ X → X, t ≥ 0, B(t)x = tδe−γtAx for x ∈ D(A). Moreover,
it is easy to see that conditions (P2)-(P3) in Section 2 are satisfied with b(t) =
tδe−γt and D = C∞0 ([0, π]), where C∞0 ([0, π]) is the space of infinitely differentiable
functions that vanish at ξ = 0 and ξ = π. From the Lemma 3.1 it is easy to see
that condition (H1) is satisfies.

In the sequel, we assume that ϕ(θ)(ξ) = φ(θ, ξ) is a function in B and that the
following conditions are verified.

(i) The functions a0 : R → R are continuous and Lg :=
(∫ 0

−∞
(a0(s))

2

g(s) ds
)1/2

<
∞.

(ii) The functions ρi : [0,∞) → [0,∞), i = 1, 2, are continuous.
(iii The functions b(s, η, ξ), ∂b(s,η,ξ)

∂ξ are measurable, b(s, η, π) = b(s, η, 0) = 0
for all (s, η) and

Lf := max{(
∫ π

0

∫ 0

−∞

∫ π

0

g−1(θ)
( ∂i

∂ξi
b(θ, η, ξ)

)2

dηdθdξ)1/2 : i = 0, 1} <∞.

Defining the operators f, g : I × B → X by

f(ψ)(ξ) =
∫ 0

−∞

∫ π

0

b(s, η, ξ)ψ(s, η)dηds,

g(ψ)(ξ) =
∫ 0

−∞
a0(s)ψ(s, ξ)ds.

we can transform (4.1)-(4.3) into the abstract system (1.1)-(1.2). Moreover, f, g are
bounded linear operators with ‖f(·)‖L(B,X) ≤ Lf and ‖g(·)‖L(B,X) ≤ Lg. Moreover,
a straightforward estimation using (ii) shows that f(I × B) ⊂ D((−A)1/2) and
‖(−A)1/2f‖L(B,X) ≤ Lf . The following result is a direct consequence of Theorem
3.5.

Proposition 4.1. If(
1 +

∫ 0

−b

g(θ) dθ)
)(
Lf

(
‖(−A)−1/2‖+ C1/2

√
b+ C1/2

√
b

∫ b

0

a(s)ds
)

+ Lg

)
< 1,

then there exist a mild solutions of (4.1)–(4.3).
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