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BLOW-UP RESULTS FOR SYSTEMS OF NONLINEAR
KLEIN-GORDON EQUATIONS WITH ARBITRARY POSITIVE

INITIAL ENERGY

SHUN-TANG WU

Abstract. The initial boundary value problem for a system of nonlinear
Klein-Gordon equations in a bounded domain is considered. We prove the ex-
istence of local solutions by using a successive approximation method. Then,
we show blow-up results with arbitrary positive initial energy by a concavity
method. Also estimates for the lifespan of solutions are given.

1. Introduction

In this article we study the existence and blow-up of local solutions for the system
of nonlinear Klein-Gordon equations

(ui)tt −∆ui + m2
i ui + (ui)t = fi(u) in Ω× [0, T ), i = 1, 2, (1.1)

with initial conditions

u(x, 0) = φ(x), ut(x, 0) = ϕ(x), x ∈ Ω, (1.2)

and boundary conditions

u(x, t) = 0, x ∈ ∂Ω× (0, T ), (1.3)

where u = (u1, u2), φ = (φ1, φ2), ϕ = (ϕ1, ϕ2), and Ω ⊂ RN , N ≥ 1, is a bounded
domain with smooth boundary ∂Ω so that Divergence theorem can be applied and
T > 0. Let ∆ =

∑N
j=1

∂2

∂x2
j

be the Laplace operator, mi 6= 0 is a real constant and

fi(u) is a nonlinear function of u, i = 1, 2.
Before stating our results, we first recall the existing results about the initial

boundary value problem for a single wave equation

utt −∆u + a|ut|m−1ut = b|u|p−1u, (1.4)

where a > 0, b > 0, m ≥ 1, and p ≥ 1. There are numerous results about the
global existence, asymptotic behavior and blow-up of solutions for (1.4). Levine
[6] firstly showed that the solutions with negative initial energy blow up in finite
time for equation (1.4) with linear damping (m = 1). Georgiev and Todorova [4]
extended Levine’s result to nonlinear case (m > 1). They showed that solutions
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with negative initial energy continue to exist globally in time if m ≥ p and blow-
up in finite time if p > m and the initial energy is sufficiently negative. Later,
Levine and Serrin [9] and Levine, Park, and Serrin [8] generalized this result to an
abstract setting and to unbounded domains. By combining the arguments in [4]
and [9], Vitillaro [19] extended these results to nonlinear damping (m > 1) and
the solution has positive initial energy. Messaoudi [12] improved the work of [4]
without imposing the condition that energy is sufficiently negative. Similar results
have also been established by Todorova [16, 18] for different Cauchy problems. For
related results on a single wave equation, we refer the reader to [13, 14, 22] and the
references therein.

On the other hand, Levine and Todorova [7] proved the local solution blows
up in finite time for some initial data with arbitrary high initial energy. Then
this result was improved by Todorova and Vitillaro [17]. However, they did not
give a sufficient condition for the initial data such that the corresponding solutions
blow up in finite time with arbitrary positive initial energy. Recently, Wang [20]
discussed the blow-up phenomena for equation (1.4) with a = 0. They obtained a
sufficient condition of the initial data such that the solution of (1.4) blows up in
finite time when the positive initial energy is arbitrarily large.

Now, we return to the initial boundary problem for the system of nonlinear wave
equations as follows

(ui)tt −∆ui + m2
i ui + |(ui)t|pi−1(ui)t = fi(u) in Ω× [0, T ), i = 1, 2,

u(x, 0) = φ(x), ut(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω× (0, T ),

(1.5)

where p1, p2 ≥ 1 and Ω is a bounded domain with smooth boundary. Reed [15]
proposed this interesting problem without imposing damping terms |(ui)t|p−1(ui)t

in (1.5) to describe the interaction of scalar fields u1, u2 of mass m1, m2 respec-
tively. As in the case of a single wave equation, it is worth noting that when
the damping terms |(ui)t|pi−1(ui)t is absent, then the force term fi(u) causes fi-
nite blow-up of solution for (1.5). In this direction, Wang [21] studied (1.5) with
f1(u1, u2) = a1|u2|q2+1|u1|q1−1u1 and f2(u1, u2) = a2|u1|q1+1|u2|q2−1u2 and ob-
tained that the solutions blow up in finite time with arbitrary positive initial energy.
On the other hand, if the source term fi(u) is removed from the equation, then the
damping terms should assure global existence and decay of solutions. However,
when both damping and source terms are present, then the analysis of their inter-
action and their influence on the behavior of solutions becomes more difficult. Agre
and Rammaha [1] considered (1.5) with

f1(u1, u2) = (r + 1)
[
a|u1 + u2|r−1(u1 + u2) + b|u1|

r−3
2 |u2|

r+1
2 u1

]
,

f2(u1, u2) = (r + 1)
[
a|u1 + u2|r−1(u1 + u2) + b|u2|

r−3
2 |u1|

r+1
2 u2

]
,

(1.6)

where r ≥ 3, a > 1 and b > 0. They showed the existence of global solutions if
r ≤ min{p1, p2} and proved the blow-up of solutions if r > min{p1, p2} and initial
energy is negative. Later, Alves et al [2] improved these results and they obtained
several results on the global, uniform decay rates, and blow up of solutions in
finite time when the initial energy is nonnegative by involving the Nehari manifold.
Recently, Li and Tsai [10] considered a class of nonlinear terms which includes (1.6)
in a bounded domain where the global existence and blow-up behavior of solutions
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without imposing damping terms were discussed. However, on considering the blow-
up properties, the initial energy can not be arbitrarily large in that paper. This
motivates us to consider the problem of how to obtain the blow-up of solutions
when the initial energy is arbitrarily large.

Inspired by these previous works [10, 20, 21], in this present paper, we would
like to investigate the local existence and then establish a sufficient condition of the
initial data with arbitrarily high initial energy such that the corresponding local
solution of the system for the nonlinear Klein-Gordon equations (1.1)-(1.3) blows
up in finite time. The method used here are the successive approximation method
and the concavity method. In this way, we can extend the result of [20] to a system
with linear damping terms and the result of [10] without setting any restriction on
upper bound of the initial energy. The paper is organized as follows. In section 2,
we first introduced some notations used throughout this paper and then state the
local existence Theorem 2.4. In section 3, we prove the main result Theorem 3.4
which shows blow-up properties of solutions with highly positive initial energy.

2. Exitance of local solutions

In this section we shall discuss the existence of local solutions for (1.1)-(1.3) by
the method of successive approximations. First we give the notation which will be
used throughout the paper. Let Wm,p(Ω) be the usual Sobolev space. Specially,
Wm,2(Ω) and W 0,p(Ω) will be marked by Hm(Ω) and Lp(Ω), respectively. And we
denote ‖ · ‖p to be Lp-norm for 1 ≤ p ≤ ∞. H1

0 (Ω) is the closure of C∞0 (Ω) with
respect to the norm ‖u‖H1

0
= ‖∇u‖2.

Define

H1 = C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1
0 (Ω)),

H2 = C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1
0 (Ω)), for T > 0.

Now, we make the following assumptions:
(A1) fi : R2 → R is continuously differentiable such that for each u = (u1, u2) ∈

H1
0 (Ω)×H1

0 (Ω), we have uifi ∈ L1(Ω), i = 1, 2 and F (u) ∈ L1(Ω), where

F (u) =
∫ u1

0

f1(s, u2)ds +
∫ u2

0

f2(0, s)ds.

(A2) fi(0) = 0 and for any ρ > 0 there exists a constant k(ρ) > 0 such that

‖fi(u)− fi(v)‖2 ≤ k(ρ)‖u− v‖H1
0×H1

0
, i = 1, 2,

where u, v ∈ H1
0 (Ω)×H1

0 (Ω) with ‖u‖H1
0×H1

0
, ‖v‖H1

0×H1
0
.

(A3)
∂f1

∂u2
=

∂f2

∂u1
.

Note that the function of the form f1(u1, u2) = us−1
1 us

2 + up
1, f2(u1, u2) =

us−1
2 us

1 + uq
2 satisfy the assumptions (A1)-(A3) where 1 < s, p, q ≤ N

N−2 for N ≥ 3
or s, p, q > 1 for N = 1, 2.

Lemma 2.1 (Sobolev-Poincaré [11]). Let 2 ≤ p ≤ 2N
N−2 . then the inequality

‖u‖p ≤ cs‖∇u‖2, for u ∈ H1
0 (Ω),

holds for some positive constant cs.
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Lemma 2.2 ([3]). Let δ ≥ 0, T > 0 and h be a Lipschitizan function over [0, T ).
Assume that h(0) ≥ 0 and h′(t) + δh(t) > 0 for a.e. t ∈ (0, T ). Then h(t) > 0 for
all t ∈ (0, T ).

Before proving the existence theorem for nonlinear equations (1.1)-(1.3), we need
the existence result for a linear wave equation which is given in [5].

Lemma 2.3. Assume that f ∈ W 1,1([0, T ];L2(Ω)) and that u0 ∈ H2(Ω) ∩H1
0 (Ω)

and u1 ∈ H1
0 (Ω), then the linear problem with damping

utt −∆u + ut = f(t, x),

u(0) = u0, ut(0) = u1, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω× (0, T ),

has a unique solution u ∈ H2.

Theorem 2.4. Assume that the assumptions (A1)–(A3) hold and let (φ1, φ2) ∈
H1

0 (Ω)×H1
0 (Ω) and (ϕ1, ϕ2) ∈ L2(Ω)×L2(Ω). Then problem (1.1)–(1.3) admits a

unique solution (u1,u2) in H1×H1.

Proof. Since H2(Ω) ∩ H1
0 (Ω) is dense in H1

0 (Ω) and H1
0 (Ω) is dense in L2(Ω), it

suffices to consider problem (1.1)–(1.3) for φi ∈ H2(Ω)∩H1
0 (Ω) and ϕi ∈ H1

0 (Ω), i =
1, 2. Let {um = (um

1 , um
2 )}m≥1 be a sequence of solutions obtained by considering

the approximation problem

(um+1
i )tt −∆um+1

i + (um+1
i )t = −m2

i u
m
i + fi(um), i = 1, 2,

um+1(x, 0) = φ(x), um+1
t (x, 0) = ϕ(x), x ∈ Ω,

um+1(x, t) = 0, x ∈ ∂Ω× (0, T ),

(2.1)

with the initial function u1(x, 0) = φ(x).
Using Lemma 2.3 and (A1)–(A2), we see that (2.1) has a unique solution um ∈

H2×H2. In the following, we would like to estimate the solution obtained above.
Multiplying by (um+1

i )t on both sides of (2.1) and then integrating it over Ω, we
have ∫

Ω

(um+1
i )t[(um+1

i )tt −∆um+1
i + (um+1

i )t]dx

=
∫

Ω

(um+1
i )t[−m2

i u
m
i + fi(um)]dx.

Using the Divergence theorem and Hölder inequality, we obtain
d

dt
‖Dum+1

i ‖2 ≤ ‖m2
i u

m
i + fi(um)‖2, (2.2)

where D ≡ (∂t,∇x) and ‖Dui‖22 =
∫
Ω
(|(ui)t|2 + |∇ui|2)dx. Integrating (2.2) from

0 to t, we obtain

‖Dum+1
i ‖2(t) ≤ ‖Dum+1

i ‖2(0) +
∫ t

0

‖m2
i u

m
i + fi(um

1 , um
2 )‖2(r)dr. (2.3)

For simplicity, we denote

βi = ‖Dum+1
i ‖(0) = (‖ϕi‖22 + ‖φi‖22)1/2, i = 1, 2,

β = β1 + β2, (2.4)

Gm,i = m2
i ‖um

i ‖2 + ‖fi(um
1 , um

2 )‖2, i = 1, 2, m ≥ 1, (2.5)
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Hk(t) = ‖Duk‖2(t) = (‖Duk
1‖2 + ‖Duk

2‖2)(t), k ≥ 1, (2.6)

where Duk = (Duk
1 , Duk

2). Then using Lemma 2.1 and (A2), we have

Gm,1 + Gm,2 ≤ c‖Dum‖2(t), (2.7)

here c is some positive constant. It follows from (2.3)-(2.5) that

‖Du2
i ‖2(t) ≤ βi +

∫ t

0

m2
i ‖φi‖2 + ‖fi(φ)‖2dt ≤ βi + G1,it. (2.8)

Thus by (2.6) and (2.8), we obtain

H2(t) ≤ β + ct‖Du1‖2(t). (2.9)

Define
K∞,τ (ui) = sup{‖Dui‖2(t) | 0 ≤ t ≤ τ}, (2.10)

and take a constant M > β. Then H1(t) ≤ M , and hence K∞,τ (u1) ≤ M .
Therefore, from (2.9), we see that

H2(t) ≤ β + ctM ≤ M,

provided that τ = (M − β)/(cM). That is, K∞,τ (u2) ≤ M . Suppose that
K∞,τ (um) ≤ M , then, using (2.3), (2.5), (2.7) and (2.10), we obtain

Hm+1(t) ≤ β +
∫ t

0

(Gm,1 + Gm,2)(r)dr

≤ β +
∫ t

0

c‖Dum‖2(r)dr

≤ β + cK∞,τ (um)t ≤ M, 0 ≤ t ≤ τ.

(2.11)

Thus K∞,τ (um+1) ≤ M . Hence, we have

K∞,τ (um) ≤ M, for all m ≥ 1. (2.12)

Below we shall show that {um}m≥1 is a Cauchy sequence in H1 ×H1. Let zm =
um+1 − um. From (2.1), for i = 1, 2, we have

(zm
i )tt −∆zm

i + (zm
i )t = −m2

i z
m−1
i + fi(um)− fi(um−1),

zm(x, 0) = 0, zm
t (x, 0) = 0, x ∈ Ω,

zm(x, t) = 0, x ∈ ∂Ω× (0, T ).

(2.13)

As in the previous arguments, we obtain

‖Dzm‖2(t)

≤ ‖Dzm‖2(0) +
2∑

i=1

∫ t

0

(m2
i ‖zm−1

i ‖2 + ‖fi(um)− fi(um−1)‖2)dr.
(2.14)

From (2.13), we obtain ‖Dzm‖2(0) = 0. Then, by (2.12), Lemma 2.1 and (A2), we
have

‖Dzm‖2(t) ≤ L

∫ t

0

‖Dzm−1‖2(r)dr, 0 ≤ t ≤ τ,

where L is a constant depending on m1, m2 and Sobolev constant. Thus by induc-
tion, we obtain

K∞,τ (zm) ≤ LτK∞,τ (zm−1) ≤ · · · ≤ (Lτ)m−1K∞,τ (z1). (2.15)
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Therefore, for any positive integer p and Lτ ∈ (0, 1), we see that

K∞,τ (um+p − um) ≤ ((Lτ)m+p−2 + · · ·+ (Lτ)m−1)K∞,τ (u2 − u1)

≤ (Lτ)m−1

1− Lτ
K∞,τ (u2 − u1) → 0 as m →∞.

Hence, the Cauchy sequence {um}m≥1 converges in H1×H1 and the limit function
u = limm→∞ um in H1×H1 is a solution defined on [0, τ) for problem (1.1)–(1.3).
Uniqueness. Let u and û be two solutions defined on [0, T ) of problem (1.1)-(1.3).
Set w = u− û. From (1.1), we have

(wi)tt −∆wi + (wi)t = −m2
i wi + fi(u)− fi(û), i = 1, 2

w(x, 0) = 0, wt(x, 0) = 0, x ∈ Ω,

w(x, t) = 0, x ∈ ∂Ω× (0, T ).

Similar to (2.14), we obtain

‖Dw‖22(t) ≤ ‖Dw‖22(0) + c

∫ t

0

‖Dw‖22(r)dr.

The Gronwall’s inequality implies

‖Dw‖22(t) = 0, for 0 ≤ t < T.

Therefore, we have u = û. �

3. Blow-up property

In this section, we shall investigate blow-up phenomena of solutions of system
(1.1)-(1.3) with m1 = m2 = 1. For this purpose, we further make the following
assumption:

(A4) there exists a positive constant δ > 0 such that

u1f1(u) + u2f2(u) ≥ (2 + 4δ)F (u), for all u1, u2 ∈ R,

where F (u) is given in (A1).
Definition. A solution (u1(t), u2(t)) of (1.1)-(1.3) is said to blow up if there exists
a finite time T such that

lim
t→T−

(‖u1(t)‖22 + ‖u2(t)‖22) = ∞. (3.1)

Let (u1(t), u2(t)) be the solution of (1.1)-(1.3), we define the energy function

E(t) =
1
2

2∑
i=1

[‖(ui)t‖22 + ‖∇ui‖22 + ‖ui‖22]−
∫

Ω

F (u)dx, t ≥ 0 (3.2)

and

I(u(t)) ≡ I(t) =
2∑

i=1

[‖∇ui‖22 + ‖ui‖22]−
∫

Ω

2∑
i=1

uifi(u)dx. (3.3)

Lemma 3.1. Let u be a solution of (1.1)-(1.3). Then E(t) is a nonincreasing
function and

E(t) = E(0)−
∫ t

0

2∑
i=1

‖(ui)t‖22dt. (3.4)
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Proof. By differentiating (3.2) and using (1.1)-(1.3), (A1) and (A3), we obtain

dE(t)
dt

= −
2∑

i=1

‖(ui)t‖22.

Thus, the result of Lemma 3.1 follows. �

Lemma 3.2. Assume (A4) and that (φ1, ϕ1), (φ2, ϕ2) ∈ H1
0 (Ω) × L2(Ω) satisfy

E(0) > 0, I(0) < 0,

‖φ1‖22 + ‖φ2‖22 >
1 + 2δ

δ
E(0), (3.5)∫

Ω

(φ1ϕ1 + φ2ϕ2)dx > 0. (3.6)

Then

‖u1(t)‖22 + ‖u2(t)‖22 >
1 + 2δ

δ
E(0) and I(t) < 0,

for all t ∈ [0, T ).

Proof. First, we prove that I(t) < 0, for all t ∈ [0, T ). Suppose not, then there
exists T ∗ > 0 such that T ∗ = min{t ∈ [0, T ); I(t) = 0}. We define

G(t) =
∫

Ω

(u2
1(x, t) + u2

2(x, t))dx.

Using (1.1), we have

G′(t) = 2
∫

Ω

2∑
i=1

ui(ui)tdx,

G′′(t) = 2
∫

Ω

2∑
i=1

((ui)2t − |∇ui|2 − u2
i + uifi(u))dx− 2

∫
Ω

2∑
i=1

ui(ui)tdx.

Then, from (3.3) it follows that

G′′(t) + G′(t) = 2[
2∑

i=1

∫
Ω

(ui)2t dx− I(t)] > 0, (3.7)

for all t ∈ [0, T ∗). By Lemma 2.2 and (3.6), we obtain G′(t) > 0, for all t ∈ [0, T ∗).
This implies G(t) is strictly increasing on [0, T ∗). Thus, from (3.5), we have

G(t) > G(0) >
1 + 2δ

δ
E(0),

for all t ∈ (0, T ∗). From the continuity of u(t) at t = T ∗, we see that

G(T ∗) =
2∑

i=1

‖ui(T ∗)‖22 >
1 + 2δ

δ
E(0). (3.8)

On the other hand, from (3.2) and Lemma 3.1, we have
2∑

i=1

(
‖∇ui(T ∗)‖22 + ‖ui(T ∗)‖22

)
− 2

∫
Ω

F (u1(T ∗), u2(T ∗))dx

≤ 2E(T ∗) ≤ 2E(0).

(3.9)
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Noting that from the assumption I(T ∗) = 0 and (A4) give us
2∑

i=1

(
‖∇ui(T ∗)‖22 + ‖ui(T ∗)‖22

)
≥ (2 + 4δ)

∫
Ω

F (u1(T ∗), u2(T ∗))dx, (3.10)

which together with (3.9) implies
2∑

i=1

(
‖∇ui(T ∗)‖22 + ‖ui(T ∗)‖22

)
≤ 1 + 2δ

δ
E(0).

It is a contradiction to (3.8). Hence, I(t) < 0, for all t ∈ [0, T ). Therefore, following
the same arguments as above, we deduce that G(t) is strictly increasing on [0, T )
and

‖u1(t)‖22 + ‖u2(t)‖22 >
1 + 2δ

δ
E(0),

for all t ∈ [0, T ). �

Now, let

a(t) =
2∑

i=1

( ∫
Ω

u2
i dx +

∫ t

0

‖ui‖22dt
)
, t ≥ 0. (3.11)

We need the following lemma to derive our result.

Lemma 3.3. . Assume that (A1), (A3) (A4) hold. Then

a′′(t) ≥ 4(δ + 1)
∫

Ω

2∑
i=1

(ui)2t dx + (4 + 8δ)
∫ t

0

2∑
i=1

‖(ui)t‖22dt. (3.12)

Proof. Form (3.11) and using (1.1), we have

a′(t) =
2∑

i=1

( ∫
Ω

2ui(ui)tdx + ‖ui‖22
)
, (3.13)

and

a′′(t) = 2
2∑

i=1

( ∫
Ω

(ui)2t dx− ‖∇ui‖22 − ‖ui‖22
)

+ 2
∫

Ω

2∑
i=1

uifi(u)dx. (3.14)

Employing (3.2) , (3.4) and (A4), we obtain

a′′(t) = 4
∫

Ω

2∑
i=1

(ui)2t dx− 4E(t) + 2
∫

Ω

(u1f1(u) + u2f2(u)− 2F (u))dx

≥ 4
∫

Ω

2∑
i=1

(ui)2t dx− 4E(0) + 4
∫ t

0

2∑
i=1

‖(ui)t‖22dt + 8δ

∫
Ω

F (u)dx.

Then, using (3.2) and (3.4) again, we see that

a′′(t) ≥ 4(1 + δ)
∫

Ω

2∑
i=1

(ui)2t dx + 4δ

2∑
i=1

‖∇ui‖22 + 4δ(
2∑

i=1

‖ui‖22 −
1 + 2δ

δ
E(0))

+ 4(1 + 2δ)
∫ t

0

2∑
i=1

‖(ui)t‖22dt.

Therefore, from Lemma 3.2, we obtain (3.12). �
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Now, we are in a position to state and prove our main result.

Theorem 3.4. Assume that (A1)-(A4) hold. Also assume that (φ1, ϕ1), (φ2, ϕ2) ∈
H1

0 (Ω)×L2(Ω) satisfy the assumptions of Lemma 3.2. Then the local solution (u1(t),
u2(t)) of (1.1)-(1.3) blows up at finite time T ∗ in the sense of (3.1). Moreover, if

2δ

∫
Ω

(φ1ϕ1 + φ2ϕ2)dx > ‖φ1‖22 + ‖φ2‖22,

then the finite time T ∗ is estimated by

T ∗ ≤ ‖φ1‖22 + ‖φ2‖22
2δ

∫
Ω
(φ1ϕ1 + φ2ϕ2)dx− (‖φ1‖22 + ‖φ2‖22)

. (3.15)

Proof. We first note that

2
∫ t

0

∫
Ω

ui(ui)t dx dt = ‖ui‖22 − ‖φi‖22. (3.16)

By Hölder inequality and Young’s inequality,from (3.16) we have

‖ui‖22 ≤ ‖φi‖22 +
∫ t

0

‖ui‖22dt +
∫ t

0

‖(ui)t‖22dt, i = 1, 2. (3.17)

Next, we will find the estimate for the life span of a(t). Let

J(t) =
[
a(t) + (T1 − t)

2∑
i=1

‖φi‖22
]−δ

, for t ∈ [0, T1], (3.18)

where T1 > 0 is a certain constant which will be specified later. Then we have

J ′(t) = −δJ(t)1+
1
δ (a′(t)−

2∑
i=1

‖φi‖22), (3.19)

J ′′(t) = −δJ(t)1+
2
δ V (t), (3.20)

where

V (t) = a′′(t)
[
a(t) + (T1 − t)

2∑
i=1

‖φi‖22
]
− (1 + δ)

(
a′(t)−

2∑
i=1

‖φi‖22
)2

. (3.21)

For simplicity of calculation, for i = 1, 2, we denote

Pi =
∫

Ω

u2
i dx, Qi =

∫ t

0

‖ui‖22dt, Ri =
∫

Ω

(ui)2t dx, Si =
∫ t

0

‖(ui)t‖22dt.

From (3.13) (3.16), and Hölder inequality, we obtain

a′(t) =
2∑

i=1

( ∫
Ω

2ui(ui)tdx + ‖φi‖22
)

+ 2
2∑

i=1

∫ t

0

∫
Ω

ui(ui)t dx dt

≤ 2(
√

R1P1 +
√

Q1S1 +
√

R2P2 +
√

Q2S2) +
2∑

i=1

‖φi‖22.

(3.22)

By (3.12), we have

a′′(t) ≥ 4(1 + δ)(R1 + S1 + R2 + S2). (3.23)

Thus, from (3.22), (3.23), (3.21) and (3.18), we obtain

V (t) ≥ [4(1 + δ)(R1 + S1 + R2 + S2)]J(t)−1/δ
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− 4(1 + δ)(
√

R1P1 +
√

Q1S1 +
√

R2P2 +
√

Q2S2)2.

Further, by (3.18)and(3.11), we deduce that

V (t) ≥ 4(1 + δ)
[
(R1 + S1 + R2 + S2)(T1 − t)

2∑
i=1

‖φi‖22 + Θ(t)
]
,

where

Θ(t) = (R1 + S1 + R2 + S2)(P1 + Q1 + P2 + Q2)

− (
√

R1P1 +
√

Q1S1 +
√

R2P2 +
√

Q2S2)2.

By Schwartz inequality, Θ(t) is nonnegative. Hence, we have

V (t) ≥ 0, for t ≥ 0. (3.24)

Therefore by (3.20) and (3.24), we obtain J ′′(t) ≤ 0 for t ≥ 0, and then

J(t) ≤ J(0) + J ′(0)t, for t ≥ 0. (3.25)

Also, we note that
J(0) > 0 and J ′(0) < 0

due to (3.18), (3.19) and (3.6). Hence, if we choose T1 ≥ −J(0)/J ′(0), from (3.25),
there exists a finite time T ∗ ≤ T1 such that

lim
t→T∗−

J(t) = 0.

Then, it follows from the definition on J(t) by (3.18) that

lim
t→T∗−

2∑
i=1

(
‖ui‖22 +

∫ t

0

‖ui(s)‖22ds
)

= ∞,

which implies that

lim
t→T∗−

2∑
i=1

‖ui‖22 = ∞.

Moreover, if

2δ

∫
Ω

(φ1ϕ1 + φ2ϕ2)dx > ‖φ1‖22 + ‖φ2‖22,

the upper bound T ∗ can be estimated as

T ∗ ≤ ‖φ1‖22 + ‖φ2‖22
2δ

∫
Ω
(φ1ϕ1 + φ2ϕ2)dx− (‖φ1‖22 + ‖φ2‖22)

.

This completes the proof. �

Example 3.5. Consider the system (1.1)-(1.3) with

f1(u1, u2) = u2
1u2, f2(u1, u2) = u1u

2
2;

that is, we consider the problem

(u1)tt −∆u1 + u1 + (u1)t = u2
1u2 in Ω× [0, T ),

(u2)tt −∆u2 + u2 + (u2)t = u2
2u1 in Ω× [0, T ),

u1(x, 0) = φ1, u2(x, 0) = φ2, x ∈ Ω,

(u1)t(x, 0) = ϕ1, (u2)t(x, 0) = ϕ2, x ∈ Ω,

u1(x, t) = 0, u2(x, t) = 0, x ∈ ∂Ω× (0, T ).

(3.26)
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By (3.2) and (3.3), we have

E(t) =
1
2

2∑
i=1

[
‖(ui)t‖22 + ‖∇ui‖22 + ‖ui‖22

]
− 1

2
‖u2

1u
2
2‖22,

I(t) =
2∑

i=1

[
‖∇ui‖22 + ‖ui‖22

]
− 2

∫
Ω

u2
1u

2
2dx,

and assumption (A4) is satisfied with δ = 1/2. To apply Theorem 3.4, we need to
check that the initial data set that satisfies conditions E(0) > 0, I(0) < 0 and

‖φ1‖22 + ‖φ2‖22 > 4E(0), (3.27)

by (3.5) is not empty. Setting

α = ‖φ1‖22 + ‖φ2‖22, β = ‖∇φ1‖22 + ‖∇φ2‖22,
γ = ‖φ1φ2‖22, λ = ‖ϕ1‖22 + ‖ϕ2‖22.

(3.28)

Then the above conditions E(0) > 0, I(0) < 0 and (3.27) read as follows

E(0) =
1
2
(α + β + λ)− 1

2
γ > 0, (3.29)

I(0) = α + β − 2γ < 0, (3.30)

α > 2(α + β + λ)− 2γ. (3.31)

Having (3.30) in mind, we choose φ1 and φ2 such that

α + β = 2γ − εγ, (3.32)

with 0 < ε < 2. Thus (3.30) is satisfied. At this moment, we consider two cases:
(i) 0 < ε ≤ 1 and (ii) 1 < ε < 2.

Case (i) 0 < ε ≤ 1. In this case, we further require φ1 and φ2 to satisfy
α > −2(ε− 1)γ, and then, select λ such that

0 < λ <
α

2
+ (ε− 1)γ. (3.33)

Substituting (3.32) into (3.29) and 0 < ε ≤ 1, we see that

2E(0) = α + β + λ− γ = λ− (ε− 1)γ > 0,

this implies that (3.29) is achieved. Since λ < α
2 + (ε − 1)γ by (3.33), we deduce

that
α > 2λ− 2(ε− 1)γ = 2(α + β + λ)− 2γ,

where the last equality is derived due to (3.32). Thus (3.31) is obtained.
Case (ii) 1 < ε < 2. In this case, we select λ such that

(ε− 1)γ < λ <
α

2
+ (ε− 1)γ. (3.34)

Similarly as in part (i), we see that the conditions (3.29)-(3.31) are satisfied. There-
fore, from above arguments, the set of all initial data which satisfy the conditions
E(0) > 0, I(0) < 0 and (3.27) is not empty.

Furthermore, although ‖φ1‖22 + ‖φ2‖22 > 4E(0) gives an upper bound of the
initial energy E(0). E(0) can be chosen to be arbitrary positive provided that
α = ‖φ1‖22 + ‖φ2‖22 is large enough and β, γ can be also larger accordingly to make
sure (3.29)-(3.31) is still satisfied.
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Next, we give an example to illustrate the above discussion is workable. Consider
the problem (3.26) with Ω = (0, 4),

φ1(x) =


x, 0 < x < 1,

x2, 1 ≤ x < 3,

−9x + 36, 3 ≤ x < 4;
φ2(x) =


3x, 0 < x < 1,

3, 1 ≤ x < 3,

−3x + 12, 3 ≤ x < 4.

Then, from (3.28) and (3.32), we have the following data

α = ‖φ1‖22 + ‖φ2‖22 = 99.73, β = ‖∇φ1‖22 + ‖∇φ2‖22 = 134.67

γ = ‖φ1φ2‖22 = 583.2, ε = 1.598.

Now, based on (3.34), choose λ such that

348.8 = (ε− 1)γ < λ = ‖ϕ1‖22 + ‖ϕ2‖22 <
α

2
+ (ε− 1)γ = 398.65.

Then

E(0) =
1
2
(α + β + λ)− 1

2
γ =

1
2
(λ− 348.8) > 0,

I(0) = α + β − 2γ = −932 < 0,

2(α + β + λ)− 2γ = 2(λ− 348.8) < α.

Thus Theorem 3.4 is applicable.

Example 3.6. Consider the system (1.1)-(1.3) in R3 with

f1(u1, u2) = 4λ(u1 + αu2)3 + 2βu1u
2
2, f2(u1, u2) = 4αλ(u1 + αu2)3 + 2βu2

1u2.

Assume that λ > 0, β > 0 and α is any real number. Now we have

F (u1, u2) = λ(u1 + αu2)4 + 2βu2
1u

2
2.

We see that (A4) is satisfied if 0 < δ ≤ 1/2. Thus Theorem 3.4 is applicable.

Acknowledgements. The author would like thank the anonymous referees for
their comments. He is also grateful to Professor Liu Wenjun for his comments on
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