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EXISTENCE AND NONEXISTENCE OF PERIODIC SOLUTIONS
OF N-VECTOR DIFFERENTIAL EQUATIONS OF ORDERS SIX

AND SEVEN

VICTOR F. PAYNE, HAROON OLADIPO TEJUMOLA

Abstract. In this article, we extend our earlier results and establish new
ones on the existence and non-existence of periodic solutions for n-vector non-
dissipative, nonlinear ordinary differential equations. Our results involve both
the homogeneous and non-homogeneous cases. The setting for non-existence
results of periodic solutions involves a suitably defined scalar function endowed
with appropriate properties relative to each equation. But the framework
for proving existence results is via the standard Leray-Schauder fixed-point
technique whose central theme is the verification of a-priori bounded periodic
solutions for a parameter-dependent system of equations.

1. Introduction

The article by Ezeilo [2] on sixth-order equations marks the beginning of system-
atic study of the problem of existence, and nonexistence in the homogeneous case,
of periodic solutions of non-dissipative, nonlinear ordinary differential equations of
orders six and above. Bereketoglu [1] extended Ezeilo’s work to equations of order
seven, while Tejumola [3] widened the scope of these earlier investigations to more
general class of equations and to situations, which hitherto were not considered. An
n-vector analogue of the result of Bereketoglu [1, Theorem 1] was recently obtained
by Tunç [4, 5, 6] in the seventh order homogeneous case

x(6) + a1x
(5) + a2x

(4) + a3x
(3) + f(x′)x′′ + g(x)x′ + h(x)

= p(t, x, x′, x′′, x′′′, x(4), x(5)

and

x(7) + a1x
(6) + a2x

(5) + a3x
(4) + a4x

′′′ + f(x′)x′′ + g(x)x′ + h(x)

= p(t, x, x′, x′′, x′′′, x(4), x(5), x(6)),

the problem of existence in the non-homogeneous case was however not considered.
Our present investigation arose from our desire to provide results in the nonhomo-
geneous case and, more importantly, to extend our earlier results [3] to n-vector
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equations. The results we have been able to obtain, which include [1] and [4] as
special cases, are stated in §2 and §3.

To end this section, we introduce some notation. Rn denotes the usual n-
dimensional real Euclidean space with inner product 〈X,Y 〉 =

∑n
i=1 xiyi and norm

‖X‖ =
( ∑n

i=1 x
2
i

)1/2, for X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) ∈ Rn. For a
constant n× n matrix A, we define sign of A, sgnA, by sgnA = 1 or −1 according
as A is positive definite or negative definite and we write γA = sgnA. A is definite
if A is positive or negative definite. For any function h : Rn → Rn, J(h(X)) denotes
the Jacobian of h, if it exists.

2. Statement of Results

We start with sixth order nonlinear differential equations of the form

X(6) +A1X
(5) +A2X

(4) + f3(Ẋ, Ẍ)
...
X + f4(Ẋ)Ẍ + f5(Ẋ, Ẍ)Ẋ + f6(X)

= P1(t,X, Ẋ, . . . ,X(5))
(2.1)

where A1, A2 are constant n × n symmetric matrices, f3, f5 are symmetric n × n
continuous matrices, f4 is an n × n continuous matrix, f6 : Rn → Rn, P1 : R ×
Rn × · · · × Rn → Rn are continuous functions and P1(t + ω,X, Ẋ, . . . ,X(5)) =
P1(t,X, Ẋ, . . . ,X(5)) for some ω > 0. It will be assumed further that the Jacobians
J(f4(Ẋ)Ẋ), J(f6(X)) exist and are continuous.

Theorem 2.1. Let A1 be definite and let

f6(0) = 0, f6(X) 6= 0 for X 6= 0. (2.2)

Suppose that (γA3f3) is negative semi-definite and that (γA1f5) is positive definite.
Suppose further that

inf
X2,X3

〈(γA1f5)X2, X2〉
‖X2‖

>
1

2a1

〈f2
3X2, .X3〉
‖X2‖2

, X2 6= 0, (2.3)

where a1 > 0 is a constant such that

〈(γA1A1)Y, Y 〉 ≥ a1‖Y ‖2 for all Y ∈ Rn. (2.4)

Then (2.1) with P1 ≡ 0 has no nontrivial periodic solution of any period.

Theorem 2.2. Let all the conditions of Theorem 2.1 hold, except for (2.2) and
(2.3). Let

f6(X) sgnX → +∞(−∞) as ‖X‖ → ∞. (2.5)

Suppose further that there exist constants β3 > 0, B1 > 0, B2 ≥ 0, with B2

sufficiently small, such that

inf
X2,X3

〈(γA1f5)X2, X2〉
‖X2‖2

>
1

2a1
β2

3 , 2 6= 0, (2.6)

‖P1(t,X1, X2, . . . , X6)‖ ≤ B1 +B2(‖X2‖+ ‖X3‖) (2.7)

for all t ∈ R and X1, X2, . . . , X6 ∈ Rn, where β3 > 0 is a constant such that
‖f3(X2, X3)‖ ≤ β3. Then (2.1) has at least one periodic solution of period ω.

Note the absence of any restrictions on A2 and f6 in Theorem 2.1, similarly in
Theorem 2.2 except for the additional condition (2.5) required to ensure uniform
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boundedness of X1. Our results, which place restrictions on even-subscript terms
(that is, f6), concern a slightly different class of sixth order equations of the form

X(6) +A1X
(5) +A2X

(4) +A3

...
X + g4(Ẋ, Ẍ)Ẍ + g5(X)Ẋ + g6(X, Ẋ, Ẍ)

= P2(t,X, Ẍ, . . . ,X(5)).
(2.8)

Here, A1, A2, A3 are constant n×n symmetric matrices, g4, g5 are symmetric n×n
continuous matrices, J(g5(X)) exists and is continuous, g6 and P2 are continuous
n-vector functions of their respective arguments and P2(t + ω,X1, X2, . . . , X6) =
P2(t,X1, X2, . . . , X6) for some ω > 0. The results are as follows.

Theorem 2.3. Let A2 be negative definite and let

g6(0, X2, X3) = 0 and g6(X1, X2, X3) 6= 0 if X1 6= 0.

Suppose that

sup
X1,X2,X3

〈g6(X1, X2, X3), X1〉
‖X1‖2

<
1

4a2

〈g2
4(X2.X3)X1, X1〉

‖X1‖2
, X1 6= 0 (2.9)

where a2 < 0 is a constant such that

〈A2Y, Y 〉 < a2〈Y, Y 〉 for all Y ∈ Rn. (2.10)

Then (2.8) with P2 ≡ 0 has no nontrivial periodic solution of any period.

Theorem 2.4. Let A2 be negative definite so that (2.10) holds, and let β4 > 0 be
a constant such that

β4 = inf ‖g4(X4, X3)‖. (2.11)
Suppose that

sup
X1,X2,X3

〈g6(X1, X2, X3), X1〉
‖X1‖2

<
1

4a2
β2

4 , X1 6= 0, (2.12)

‖P2(t,X1, X2, . . . , X6‖ ≤ B∗1 +B∗2(‖X1‖+ ‖X2‖+ ‖X3‖) (2.13)

where B∗1 > 0, B∗2 ≥ 0 are constants, with B∗2 sufficiently small. Then (2.8) has at
least one ω-periodic solution.

Theorems 2.1–2.4 are n-dimensional analogue of the results in [3, §2]. Note also
that Theorem 2.3 holds true (as in [3, Theorem 3]) with g4 and g6 depending also
on

...
X,X(4) and X(5).

3. Further Results

We now state some parallel results in the seventh order case. The equations are
of the form

X(7) +
4∑

k=1

AkX
(7−k) + ϕ5(Ẋ, Ẍ)Ẍ + ϕ6(X)Ẋ + ϕ7(X, Ẋ, Ẍ)

= Q1(t,X, Ẋ, . . . ,X(6))

(3.1)

X(7) +
3∑

k=1

AkX
(7−k) + ψ4(Ẋ, Ẍ,

...
X)

...
X + ψ5(Ẋ)Ẍ + ψ6(Ẋ, Ẍ,

...
X) + ψ7(X)

= Q2(t,X, Ẋ, . . . ,X(6))

(3.2)
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where Ai, i = 1, 2, 3, 4 are constant n×n symmetric matrices, ϕ5, ϕ6, ψ4 and ψ5 are
symmetric n × n continuous matrices, ϕ7, ψ7, Q1 and Q2 are continuous n-vector
functions of their respective arguments,

Qi(t+ ω,X1, X2, . . . , X7) = Qi(t,X1, X2, . . . , X7),

i = 1, 2, for some ω > 0 and J(ϕ6(X)), J(ψ5(Ẋ)Ẍ) exist and are continuous.
Our first result concerns equation (3.1) with restrictions on terms with odd

subscripts.

Theorem 3.1. Let A1, A3 be definite matrices and let

γA1 , γA3 = −1. (3.3)

Suppose that ϕ7(0, X2, X3) = 0, ϕ7(X1, X2, X3) 6= 0 (X1 6= 0), and that

inf
X1,X2,X3

〈γA3ϕ7(X1, X2, X3), X1〉
‖X1‖2

>
1

4a3

〈ϕ5(X2, X3)X1, X1〉
‖X1‖2

, X1 6= 0 (3.4)

where a3 > 0 is a constant such that

〈(γA3A3)Y, Y 〉 ≥ a3〈Y, Y 〉 for all Y ∈ Rn. (3.5)

Then (3.1) with Q1 ≡ 0 has no nontrivial periodic solution of any period.

Theorem 3.1 extends the result in [4], and is an n-dimensional analogue of the
nonexistence result [3, Theorem 2].

Theorem 3.2. Let A1, A3 be definite matrices such that (3.3) holds. Let β5 > 0
be a constant such that sup ‖ϕ5(X2, X3)‖ ≤ β5. Suppose that

inf
X1,X2,X3

〈γA3ϕ7(X1, X2, X3), X1〉
‖X1‖2

>
1

4a3
β2

5 , X1 6= 0, (3.6)

‖Q1(t,X1, X2, . . . , X7‖ ≤ C1 + C2(‖X1‖+ ‖X2‖+ ‖X3‖) (3.7)

where a3 > 0 is a constant satisfying (3.5) and C1 > 0, C2 ≥ 0 are constants, with
C2 sufficiently small. Then (3.1) has at least one periodic solution with period ω.

Our results in the other direction (that is, involving even subscripts) concern
equation (3.2), and are as follows.

Theorem 3.3. Let A2 be negative definite and let

ψ7(0) = 0, ψ7(X1) 6= 0 if X1 6= 0, ψ6(0, X3, X4) = 0. (3.8)

Suppose that

sup
X2,X3,X4

〈ψ6(X2, X3, X4), X2〉
‖X2‖2

<
1

4a2

〈ψ2
4(X2, X3, X4)X2, X2〉

‖X2‖2
, X2 6= 0, (3.9)

where a2 < 0 is a constant satisfying (2.10). Then (3.2), with Q2 ≡ 0, has no
nontrivial periodic solution of any period.

Theorem 3.4. Let A2 be negative definite so that (2.10) holds and let β∗4 > 0 be a
constant such that inf ‖ψ4(X2, X3, X4)‖ ≤ β∗4 . Suppose that

sup
X2,X3,X4

〈ψ6(X2, X3, X4), X2〉
‖X2‖2

<
1

4a2
β∗24 , X2 6= 0, (3.10)

ψ7(X) sgnX → +∞(−∞) as ‖X‖ → ∞
‖Q2(t,X1, X2, . . . , X7)‖ ≤ C∗1 + C∗2 (‖X2‖+ ‖X3‖+ ‖X4‖)

(3.11)
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where C∗1 > 0, C∗2 ≥ 0 are constants, with C∗2 sufficiently small. Then (3.2) has at
least one periodic solution of period ω.

Theorems 3.2, 3.3, 3.4 are n-dimensional analogue of [3, Theorems 3, 6, 7].
The procedure for the proof the theorems is as in [1, 2, 3]. For nonexistence of

periodic solutions, a suitably defined scalar function with appropriate properties
relative to each equation is required; while for the existence of periodic solutions,
the setting for each proof is the now standard Leray-Schauder fixed-point technique,
the central problem of which is the verification of an a-priori bound for all possible
ω-periodic solutions of a suitably defined parameter-dependent system of equations.
We shall outline the salient points in the proof of each theorem in sections 4 and 5.

4. Proofs of Theorems 2.1, 2.2, 2.3, 2.4

Consider, instead of equation (2.1) with P1 ≡ 0, the equivalent system

Ẋi = Xi+1, i = 1, 2, 3, 4, 5, X1 ≡ X,

Ẋ6 = −A1X6 −A2X5 − f3(X2, X3)X4 − f4(X2)X3 − f5(X2, X3)X2 − f6(X1),
(4.1)

together with the scalar function W = W (X1, X2, . . . , X6) defined by

W = γA1V, V = V0 + V1, (4.2)

where

V0 = −
∫ 1

0

〈σf4(σX2)X2, X2〉dσ −
∫ 1

0

〈f6(σX1), X1〉dσ, (4.3)

V1 = −〈X2, X6 +A1X5 +A2X4〉+ 〈X3, X5 +A1X4〉+
1
2
〈A2X3, X3〉 −

1
2
〈X4, X4〉.

(4.4)

Let (X1, X2, . . . , X6) ≡ (X1(t), X2(t), . . . , X6(t)) be an arbitrary nontrivial periodic
solution of (4.1) of period α say. Then since

−V̇0 = 〈f4(X2)X2, X3〉+ 〈f6(X1), X2〉,

as can be verified as in [4, §2], we have from (4.2), (4.3), (4.4) and (4.1) that

V̇ = 〈A1X4, X4〉+ 〈f5X2, X2〉+ 〈f3X2, X4〉

Thus, by (2.4),

Ẇ = 〈(γA1A1)X4, X4〉+ 〈(γA1f5)X2, X2〉+ 〈(γA1f3)X2, X4〉

≥ 1
2
a1〈X4, X4〉+

1
2
a1‖X4 +

1
a1

(γA1f3)X2‖2 + 〈(γA1f5)X2, X2〉

− 1
2a1

〈f2
3X2, X2〉

≥ 1
2
a1〈X4, X4〉+ 〈(γA1f5)X2, X2〉 −

1
2
a1〈f2

3X2, X2〉.

(4.5)

The hypothesis (2.3) now implies that Ẇ ≥ 0, so that W is monotone increasing.
By (4.5) and the periodicity of W (t), it will follow, as in [1, §3], that X1 = X2 =
X3 = X4 = X5 = X6 = 0.



6 V. F. PAYNE, H. O. TEJUMOLA EJDE-2012/97

Turning now to Theorem 2.2, consider the parameter λ-dependent system

Ẋi = Xi+1, i = 1, 2, . . . , 5

Ẋ6 = −A1X6 −A2X5 − λf3(X2, X3)X4 − λf4(X2)X3 − (1− λ)a5γA1X2

− λf5(X2, X3)X2 − (1− λ)a6X1 − λf6(X1) + λP1(t,X1, X2, . . . , X6),
(4.6)

where 0 ≤ λ ≤ 1, a6 is a constant chosen as positive or negative according as
f6(X) sgnX → +∞ or −∞ as ‖X‖ → ∞, and a5 is a constant chosen, in view
(2.6), such that

〈(γA1f5)X2, X2〉
‖X‖2

≥ a5 >
1

2a1
β2

3 . (4.7)

Clearly the system (4.6) with λ = 0, or equivalently, the equation

X(6) +A1X
(5) +A2X

(4) + (a5γA1)Ẋ + a6X = 0.

has no nontrivial periodic solution of any period. Therefore, to prove the theorem,
it suffices (by the Lerray-Schauder technique [1]) here to establish an a-priori bound

max
0≤t≤ω

(‖X1(t)‖+ ‖X2(t)‖+ · · ·+ ‖X6(t)‖) ≤ D (4.8)

for all possible ω-periodic solutions (X1(t), X2(t), . . . , X6(t)) of (4.6) with D > 0 a
finite constant independent of λ and of solutions. Indeed, in view of the remark in
[4, §4] and the form of system (4.6), (4.8) will follow once an estimate of the form

max
0≤t≤ω

(‖X1(t)‖+ ‖X2(t)‖+ ‖X3(t)‖+ ‖X4(t)‖) ≤ D.

is obtained, with D > 0 as in (4.8).
To this end, consider the function Wλ = Wλ(X1, X2, . . . , X6) defined by

Wλ = γA1Vλ, Vλ = λV0 + V1 (4.9)

with V0, V1 given by (4.3) and (4.4). Let (X1, X2, . . . , X6) be an arbitrary ω-periodic
solution of (4.6). Then on differentiating Wλ and using (4.9), (4.3) and (4.4) we
have that

Ẇλ = 〈(γA1A1)X4, X4〉+ 〈(1− λ)a5X2 + λ(γA1f5)X2, X2〉
+ λ〈(γA1f3)X4, X2〉 − λ〈P1, X2〉,

so that by (2.4), (2.7) and (4.7)

Ẇλ ≥
1
2
a1〈X4, X4〉+ a4〈X2, X2〉+

1
2
a1‖X4 +

1
a1

(γA1f3)X2‖2

− 1
2a1

〈f2
3X2, X2〉 −

3
2
B2(‖X2‖2 + ‖X3‖2)−B2‖X2‖

≥ 1
2
a1〈X4, X4〉+ (a5 −

1
2a1

β2
3)〈X2, X2〉 −B1‖X2‖

− 3
2
B2(‖X2‖2 + ‖X3‖2)

≥ D1(‖X2‖2 + ‖X4‖2) + (D1‖X2‖2 −B1‖X2‖) + [D1‖X4‖2

− 3
2
(‖X2‖2 + ‖X4‖2)]

(4.10)
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where 2D1 = min[ 12a1, (a5 − 1
2a1

β2
3)]. But∫ ω

0

‖X1+i‖2dt ≤ ω2

4π2

∫ ω

0

‖X2+i‖2dt, i = 1, 2, (4.11)

for any ω-periodic solution (X1, X2, . . . , X6) of (4.6). Thus, on integrating (4.10)
and using the ω-periodicity of Wλ and (4.11), it will follow that

0 ≥ D1

∫ ω

0

(‖X2‖2 + ‖X4‖)2)dt−D2ω

where D2 > 0 is a constant chosen so that D1‖X2‖2 − B1‖X2‖ ≥ −D2, and B2 is
fixed such that

B2 ≤
2
3

[ ω2

4π2

(
1 +

ω2

4π2

)]−1

D1.

Hence ∫ ω

0

‖X2‖2dt ≤ D−1
1 D2ω,

∫ ω

0

‖X4‖2dt ≤ D−1
1 D2ω, (4.12)

and by periodicity of the solution, ‖X2(t)‖ ≤ D3, ‖X3(t)‖ ≤ D3 for some constant
D3 > 0. Multiplying (4.6) by sgnX1, and using the continuity of f3, f4, f5 and
(2.7), it can be readily shown, in view of (2.5), that ‖X1(t0)‖ ≤ D4, t0 ∈ [0, ω], and
hence that ‖X1(t)‖ ≤ D5 for some constants D4 > 0. The estimate for ‖X4(t)‖ can
be obtained as in [2] and the desired estimate will follow.

We turn next to the proof of Theorems 2.3 and 2.4. Consider equation (2.8),
with P2 ≡ 0, in the equivalent system form

Ẋi = Xi+1, i = 1, 2, . . . , 5

Ẋ6 = A1X6 −A2X5 −A3X4 − g4(X2, X3)X3 − g5(X1)X2 − g6(X1, X2, X3),
(4.13)

together with the scalar function W = W (X1, X2, . . . , X6) defined by W0 + W1,
where

W0 =
∫ 1

0

〈σg5(σX1)X1, X1〉dσ, (4.14)

W1 = 〈X1, X6 +A1X5 +A2X4 +A3X3〉 − 〈X2, X5 +A1X4 +A2X3〉

+ 〈X3, X4〉+
1
2
〈A1X3, X3〉 −

1
2
〈A3X2, X2〉.

(4.15)

For any nontrivial periodic solution (X1, X2, . . . , X6) of (4.13) of period α say, it is
readily verified that

Ẇ = 〈X4, X4〉 − 〈A2X3, X3〉 − 〈g4X3, X1〉 − 〈g6(X1), X1〉,

so that by (2.10) and (2.9),

Ẇ ≥ 〈X4, X4〉 − a2‖X3 +
1

2a2
g4X1‖2 − 〈g6(X1), X1〉+

1
4a2

〈g2
4X1, X1〉

≥ 〈X4, X4〉 − 〈g6(X1), X1〉+
1

4a2
〈g2

4X1, X1〉 > 0.

The conclusion of Theorem 2.3 now follows from the arguments in [1, §3].
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For the proof of Theorem 2.4, consider the parameter λ-dependent system

Ẋi = Xi+1, i = 1, 2, . . . , 5, 0 ≤ λ ≤ 1,

Ẋ6 = −A1X6 −A2X5 −A3X4 − gλ
4 (X2, X3)X3

− λg5(X1)X2 − gλ
6 (X1, X2, X3) + λP2,

(4.16)

where
gλ
4 (X2, X3) = (1− λ)β4I + λg4(X2, X3),

gλ
6 (X1, X2, X3) = (1− λ)a6X1 + λg6(X1, X2, X3),

(4.17)

where I is the identity n × n matrix, β4 > 0 is defined by (2.11) and a6 < 0 is a
constant chosen, in view of (2.12), such that

〈g6(X1, X2, X3), X1〉
‖X1‖2

< a6 <
1

4a2
β2

4 , X1 6= 0 (4.18)

The scalar function Wλ = Wλ(X1, X2, . . . , X6) is defined by Wλ = λW0 + W1,
with W0,W1 given by (4.14) and (4.15). By (4.16), (4.17), (2.10), (2.13) and (4.18)
it can be verified that
Ẇλ = 〈X4, X4〉 − 〈A2X3, X3〉 − 〈gλ

4X3, X1〉 − 〈gλ
6 (X1, X2, X3), X1〉+ λ〈P2, X1〉

≥ 〈X4, X4〉 − a2‖X3 +
1

2a2
gλ
4X1‖2 − 〈gλ

6 (X1, X2, X3), X1〉

+
1

4a2
〈(gλ

4 )2X1, X1〉 − |〈p2X1〉|

≥ ‖X4‖2 +D6‖X1‖2 −B∗1‖X1‖ −B∗2(‖X1‖2 + ‖X2‖2 + ‖X2‖2),
(4.19)

whereD6 ≡
(

1
4a2

β2
4−a6

)
> 0. Now on integrating (4.19) and using the ω-periodicity

of Wλ and (4.11), it will follow readily that

0 ≥
∫ ω

0

(1
2
D6 −B∗2

)
‖X1‖2dt+

∫ ω

0

{
1−B∗2

( ω2

4π2
+

ω4

16π4

)}
‖X4‖2dt−D7, (4.20)

for some constant D7 > 0 such that 1
2D6‖X1‖2 − B∗1‖X1‖ ≥ −D7. Fix B∗2 such

that

B∗2 < min
[1
2
D6,

( ω
2π

)−2(1 +
ω2

4π2

)−1]
.

Then from (4.20),∫ ω

0

‖X1‖2dt ≤ D7D
−1
8 ,

∫ ω

0

‖X4‖2dt ≤ D4D
−1
9 , (4.21)

where D8 = (1
2D6 −B∗2) > 0, D9 = [1−B∗2( ω2

4π2 + ω4

16π4 )] > 0, and by (4.11)∫ ω

0

‖X2‖2dt ≤ D10,

∫ ω

0

‖X3(t)‖2dt ≤ D10 (4.22)

for some D10 > 0. Since (4.21) implies the existence of a t0 ∈ [0, ω] and a constant
D11 > 0 such that ‖X(t0)‖ ≤ D11, it is clear, by periodicity, from (4.21) and (4.22),
that

‖X1(t)‖ ≤ D12, ‖X2(t)‖ ≤ D12, ‖X3(t)‖ ≤ D12.

for some constant D12 > 0. Using the arguments in [2], the estimate for ‖X4(t)‖
can be easily obtained.
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5. Outline of Proof of Theorems 3.1, 3.2, 3.3, 3.4

Observe first that the results embodied in Theorems 3.1, 3.2, 3.3 and 3.4 for
seventh order equations are essentially the same as those in Theorems 2.1, 2.2, 2.3
and 2.4 for sixth order equations. Since the proofs of Theorems 3.1–3.4 require the
same arguments as those employed for Theorems 2.1–2.4 in §4, with some obvious
modifications, we shall merely indicate here the appropriate equivalent system of
equations and the scalar functions required in each case, and corresponding modi-
fications in arguments.

We start with Theorem 3.1. The appropriate equivalent (to (3.1) with Q1 = 0)
system is

Ẋi = Xi+1, i = 1, 2, . . . , 6

Ẋ1 = −A1X7 −A2X6 −A3X5 −A4X4 − ϕ5(X2, X3)X3

− ϕ6(X1)X2 − ϕ7(X1, X2, X3),

(5.1)

and the scalar function is given by

V = γA3U, U = U0 + U1 (5.2)

where

U1 = −〈X1, X7 +
4∑

k=1

AkX7−k〉+ 〈X2, X6 +
3∑

k=1

AkX6−k〉

− 〈X3, X5 +A1X4〉+
1
2
〈X4, X4〉+

1
2
〈A4X2, X2〉 −

1
2
〈A2X3, X3〉

(5.3)

U0 =
∫ 1

0

〈σϕ6(σX1)X1, X1〉dσ (5.4)

From (5.2), (5.3), (5.4) and (5.1) it will be clear, on proceeding as in §4, that V̇ ≥ 0.
For the proof of Theorem 3.2, observe first from (3.6) that there exists a constant

a7 > 0 such that

〈γA3ϕ7(X1, X2, X3), X1〉
‖X1‖2

≥ a7 >
1

4a3
β2

5 , X1 6= 0. (5.5)

Set

ϕλ
7 (X1, X2, X3) = (1− λ)γA3a7X1 + λϕ7(X1, X2, X3), 0 ≤ λ ≤ 1,

ϕλ
5 (X2, X3) = (1− λ)β5I + λϕ5(X2, X3), I the identity n× n matrix.

Then, by (5.5) and the fact that ‖ϕ5(X2, X3)‖ ≤ β5, it will follow that

‖ϕλ
5 (X2, X3)‖ ≤ β5,

〈γA3ϕ
λ
7 (X1, X2, X3), X1〉

‖X1‖2
≥ a7, X1 6= 0. (5.6)

With ϕλ
5 , ϕ

λ
7 defined as above and satisfying (5.6), the appropriate equivalent (to

(3.1)) system to consider is

Ẋi = Xi+1, i = 1, 2, . . . , 6

Ẋ7 = −A1X7 −A2X6 −A3X5 −A4X4 − ϕλ
5 (X2, X3)X3 − λϕ6(X1)

− ϕλ
7 (X1, X2, X3) + λQ1, 0 ≤ λ ≤ 1,

(5.7)
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and the scalar function V λ is defined by

V λ = γA3U, U = λU0 + U1, (5.8)

with U0, U1 given by (5.4) and (5.3) respectively. Now, by proceeding as in §4,
using obvious adaptations of the arguments in [3, §4], it can be readily shown that∫ ∞

0

‖X1‖2dt ≤ D13,

∫ ω

0

‖X4‖2dt ≤ D13

for some constant D13 > 0, and the desired a-priori bound will follow as in [2].
Turning next to Theorem 3.3, the appropriate equivalent system is

Ẋi = Xi+1, i = 1, 2, . . . , 6

Ẋ7 = −A1X7 −A2X6 −A3X5 − ψ4(X2, X3, X4)X4

− ψ5(X2)X3 − ψ6(X2, X3, X4)− ψ7(X1)

(5.9)

and the scalar function is defined by

V = U0 + U1, (5.10)

where

U0 =
∫ 1

0

〈ψ7(σX1), X1〉dσ +
∫ 1

0

σ〈ψ5(σX2)X2, X2〉dσ, (5.11)

U1 = 〈X2, X7 +
3∑

k=1

AkX7−k〉 − 〈X3, X6 +
2∑

k=1

AkX6−k〉+ 〈X4, X5〉

− 1
2
〈A3X3, X3〉+

1
2
〈A1X4, X4〉.

(5.12)

It is readily shown that V̇ ≥ 0.
Lastly for Theorem 3.4. Let a6 < 0 be a constant chosen, in view of (3.9), such

that
〈ψ6(X2, X3, X4), X2〉

‖X2‖2
≤ a6 <

1
4a2

β2∗
4 , X2 6= 0, (5.13)

and set

ψλ
4 (X2, X3, X4) = (1− λ)β∗4I + λψ4(X2, X3, X4)

ψλ
6 (X2, X3, X4) = (1− λ)a6I + λψ6(X2, X3, X4), 0 ≤ λ ≤ 1,

(5.14)

where I the identity n× n matrix. The equivalent system is

Xi = Xi+1, i = 1, 2, . . . , 6

Ẋ7 = −A1X7 −A2X6 −A3X5 − ψλ
4 (X2, X3, X4)X4 − λψ5(X2)X3

− ψλ
6 (X2, X3, X4)− λ[ψ7(X1)−Q2]

(5.15)

and the scalar function V λ = V λ(X1, X2, . . . , X7) is defined by

V λ = λU0 + U1, (5.16)
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with U0, U1 given by (5.11) and (5.12) respectively. It can be readily shown from
(5.11) to (5.16), that

V̇ λ ≥ 〈X5, X5〉 − 〈ψλ
6 , X2〉 −

1
4a2

‖ψλ
4X2‖2 − |λ〈X2, Q2〉|

≥ ‖X5‖2 +
(
− a6 −

1
4a2

β∗24

)
‖X2‖2 − C∗1 (‖X2‖)

− 2C∗2 (‖X2‖2 + ‖X3‖2 + ‖X4‖2),

(5.17)

where D12 = (−a6 − 1
4a2

β∗24 ) > 0 by (5.13). Direct integration of (5.17), for any
ω-periodic solution (X1, X2, . . . , X7) of (5.15), using the ω-periodicity of V λ and
(4.11), will yield, for some constants D15 > 0, D16 > 0,∫ ω

0

‖X2‖2dt ≤ D15,

∫ ω

0

‖X5‖2dt ≤ D16 (5.18)

provided

C∗2 < min[
1
4
D14,

2π
ω

(1 +
ω2

4π2
)−1].

Clearly, the condition on ψ7 in (3.11) implies the existence of a t0 ∈ [0, ω] such that
‖X1(t0)‖ ≤ D17, for some constant D17 > 0. Thus, from (5.18), ‖X1(t)‖ ≤ D16 for
some constant D18 > 0. The rest of the proof follows from (5.18), in view of (4.11).
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