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NOTES ON EXPANSIVE MAPPINGS AND A PARTIAL
ANSWER TO NIRENBERG’S PROBLEM

TIAN XIANG

Abstract. In this article, two minor flaws made in the preceding paper [19]
are corrected. And then several remarks concerning expansive mappings and

their connection with monotone operators are observed. These observations

are then used for generalizing the Minty-Browder theorem [9, 2] and further
answer to Nirenberg’s open question. Along this lines, a strengthened Niren-

berg’s problem is formulated and a surjective result for expansive mappings is

obtained. Finally, two interesting conjectures concerning “reverse” Schauder
fixed point theorem are raised.

1. Introduction

Recently, a fixed point theorem concerning expansive mappings has been es-
tablished in [19]. Using this result, coupled with a standard compact analysis,
the authors then obtained some new expansive-type Krasnoselskii fixed point the-
orems. We now observe, however, that there appear two minor errors in the proofs
of Theorems 2.1 and 2.3, even though the conclusions of the theorems are true.

For our purposes and for completeness, we use this opportunity to correct the
proof and give an example to justify our assertion. Then we observe several remarks
about expansive mappings and their connection with monotone operators. Later
on, upon those aforementioned observations, we discover that the captured result
may help to extend Minty-Browder’s celebrated theorem [9, 2] concerning strongly
monotone operators, and hence it gives a further and partial answer to Nirenberg’s
open question [11], which reads as follows:

Problem (P): Let H be a Hilbert space and let T : H → H be a
continuous map, which is expansive; i.e.,

‖Tx− Ty‖ ≥ ‖x− y‖ for all x, y ∈ H,
and Tθ = θ. Suppose T maps a neighborhood of the origin onto a
neighborhood of the origin. Does T maps H onto H?

The Problem (P) could be generalized to the case where the space investigated
is a Banach space or more generally a topological vector space. In other words,
the problem is, whether these conditions guarantee the solvability of the equation
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Tx = p for every p ∈ H? Thus if we consider hT instead of T , without loss of
generality, we may assume that T is expansive with constant h > 1; that is,

‖Tx− Ty‖ ≥ h‖x− y‖ for all x, y ∈ H.

Up to now, to the best of our knowledge, the problem (P) is still not fully
resolved. But there are several partial affirmative answers to the problem (P)
under some additional hypotheses:

• H is a finite dimensional (known as Domain Invariance Theorem [1, 14])
Euclidean space.
• T = I−C where C is a compact operator or a contraction or more generally

a k-set-contraction [8, 12].
• Let T : E → F be an expansive mapping with constant h > 0, where E

is a real Banach space and F is a (reflexive) Banach space, T is Fréchet-
differentiable and

lim sup
x→x0

‖T ′(x)− T ′(x0)‖ < h for all x0 ∈ E.

Then T maps E onto F [5].
• H is a Hilbert space and T is strongly monotone; i.e., there exists an s > 0

such that [2, 9]

Re〈Tx− Ty, x− y〉 ≥ s‖x− y‖2 for all x, y ∈ H.

There are also several counterexamples to the Problem (P), see [10, 15, 16] for
instance. Our result gives a further positive answer to the Problem (P) and shows
that the above inequality can be relaxed by the following one:

Re〈Tx− Ty, x− y〉 ≥ −c‖x− y‖2 for all x, y ∈ H,

where T : H → H is an expansive mapping with constant h > 0, and for some
c < h. Along this line, a strengthened Nirenberg ’s problem is also formulated.

The framework of the rest of this article is outlined as follows. In the next section,
the two minor errors are pointed out and two corrected proofs of the aforementioned
theorems are presented. Then some remarks and examples concerning expansive
mappings and several connections between expansive mappings and monotone op-
erators are observed. The captured results are then used to study Nirenberg’s
problem and to study a generalization of Minty-Browder’s theorem. Along this
line, a strengthened Nirenberg’s problem is also formulated and a surjective result
for expansive mappings is obtained. In the last section, an “expansive set” type
fixed point problem is reformulated and two interesting conjectures concerning “re-
verse” Schauder fixed point theorem are posed.

2. Expansive mappings and connections with strongly monotone
operators

Let (X, d) be a metric space and let M be a subset of X. A mapping T : M → X
is said to be expansive with a constant h if there exists a constant h > 0 such that

d(Tx, Ty) ≥ hd(x, y) for all x, y ∈M. (2.1)

Expansive mappings, by definition, satisfy the condition (2.1) with a constant h > 1.
The following result was obtained in [19], but it appears that its proof contains a
minor flaw. For the sake of completeness and our further purposes, we restate the
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theorem and provide a correct proof for it, even though it is a consequence of the
Banach Contraction Mapping Principle.

Theorem 2.1. Let M be a closed subset of a complete metric space X. Assume
that T : M → X is an expansive mapping and that T (M) ⊃ M . Then there exists
a unique point x∗ ∈M such that Tx∗ = x∗.

Proof. It follows from (2.1) that the inverse of T : M → T (M) exists, and

d(T−1x, T−1y) ≤ 1
h
d(x, y) for all x, y ∈ T (M),

which, in view of the fact that M ⊂ T (M), shows, in particular, that T−1|M : M →
M is a contraction, where T−1|M denotes the restriction of the mapping T−1 to
the set M . Since, M is a closed subset of a complete metric space, then in view
of the Banach Contraction Mapping Principle there exists an x∗ ∈ M such that
T−1x∗ = x∗. Clearly, x∗ is also a fixed point of T .

Uniqueness of a fixed point is even easier: If x = Tx, y = Ty for some x, y ∈M ,
then

d(x, y) = d(Tx, Ty) ≥ hd(x, y), i.e., x = y (h > 1).
This completes the proof. �

In [19], because T−1 : T (M) → M was continuous, we claimed that the image
T (M) was closed. However, this is not true in general, since an expansive mapping
may not be continuous, and hence T (M) may not be closed. The following is a
simple counterexample:

Example 2.2. Let T : R→ R be defined by

Tx =

{
2x− 1, if x ≤ 0,
2x+ 1, if x > 0.

Then T is expansive with constant h = 2, and T (R)(= (−∞,−1] ∪ (1,+∞)) is
neither closed nor open in R. Observe also that T has no fixed points in R, and thus
no closed “expansive set” under T (a set M satisfying T (M) ⊃ M) can be found
by Theorem 2.1. But “contractive set” under T (a set M satisfying T (M) ⊂ M)
does exist, and M = (−∞,−1] is a such one.

The same error occurs in the proof of the following variant of Krasnoselskii fixed
point theorem. This minor error can be corrected in the similar way as above.

Theorem 2.3. Let K be a nonempty closed convex subset of a Banach space E.
Suppose that T and S map K into E such that

(i) S is continuous, S(K) resides in a compact subset of E;
(ii) T is an expansive mapping;

(iii) any z ∈ S(K) implies K+z ⊂ T (K) ⊂ K, where K+z = {y+z | y ∈ K}.
Then there exists a point x∗ ∈ K with T ◦ (I − S)x∗ = x∗.

Proof. It is obvious that T−1 : T (K)→ K is a contraction. For any fixed z ∈ S(K),
define T−1

z : T (K) → E by T−1
z x = T−1x + z. Then T−1

z |K+z : K + z → K + z,
since K + z ⊂ T (K). Therefore, the equation

T−1x+ z = x

has a unique solution x = τ(z) ∈ K + z ⊂ T (K). The rest of the proof is identical
with that of [19, Theorem 2.3]. �



4 T. XIANG EJDE-2013/02

We now see, in general, that the expansiveness of T does not necessarily imply
the closedness of the range of T . However, for closed linear operators, it is so; and
we have the following standard result, which is often proved in functional analysis
courses.

Proposition 2.4. Let T : D(T ) ⊂ E → E be a closed linear operator, where E is
a normed linear space. Then the range of T , R(T ), is closed if and only if there
exists an h > 0 such that

‖Tx‖ ≥ hd(x, kerT ), ∀x ∈ D(T ),

where kerT is the kernel of T and

d(x, kerT ) = inf{‖x− z‖ : z ∈ kerT}.

We now recall some well-known notions that will be used in the sequel, see for
instance Zeidler [20]. Let H be a Hilbert space and A : H → H an operator. Then

(i) A is called monotone if Re〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ H.
(ii) A is called strictly monotone if Re〈Ax − Ay, x − y〉 > 0 for all x, y ∈ H

with x 6= y.
(iii) A is called strongly monotone if there is an s > 0 such that

Re〈Ax−Ay, x− y〉 ≥ s‖x− y‖2 for all x, y ∈ H.

(iv) A is called coercive if lim‖x‖→+∞Re〈Ax, x〉/‖x‖ = +∞.
(v) A is called weakly coercive if lim‖x‖→+∞ ‖Ax‖ = +∞.

The following straightforward implications hold: A is strongly monotone ⇒ A is
strictly monotone ⇒ A is monotone.

In what follows, the symbols (E, ‖·‖E) and (F, ‖·‖F ) will usually denote Banach
spaces, and (H, 〈, 〉) will denote a Hilbert space. To avoid misunderstanding, we
provide the definition of a compact and a bounded mapping, since in the literature
different authors understand these notions differently (cf. [6, p. 112]). A mapping
T : D(T ) ⊂ E → F is bounded if it maps bounded subsets of D(T ) into bounded
subsets of F , and is compact if it maps bounded subsets of D(T ) into relatively
compact subsets of F . And we denote the range of T by R(T ) if T is linear and
by T (D(T )) if T is (possibly) nonlinear. Some observations on expansive mappings
and their connections with strongly monotone operators are summarized in the
following proposition.

Proposition 2.5. (1) Let T : E → F be an expansive mapping with constant
h > 0. Suppose that the dimension of E is infinite. Then T is never
compact; if in addition h > 1, then neither T nor I − T is compact.

(2) Let T : E → E be an expansive mapping with constant h > 0. Then T is
weakly coercive.

(3) Let T : H → H be a strongly monotone operator with constant s > 0. Then
T is an expansive mapping with constant s > 0. Conversely, an expansive
mapping may not be strongly monotone.

(4) An expansive mapping may be an unbounded operator; i.e., it may trans-
form bounded sets into unbounded ones. Also such an operator may not be
continuous.

(5) Let T : D(T ) ⊂ E → F be an expansive mapping with constant h > 0.
Then T may not be compact even though F is finite dimensional.
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(6) Let T : E → F be an expansive mapping with constant h > 0. If T is
Fréchet-differentiable, then the derivative of T at x, T ′(x), is also expansive,
and

‖T ′(x)u− T ′(x)v‖F ≥ h‖u− v‖E for all u, v ∈ E. (2.2)

Moreover, the range of T ′(x), R(T ′(x)), is closed in F .

Proof. (1) It suffices to prove the case of h > 1, the case of h > 0 follows in the
same fashion. From the expansiveness of T , we have

‖(I − T )x− (I − T )y‖F ≥ (h− 1)‖x− y‖E for all x, y ∈ E. (2.3)

It follows from (2.2) that

‖(I − T )−1x− (I − T )−1y‖E ≤
1

h− 1
‖x− y‖F for all x, y ∈ (I − T )(E).

This illustrates that (I − T )−1 : (I − T )(E) → E is continuous and bounded.
Therefore, if I−T were compact, we would get that I = (I−T )−1(I−T ) : E → E
is compact. This is impossible since E is infinite dimensional.

(2) The desired result follows from the inequality

‖Tx‖ ≥ h‖x‖ − ‖Tθ‖ for all x ∈ E.

(3) As T : H → H is strongly monotone,

Re〈Tx− Ty, x− y〉 ≥ s‖x− y‖2 for all x, y ∈ H.

The Cauchy-Schwarz inequality gives

‖Tx− Ty‖‖x− y‖ ≥ |Re〈Tx− Ty, x− y〉| ≥ s‖x− y‖2,

which shows that T : E → E is expansive with constant s > 0. The converse
statement is apparent. However, a nontrivial specific instance showing this point is
provided at the end of this section.

(4) We shall construct a concrete example to justify the assertion. Indeed, for a
fixed natural number N ≥ 2 and B = {x ∈ RN : ‖x‖ ≤ 1}, let us define T : B → RN
in the following way. Choose {xn}∞n=1 ⊂ RN , ‖xn‖ = 1, xn 6= xm for n 6= m, and
xn → x0. For h > 1, define

Tx =

{
hx, if x ∈ B, x 6= xm, for m = 1, 2, . . . ,
hxn + nxn, if x = xn, for some n = 1, 2, . . . .

Clearly, ‖Txn‖ = h+ n for n ∈ N, and so T (B) is unbounded. It then follows from
xn → x0 that T is not continuous.

We now claim that T is strongly monotone by proving the inequality

〈Tx− Ty, x− y〉 ≥ h‖x− y‖2 for all x, y ∈ B. (2.4)

We show the above inequality by considering three distinct cases.
Case I: x ∈ B, x 6= xm, for all m = 1, 2, . . . and y ∈ B, y 6= xm, for all m =

1, 2, . . . . In this case the inequality (2.4) follows obviously by definition.
Case II: x ∈ B, x 6= xm, for all m = 1, 2, . . . and y = xn, for some n = 1, 2, . . . .

From the definition, we obtain

〈Tx− Txn, x− xn〉 = h‖x− xn‖2 − n〈xn, x〉+ n‖xn‖2 ≥ h‖x− xn‖2,

since ‖xn‖ = 1 and |〈xn, x〉| ≤ 1 for all x ∈ B. This proves the inequality (2.4).
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Case III: x = xn for some n = 1, 2, . . . and y = xm for some m = 1, 2, . . . . Then
one has

〈Txn − Txm, xn − xm〉 = h‖xn − xm‖2 + (n+m)[1− 〈xn, xm〉] ≥ h‖xn − xm‖2.

To sum up, we obtain that T : B → RN is strongly monotone with constant h > 1
and therefore is expansive by (3). It is worth noting that it is not an easy matter
to show directly that T is expansive.

(5) This is an immediate consequence of (4).
(6) In fact, from the assumption, we have

T (x+ u) = Tx+ T ′(x)u+Rx(u),

where T ′(x) is a bounded linear operator in u and ‖Rx(u)‖F = o(‖u‖E) as ‖u‖E →
0. Putting u = εy, for ε sufficiently small, one has from the expansiveness of T that

‖T ′(x)y + o(1)‖F ≥ h‖y‖E .

Letting ε → 0, we find that T ′(x) fulfills the inequality (2.1). Therefore, T ′(x)
is injective and has a Lipschitizian continuous inverse with the Lipschitz constant
h−1; i.e.,

‖[T ′(x)]−1v‖E ≤
1
h
‖v‖F for all v ∈ R(T ′(x)).

Let now T ′(x)un = vn → v. Then one has un = [T ′(x)]−1vn and

‖un − um‖E ≤
1
h
‖vn − vm‖F → 0, as m,n→ +∞,

so that there exists a u ∈ E such that un → u. Accordingly, the continuity of T ′(x)
implies v = T ′(x)u ∈ R(T ′(x)). This shows that R(T ′(x)) is closed. �

Let us explore some properties of surjectivity for mappings of the form I − T ,
where T is a contraction or an expansion.

Lemma 2.6. Let T : E → E be either a contraction or an expansion with constant
h > 1. If T (E) = E then (I − T )(E) = E. Furthermore, if T is an expansion with
constant h > 2, then (I − T )(E) = E implies T (E) = E.

Proof. The conclusion for the case that T is a contraction follows from the con-
traction principle. In the case when T is an expansion. So let us assume that T is
an expansion and for y ∈ E define Ty : E → E by Tyx = Tx + y. Then Ty maps
E onto itself and so the result follows from Theorem 2.1. Finally, for h > 2, let
S = I − T . Then

‖Sx− Sy‖ ≥ ‖Tx− Ty‖ − ‖x− y‖ ≥ (h− 1)‖x− y‖ for all x, y ∈ E.

Thus, S is expansive since h − 1 > 1. The preceding arguments yield the desired
result. �

A well-known and fundamental result in the theory of monotone operators (see
[2, 9, 20] for instance) is collected in the following lemma.

Lemma 2.7. Let H be a Hilbert space and let T : H → H be continuous, monotone
and weakly coercive. Then T (H) = H. If, furthermore, T is strictly monotone, then
for any p ∈ H the equation Tx = p has a unique solution.

We are now prepared to formulate the main results of this article.



EJDE-2013/02 NOTES ON EXPANSIVE MAPPINGS 7

Theorem 2.8. Let T : H → H be a continuous expansive mapping with constant
h > 0. If either T or −T is monotone, then, for each u ∈ H the equation Tx = u
has a unique solution in H, and the solution x depends continuously on u. More
precisely, if Tx = u and Ty = v, then

‖x− y‖ ≤ 1
h
‖u− v‖. (2.5)

If, in addition, the constant h is assumed to be greater than one, then both T and
I − T are global homeomorphisms on H (and T has a unique fixed point in H).

Proof. It follows from Proposition 2.5 (2) that T is weakly coercive. Suppose that
T is monotone. Then Lemma 2.7 gives that, for each u ∈ H the equation Tx = u
has a solution. The uniqueness of the solution and (2.5) are direct consequences of
the expansiveness of T .

If additionally h > 1, then the preceding discussion and Lemma 2.6 yield the
desired result. In the case when −T is monotone, the proof stays almost unchanged.

�

With the aid of Theorem 2.1, we can now formulate a generalization of Theorem
2.8 where T is monotone. Here T is allowed to be somewhat “nonmonotone”.

Theorem 2.9. Let T : H → H be a continuous expansive mapping with constant
h > 0. If there exists a real number c <

√
2

2 h such that

Re〈Tx− Ty, x− y〉 ≥ −c‖x− y‖2 for all x, y ∈ H, (2.6)

then, for each u ∈ H the equation Tx = u has a unique solution in H, and the
solution x depends continuously on u. More precisely, if Tx = u and Ty = v, then

‖x− y‖ ≤ 1
h
‖u− v‖. (2.7)

If, in addition, the constant h is assumed to be greater than one, then both T and
I − T are global homeomorphisms on H.

Proof. The case c ≤ 0 follows directly from Theorems 2.8. We just need to consider
the case c > 0. Since c < h/

√
2 there exists a small ε > 0 so that 2c2 + 2cε < h2.

For such fixed ε and for x, y ∈ H, it follows from (2.6) that

Re〈Tx+ (c+ ε)x− Ty − (c+ ε)y, x− y〉
= Re〈Tx− Ty, x− y〉+ c‖x− y‖2 + ε‖x− y‖2

≥ ε‖x− y‖2.
This says that T + (c+ ε)I is strongly monotone and hence monotone and coercive.
In view of Lemma 2.7, we know (T + (c+ ε)I)(H) = H. Letting S = T + (c+ ε)I,
and taking into account that T is expansive with h > 0, we deduce again from (2.6)
that, for all x, y ∈ H,

‖Sx− Sy‖2 = 〈(Tx− Ty) + (c+ ε)(x− y), (Tx− Ty) + (c+ ε)(x− y)〉
= ‖Tx− Ty‖2 + 2(c+ ε) Re〈Tx− Ty, x− y〉+ (c+ ε)2‖x− y‖2

≥ (h2 − c2 + ε2)‖x− y‖2.
(2.8)

Now, the equation Tx = p for each p ∈ H is equivalent to

x = Sεx−
1

c+ ε
p, (2.9)
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where Sε = 1
c+εS. In view of (2.8) and the definition of Sε, we have

‖Sεx− Sεy‖ ≥
√
h2 − c2 + ε2

c+ ε
‖x− y‖ for all x, y ∈ H.

The choice of ε implies √
h2 − c2 + ε2

c+ ε
> 1. (2.10)

This, together with Sε(H) = H, proves that (2.9) has a unique solution by Theorem
2.1. This in turn shows that T (H) = H. The rest of the proof is the same as that
of Theorem 2.8. �

Remark 2.10. If −T satisfies the inequality (2.6), then the conclusion still holds.
Moreover, if T is a strongly monotone operator, then it is expansive and (2.6)
trivially holds. Therefore, Theorem 2.9 extends Minty-Browder’s [9, 2] strongly
monotone case to ”nonmonotone” case. And it is also a further partial answer
to Nirenberg’s problem (P). Finally, the continuity assumption on T cannot be
dropped. Otherwise, Example 2.2 gives a simple counterexample.

It is quite natural to ask whether the constant c in Theorem 2.9 can be greater
than h√

2
or even approach h. Observe that the left-hand side of (2.10) as a function

of ε is decreasing on (0, (h2 − c2)/c] and is increasing to 1 on ((h2 − c2)/c,+∞).
This suggests that the continuity (fixed point) method may not help us achieve our
purpose; whereas, by making use of the theory of monotone operators and some
delicate techniques, we will show that this goal can be achieved. Before proceeding
further, the following well-known notions and facts are needed, see for example
again [20].

Let A : D(A) ⊂ H → H be an operator. Then:

(i) A is said to be maximal monotone if A is monotone and

Re〈b−Ay, x− y〉 ≥ 0 for all y ∈ D(A)

implies Ax = b; i.e., A has no proper monotone extension.
(ii) A is said to be accretive if (I+µA) : D(A)→ H is injective and (I+µA)−1

is non-expansive for all µ > 0.
(iii) A is said to be maximal accretive (m-accretive) if A is accretive and (I +

µA)−1 exists on H for all µ > 0.

Lemma 2.11 ([9, 20]). Let A : D(A) ⊂ H → H be an operator. Then the following
three properties of A are mutually equivalent:

(i) A is monotone and (λI + A)(D(A)) = H for some (or, equivalently, all)
λ > 0.

(ii) A is maximal accretive.
(iii) A is maximal monotone.

We now show that the constant c in Theorem 2.9 can actually approach h. The
proof is different from that of Theorem 2.9.

Theorem 2.12. Let T : H → H be a continuous expansive mapping with constant
h > 0. If there exists a real number c < h such that the inequality (2.6) holds, then
the conclusions of Theorem 2.9 are valid.
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Proof. The result in the case of c ≤ 0 is included in the previous theorems. There-
fore, without loss of generality, we may assume that c > 0. The proof falls into
three steps.

Step 1. To show that T + λI is surjective for all λ > c and T (H) is closed. For
any ε > 0 and for all x, y ∈ H, one derives from (2.6) that

Re〈Tx− Ty + (c+ ε)(x− y), x− y〉 ≥ ε‖x− y‖2.

Therefore, T + (c+ ε)I is strongly monotone and thus monotone and coercive. By
Lemma 2.7, we obtain (T +(c+ε)I)(H) = H, which means that T +λI is surjective
for all λ > c.

Next we show that T (H) is closed. To this end, let yn = Txn → y. Then it
follows from the expansiveness of T that

‖xn − xm‖ ≤
1
h
‖Txn − Txm‖,

which implies xn → x for some x ∈ H, and hence y = Tx ∈ T (H) since T is
continuous.

Step 2. To show that the operator S = µI + T−1 : T (H) → H is maximal
monotone, where µ satisfies 1/h < µ < 1/c.

Again, since T is expansive, we know that T−1 : T (H)→ H is well-defined, and
for every x, y ∈ T (H),

‖T−1x− T−1y‖ ≤ 1
h
‖x− y‖. (2.11)

This implies that S is continuous. By (2.6) and (2.11), one may derive that for all
x, y ∈ T (H),

Re〈Sx− Sy, x− y〉 = µ‖x− y‖2 + Re〈T−1x− T−1y, x− y〉

≥ (µ− c

h2
)‖x− y‖2.

Note that since c < h and µ > 1/h we get that µ − c
h2 > 0 and so S is (strongly)

monotone. In view of Lemma 2.11, it is sufficient to show that (S+λI)(T (H)) = H
for some (or, equivalently, all) λ > 0. This is the same as saying ((µ + λ)I +
T−1)(T (H)) = H. It is easily seen that the equation (µ+λ)y+T−1y = p, y ∈ T (H),
is equivalent to the equation

Tx+
1

µ+ λ
x =

1
µ+ λ

p, x ∈ H, for every given p ∈ H. (2.12)

Note also that µ < 1/c, thus, we can choose λ > 0 sufficiently small so that 1
µ+λ > c,

and consequently the equation (2.12) has a solution due to Step 1. This proves that
S is a maximal monotone operator.

Step 3. We complete the proof by showing that T is surjective onto H. From
Step 1 we have known that T (H) is closed. Here we want to prove that T (H)
is actually the whole space H. Based on the well-known Kirszbraun-Valentine
(cf. [7, 14, 17, 18]) theorem, it follows from (2.11) that the mapping T−1 admits
an extension T defined on the whole space H, which is 1/h-Lipschitizan on H.
Apparently, the mapping S = µI + T is continuous. Moreover, for any x, y ∈ H,
the Cauchy-Schwarz inequality once more yields

Re〈Sx− Sy, x− y〉 = µ‖x− y‖2 + Re〈Tx− Ty, x− y〉 ≥ (µ− 1
h

)‖x− y‖2
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for all x, y ∈ H. This indicates that S is strongly monotone, and so is S + λI for
all λ > 0. Then by Lemma 2.7 (S + λI)(H) = H. Thus, according to Lemma 2.11,
S : H → H is maximal monotone. Notice that T coincides with T−1 on T (H), and
hence S is a monotone extension of S. Because S is an extension of S, we will reach
a contradiction to the maximal monotonicity of S, unless D(S) = T (H) = H.

The rest of the proof is the same as that of Theorem 2.8. �

From the proof of Theorem 2.12, we see that the assumption that c < h is
essential. But if we let for simplicity T = −hI, then the inequality (2.6) holds as
an equality for c = h and trivially T is a global homeomorphism on H. We are thus
led naturally to the following question: Is the critical value c = h also a sufficient
condition for T being a global homeomorphism on H? More specifically, we are led
to a strengthened Nirenberg ’s problem:

Problem 1’. Let T : H → H be a continuous expansive mapping
with constant h > 0. Assume that either T or −T satisfies

Re〈Tx− Ty, x− y〉 ≥ −h‖x− y‖2 for all x, y ∈ H. (2.13)

Is T a surjective map and so a global homeomorphism on H?
From the discussion of Nirenberg’s problem (P) (see Section 1) we know that

the Problem 1’ above is true for H = Rn even without the requirement (2.13) and
that it could be false in infinite dimensional Hilbert spaces without the requirement
(2.13). This problem could be generalized to the case where the space considered
is a Banach space or more generally a topological vector space.

Problem 1”. Let T : E → E∗ be a continuous expansive mapping
with constant h > 0, where E∗ is the dual space of E. Assume that
either T or −T satisfies

Re〈Tx− Ty, x− y〉 ≥ −h‖x− y‖2 for all x, y ∈ E. (2.14)

Is T a surjective map onto E∗?
The first fact that the validity of (2.13) is in general not a consequence of the

expansiveness of T is demonstrated at the end of this section.
Next we show that Problem 1’ is in general not true. To see this, consider the

linear operator T defined on l2 by Tx = σx, where l2 is the real Hilbert space of
square-summable sequences and σ is the forward shift map; i.e., σ(x1, x2, . . . ) =
(0, x1, x2, . . . ). Then it follows readily that ‖Tx‖ = ‖x‖ for all x ∈ L2(N) and that
the range of T has empty interior. Moreover, by the Cauchy-Schwarz inequality,

〈Tx, x〉+ ‖x‖2 =
∞∑
n=1

xnxn+1 + ‖x‖2 ≥ ‖x‖2 − ‖x‖(‖x‖2 − |x1|2)
1
2 ≥ 0,

for all x = (xn)∞n=1 ∈ L2(N). This shows that (2.13) is true, while T is not
surjective on L2(N). Also, for this expansive mapping, we show that there is no
c < 1 such that (2.6) is true. Indeed, for c ≤ 0, let x = (1,−1, 0, 0, . . . ). Then
〈Tx, x〉+ c‖x‖2 = −1 + 2c ≤ −1. For 0 < c < 1, choose ε > 0 so that c+ ε < 1 and
then let x = {(−1)n−1(c+ ε)n}∞n=1. Then

〈Tx, x〉+ c‖x‖2 = −(c+ ε)
∞∑
n=1

(c+ ε)2n + c

∞∑
n=1

(c+ ε)2n = −ε
∞∑
n=1

(c+ ε)2n < 0.

Therefore, a more mature version of the strengthened Nirenberg’s problem 1’ reads
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Problem 1. Let T : H → H be a continuous expansive mapping
with constant h > 0. Assume that the range of T has nonempty
interior and either T or −T satisfies

Re〈Tx− Ty, x− y〉 ≥ −h‖x− y‖2 for all x, y ∈ H. (2.15)

Is T a surjective map and so a global homeomorphism on H?
Using the Fredholm alternative for nonlinear operators [3], we shall see that,

for a differentiable expansive mapping, its surjectivity is closely related to the null
space of the adjoint operator of its derivative.

Theorem 2.13. Let T : E → F be an expansive mapping with constant h > 0,
where E is a Banach space and F is a real Banach space. Let N be a finite subset
of E and assume that T has a linear Gâteaux differential dT (x), a bounded linear
operator from E to F , at every point x ∈ E \ N and that ker([dT (x)]∗) = {0}
for each x ∈ E \ N , where [dT (x)]∗ denotes the adjoint operator of dT (x) and
ker([dT (x)]∗) denotes the kernel of [dT (x)]∗. Then T is surjective onto F ; i.e.,
T (E) = F .

Proof. From the proof of Theorem 2.12, we know that the range of T , T (E), is
closed in F . Then the result follows from [3, Theorem 2]. �

Corollary 2.14. Let T : H → H be a Fréchet differentiable expansive mapping
with constant h > 0, where H is a real Hilbert space. Suppose that either T ′(x) is
self-adjoint or there exists a constant k > 0 such that

|〈u, T ′(x)u〉| ≥ kmin{〈T ′(x)u, T ′(x)u〉, 〈u, u〉} (2.16)

for all x ∈ H \N and u ∈ H, where N is a finite subset of H. Then T is a surjective
map onto H and thus a global homeomorphism on H.

Proof. We have by the item 6 of Proposition 2.5 that T ′(x) is expansive for all
x ∈ H, and

‖T ′(x)u‖ ≥ h‖u‖ for all u ∈ H. (2.17)
This immediately indicates that ker(T ′(x)) = {0} for all x ∈ H \N . Thus, if T ′(x)
is self-adjoint then ker([T ′(x)]∗) = ker(T ′(x)) = {0} for all x ∈ H \N .

For the second case, it follows once more from (2.16) and (2.17) that, for all
x ∈ H \N and u ∈ H,

|〈[T ′(x)]∗u, u〉| = |〈u, T ′(x)u〉|
≥ kmin{〈T ′(x)u, T ′(x)u〉, 〈u, u〉}
≥ kmin{h2, 1}‖u‖2,

which implies that ker([T ′(x)]∗) = {0} for all x ∈ H \N . The corollary now follows
from the previous theorem. �

Next, we illustrate Theorem 2.13 and its corollary with the following Fredholm
integral equation of the second kind

f(x) + λ

∫ b

a

k(x, y)φ(y)dy = φ(x), a ≤ x ≤ b, (2.18)

where λ ∈ R \ {0}, f ∈ L2(a, b) and k ∈ L2((a, b) × (a, b)), here L2(a, b) and
L2((a, b) × (a, b)) stand for the real Hilbert space of real-valued square-integrable
functions defined on (a, b) and (a, b) × (a, b), respectively. Assume that the kernel
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k is hermitian; i.e., k(x, y) = k(y, x) for almost all x and y, then by the spectral
theorem the integral operator has an eigen-expansion

Kφ =
∞∑
n=1

µn〈φ, φn〉φn,

where {µn}∞n=1 ⊂ l2 is a sequence of nonzero eigenvalues of K and φn is a corre-
sponding orthonormal sequence of eigenvectors in L2(a, b); see [13, p. 109-120]. If
there are only finitely many eigenvalues, the above sum is a finite sum. Equation
(2.18) now takes the form

f + λ

∞∑
n=1

µn〈φ, φn〉φn = φ.

Consider a nonlinear equation similar to one above, having the form

f + λ

∞∑
n=1

kn(〈φ, φn〉)φn = φ, (2.19)

where kn : R → R is a sequence of C1-smooth functions with the properties (i)
kn(0) = 0, (ii) 0 < α ≤ |k′n(x)| for all n ∈ N and x ∈ R and (iii) there exist
N ∈ N, δ > 0 and β0 such that |k′n(x)| ≤ β0 for all n > N and |x| ≤ δ. From the
reasonings below, the orthonormal sequence (φn) is complete. A simple example of
such sequence is given by

kn(x) = αnx+ n(e
x
n − 1),

where 0 < α ≤ αn ≤ β0 < +∞ for all n ∈ N.
Let us formally set

Tφ = λ

∞∑
n=1

kn(〈φ, φn〉)φn − φ.

Then T is well-defined on the whole space L2(a, b). Indeed, for φ ∈ L2(a, b), note
that 〈φ, φn〉 → 0 as n→ +∞, we have by (iii) that

‖
∞∑
n=1

kn(〈φ, φn〉)φn‖2 ≤
∞∑
n=1

|kn(〈φ, φn〉)|2

=
N∑
n=1

|kn(〈φ, φn〉)|2 + β2
0

∞∑
n=N+1

|〈φ, φn〉|2 < +∞,

which implies that T : L2(a, b) → L2(a, b) is well-defined. We now consider two
cases: Case 1. |λ|α > 1 and Case 2. |λ|β < 1, where |k′n(x)| ≤ β < +∞ for all
n ∈ N and x ∈ R.
Conclusion 1. Suppose that either Case 1 or 2 holds, then T : L2(a, b)→ L2(a, b)
is expansive with constant

∣∣|λ|γ− 1
∣∣, where γ = α for Case 1 and γ = β for Case 2.
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As a matter of fact, for arbitrary φ, ψ ∈ L2(a, b), in light of the Parseval identity
and the mean value theorem, if |λ|α > 1 we obtain,

‖Tψ − Tφ‖2 = ‖λ
∞∑
n=1

[kn(〈ψ, φn〉)− kn(〈φ, φn〉)]φn − (ψ − φ)‖2

= ‖λ
∞∑
n=1

k′n(θn)〈ψ − φ, φn〉φn − (ψ − φ)‖2

=
∞∑
n=1

[λk′n(θn)− 1]2|〈ψ − φ, φn〉|2

≥ (|λ|α− 1)2
∞∑
n=1

|〈ψ − φ, φn〉|2 = (|λ|α− 1)2‖ψ − φ‖2,

(2.20)

where θn ∈ R is taken according to the mean value theorem. Similarly if |λ|β < 1
we have

‖Tψ − Tφ‖2 ≥ (|λ|β − 1)2‖ψ − φ‖2, (2.21)

Therefore, we conclude from (2.20) and (2.21) that

‖Tψ − Tφ‖ ≥ ||λ|γ − 1|‖ψ − φ‖, (2.22)

which proves the conclusion.
In view of the fact that kn are C1-smooth, we get that T is differentiable and

T ′(φ)ψ = λ

∞∑
n=1

k′n(〈φ, φn〉)〈ψ, φn〉φn − ψ, (2.23)

which is well-defined for any ψ ∈ L2(a, b) again by (iii). Now, for any u, v ∈ L2(a, b),
we calculate from (2.23) that

〈T ′(φ)u, v〉 = λ

∞∑
n=1

k′n(〈φ, φn〉)〈u, φn〉〈φn, v〉 − 〈u, v〉 = 〈u, T ′(φ)v〉.

This tells us that T ′(φ) is self-adjoint for all φ ∈ L2(a, b). Applying the first case
of Corollary 2.14 we conclude that
Conclusion 2. If either (i), (ii) and (iii) for Case 1 or (i) and (iii) for Case 2 hold,
then for each f ∈ L2(a, b) the nonlinear equation (2.19) has a unique solution in
L2(a, b).
Conclusion 3. If (i), (ii) and (iii) for Case 1 hold, then T : L2(a, b)→ L2(a, b) is
expansive with constant |λ|α − 1, but it may fail to satisfy (2.13), and so it may
not be strongly monotone.

The expansiveness has already been established above. By the definition of T ,
we have

〈Tψ − Tφ, ψ − φ〉+ (|λ|α− 1)‖ψ − φ‖2 =
∞∑
n=1

[λk′n(θn) + |λ|α− 2]|〈ψ − φ, φn〉|2,

which may be negative for some ψ and φ if k′n’s change signs; for example, let us
take k′n = (−1)n and λ > 1. Then α = 1 and the above equality becomes

〈Tψ − Tφ, ψ − φ〉+ (λ− 1)‖ψ − φ‖2 = 2λ
∞∑
n=1

|〈ψ − φ, φ2n〉|2 − 2
∞∑
n=1

|〈ψ − φ, φn〉|2,



14 T. XIANG EJDE-2013/02

which will be definitely negative for some ψ and φ. The same argument can be
made for −T . Consequently, T can not satisfy (2.13) in this case.

Finally, we would like to point out that the second case of Corollary 2.14 is
fulfilled for Case 2 and

Case 1’. |λ|α > 1 and either 0 < α ≤ infn infx k′n(x) or supn supx k′n(x) ≤
−α < 0. To this end, we compute as above from (2.23) that

〈T ′(φ)ψ,ψ〉 =
∞∑
n=1

[λk′n(〈φ, φn〉)− 1]|〈ψ, φn〉|2 (2.24)

and

〈T ′(φ)ψ, T ′(φ)ψ〉 =
∞∑
n=1

[λk′n(〈φ, φn〉)− 1]2|〈ψ, φn〉|2. (2.25)

Under Case 2, we have from (2.24) and (2.25) that

|〈T ′(φ)ψ,ψ〉| ≥ 1
1 + |λ|β

∞∑
n=1

[λk′n(〈φ, φn〉)− 1]2|〈ψ, φn〉|2

=
1

1 + |λ|β
〈T ′(φ)ψ, T ′(φ)ψ〉, ∀ψ ∈ L2(a, b).

Under Case 1’, we have from (2.24) that

|〈T ′(φ)ψ,ψ〉| ≥ (|λ|α− 1)
∞∑
n=1

|〈ψ, φn〉|2 = (|λ|α− 1)‖ψ‖2, ∀ψ ∈ L2(a, b),

Remark 2.15. Using a surjective result for expansive mappings like Theorem 2.1,
the integral equation (2.19) was studied in [4]. The result there was for a given
function f ∈ L2(a, b) such that

∑∞
n=1 |k−1

n (〈f, φn〉)|2 < +∞, and kn fulfills (i) and
(ii) for each n.

3. A further reflection on “expansive set” fixed point problems

Let X be a topological space and M a subset of X, and let T : M → X be a
mapping. In the preceding paper [19], we illustrated by example that the condition
T (M) ⊇ M can not insure the existence of a fixed point of T in M . Observe
that the set M there was only assumed closed but not convex. Hence, it did not
completely negate the corresponding conclusion for the case X = R in a higher
dimensional space. In the setting X = R, the following result holds:

Let [a, b] ⊂ R and f be a real-valued continuous function on R,
then f has a fixed point in [a, b] provided f([a, b]) ⊃ [a, b].

As a matter of fact, let us modify the example there as follows: let θ ∈ (0, 2π) be
a given constant, and define

T (x, y, z) = (x cos θ + y sin θ,−x sin θ + y cos θ, tan z), (x, y, z) ∈M,

where
M = {(x, y, z) ∈ R3|x2 + y2 ≤ 1,−π

4
≤ z ≤ π

4
}

is a compact and convex set. Then T : M → R3 is a continuous but not an
expansive mapping, T (M) % M and T has a trivial fixed point (0, 0, 0) in M . This
shows that Theorem 2.1 is just a sufficient condition to ensure the existence of a
fixed point of T in M . However, the conclusion of Theorem 2.1 holds regardless of
the convexity of M and of the continuity of T . Given that the set M is convex and
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that T (M) ⊃M , then what additionally mild conditions imposed on T and M can
guarantee that T has at least one fixed point in M? By the well-known Schauder
fixed point theorem, it is easily seen that the conditions ensuring the continuity of
T−1 plus the conditions that M is both compact and convex can induce the desired
result. Obviously, the conditions concerning T−1 are usually unpopular.

Based on the above observations, one may conjecture the following interesting
“reverse” Schauder fixed point problem:

Let X be a topological space, M a compact and convex subset of
X, and T : M → X a continuous mapping. Does T have a fixed
point in M , provided T (M) % M?

However, it turns out that this conjecture is an immature one, since it can be easily
negated by the following simple example: Let X = C,M = [−2, 2] ⊂ R ⊂ X and
T : M → X,

Tx =


2x+ 4, if − 2 ≤ x < −1,
2e

π
2 i(1+x), if − 1 ≤ x ≤ 1,

2x− 4, if 1 < x ≤ 2.

Notice that in this counterexample the interior of the compact convex subset M in
X is empty; on the other hand, that X is the complex plane. Hence, two versions
of a more mature conjecture may be formulated as follows:

Problem 2. Let X be a topological space, M a compact and
convex subset of X with T : M → X a (continuous) mapping.
Does T have a fixed point in M , provided T (M) % M?
Problem 3. Let X be a topological space, M a compact and
convex subset of X, and T : M → X a (continuous) mapping.
Does T have a fixed point in M , provided T (M) % M?
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