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AN APPROXIMATION PROPERTY OF GAUSSIAN FUNCTIONS

SOON-MO JUNG, HAMDULLAH ŞEVLI, SEBAHEDDIN ŞEVGIN

Abstract. Using the power series method, we solve the inhomogeneous linear
first order differential equation

y′(x) + λ(x− µ)y(x) =

∞X
m=0

am(x− µ)m,

and prove an approximation property of Gaussian functions.

1. Introduction

Let Y and I be a normed space and an open subinterval of R, respectively. If
for any function f : I → Y satisfying the differential inequality∥∥an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) + h(x)

∥∥ ≤ ε
for all x ∈ I and for some ε ≥ 0, there exists a solution f0 : I → Y of the differential
equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) + h(x) = 0

such that ‖f(x) − f0(x)‖ ≤ K(ε) for any x ∈ I, where K(ε) depends on ε only,
then we say that the above differential equation satisfies the Hyers-Ulam stability
(or the local Hyers-Ulam stability if the domain I is not the whole space R). We
may apply these terminologies for other differential equations. For a more detailed
definition of the Hyers-Ulam stability, refer to [2, 3, 5].

Ob loza seems to be the first author who investigated the Hyers-Ulam stability of
linear differential equations (see [9, 10]). Here, we introduce a result of Alsina and
Ger (see [1]): If a differentiable function f : I → R is a solution of the differential
inequality |y′(x) − y(x)| ≤ ε, where I is an open subinterval of R, then there
exists a solution f0 : I → R of the differential equation y′(x) = y(x) such that
|f(x)− f0(x)| ≤ 3ε for any x ∈ I. This result of Alsina and Ger was generalized by
Takahasi, Miura and Miyajima: They proved in [12] that the Hyers-Ulam stability
holds for the Banach space valued differential equation y′(x) = λy(x) (see also
[7, 8, 11]).

Using the conventional power series method, the first author investigated the
general solution of the inhomogeneous linear first order differential equations of the
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form,

y′(x)− λy(x) =
∞∑
m=0

am(x− c)m,

where λ is a complex number and the convergence radius of the power series is pos-
itive. This result was applied for proving an approximation property of exponential
functions in a neighborhood of c (see [4]).

Throughout this paper, we assume that ρ is a positive real number or infinity.
In §2 of this paper, using an idea from [4], we will investigate the general solution
of the inhomogeneous linear differential equation of the first order,

y′(x) + λ(x− µ)y(x) =
∞∑
m=0

am(x− µ)m, (1.1)

where the coefficients am of the power series are given such that the radius of
convergence is at least ρ. Moreover, we prove the (local) Hyers-Ulam stability of
linear first order differential equation (2.1) in a class of special analytic functions.

2. General Solution of (1.1)

The linear first order differential equation

y′(x) + λ(x− µ)y(x) = 0 (2.1)

has a general solution of the form y(x) = c exp
{
− λ

2 (x − µ)2}, which is called a
Gaussian function. We recall that ρ is a positive real number or infinity.

Theorem 2.1. Let λ 6= 0 and µ be a complex number and a real number, respec-
tively. Assume that the radius of convergence of power series

∑∞
m=0 am(x−µ)m is

at least ρ. Every solution y : (µ− ρ, µ+ ρ) → C of the inhomogeneous differential
equation (1.1) can be expressed as

y(x) = yh(x) +
∞∑
m=0

cm(x− µ)m, (2.2)

where the coefficients cm are given by

c2m =
m−1∑
i=0

(−1)i
a2m−1−2i

λ

i∏
k=0

λ

2m− 2k
+ (−1)mc0

m−1∏
k=0

λ

2m− 2k
, (2.3)

c2m+1 =
m−1∑
i=0

(−1)i
a2m−2i

λ

i∏
k=0

λ

2m+ 1− 2k
+ (−1)mc1

m−1∏
k=0

λ

2m+ 1− 2k
(2.4)

for each m ∈ N0, and yh(x) is a solution of the corresponding homogeneous differ-
ential equation (2.1).

Proof. Since each solution of (1.1) can be expressed as a power series in x− µ, we
put y(x) =

∑∞
m=0 cm(x− µ)m in (1.1) to obtain

y′(x) + λ(x− µ)y(x) = c1 +
∞∑
m=0

(m+ 2)cm+2(x− µ)m+1 +
∞∑
m=0

λcm(x− µ)m+1

= c1 +
∞∑
m=0

[
(m+ 2)cm+2 + λcm

]
(x− µ)m+1
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= a0 +
∞∑
m=0

am+1(x− µ)m+1,

from which we obtain the following recurrence formula
c1 = a0,

(m+ 2)cm+2 + λcm = am+1 (m ∈ N0).
(2.5)

We will now prove the formula (2.3) for any m ∈ N0: If we set m = 0 in (2.3),
then we get c0 = c0 which is true. We assume that the formula (2.3) is true for
some m ∈ N0. Then, it follows from (2.5) and the induction hypothesis that

c2m+2

=
a2m+1

2m+ 2
− λ

2m+ 2
c2m

=
a2m+1

2m+ 2
− λ

2m+ 2

[m−1∑
i=0

(−1)i
a2m−1−2i

λ

i∏
k=0

λ

2m− 2k
+ (−1)mc0

m−1∏
k=0

λ

2m− 2k

]
=

a2m+1

2m+ 2
+
m−1∑
i=0

(−1)i+1 a2m−1−2i

λ

i∏
k=−1

λ

2m− 2k
+ (−1)m+1c0

m−1∏
k=−1

λ

2m− 2k

=
a2m+1

2m+ 2
+
m−1∑
i=0

(−1)i+1 a2m−1−2i

λ

i+1∏
k=0

λ

2m+ 2− 2k
+ (−1)m+1c0

m∏
k=0

λ

2m+ 2− 2k

=
a2m+1

2m+ 2
+

m∑
i=1

(−1)i
a2m+1−2i

λ

i∏
k=0

λ

2(m+ 1)− 2k
+ (−1)m+1c0

m∏
k=0

λ

2(m+ 1)− 2k

=
m∑
i=0

(−1)i
a2m+1−2i

λ

i∏
k=0

λ

2(m+ 1)− 2k
+ (−1)m+1c0

m∏
k=0

λ

2(m+ 1)− 2k
,

which can be obtained provided we replace m in (2.3) with m + 1. Hence, we
conclude that the formula (2.3) is true for all m ∈ N0. Similarly, we can also prove
the validity of (2.4) for all m ∈ N0.

Indeed, in view of (2.5), yp(x) =
∑∞
m=0 cm(x− µ)m is a solution of the inhomo-

geneous linear differential equation (1.1). Since every solution of Eq. (1.1) is a sum
of a solution yh(x) of the corresponding homogeneous equation and a particular
solution yp(x) of the inhomogeneous equation, it can be expressed by (2.2).

The formulas (2.3) and (2.4) can be merged in a new one:

cm =
[m/2]−1∑
i=0

(−1)i
am−1−2i

λ

i∏
k=0

λ

m− 2k
+ (−1)[m/2]c0,1

[m/2]−1∏
k=0

λ

m− 2k
(2.6)

for all m ∈ N0, where c0,1 = c0 for m even, c0,1 = c1 for m odd, and [m/2] denotes
the largest integer not exceeding m/2. Let us define

C := max
{ 1
|λ|

i∏
k=0

|λ|
m− 2k

| m ∈ N0; i ∈ {0, 1, . . . , [m/2]− 1}
}
.

For any ε > 0, we can choose an (sufficiently large) integer mε such that
[m/2]−1∏
k=0

|λ|
m− 2k

≤ ε
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for all integers m ≥ mε. Thus, in view of (2.6), there exists a constant D > 0 such
that

|cm| ≤ (C +D)
m−1∑
i=0

|ai| (2.7)

for all sufficiently large integers m. (Since the inhomogeneous term
∑∞
m=0 am(x−

µ)m has to be nonzero for some x ∈ (µ − ρ, µ + ρ), there exists an m0 ∈ N0 such
that am0 6= 0 and hence,

∑m−1
i=0 |ai| > 0 for all sufficiently large integer m.)

Finally, it follows from (2.7) and [6, Problem 8.8.1 (p)] that

lim sup
m→∞

|cm|1/m = lim sup
m→∞

( 1
m
|cm|

)1/m

≤ lim sup
m→∞

(C +D

m

m−1∑
i=0

|ai|
)1/m

≤ lim sup
m→∞

|am|1/m.

By use of the Cauchy-Hadamard theorem (see [6, Theorem 8.8.2]), the radius of
convergence of the power series for yp(x) is at least ρ. Therefore, y(x) in Eq. (2.2)
is well defined on (µ− ρ, µ+ ρ). �

Remark 2.2. We notice that Theorem 2.1 is true if we set c0 = 0.

3. Local Hyers-Ulam stability of (2.1)

Let ρ be a positive real number or the infinity. We denote by C̃ the set of all
functions f : (µ− ρ, µ+ ρ)→ C with the following properties:

(a) f(x) is expressible by a power series
∑∞
m=0 bm(x − µ)m whose radius of

convergence is at least ρ;
(b) There exists a constant K ≥ 0 such that

∞∑
m=0

|am(x− µ)m| ≤ K
∣∣ ∞∑
m=0

am(x− µ)m
∣∣

for all x ∈ (µ − ρ, µ + ρ), where a0 = b1 and am = (m + 1)bm+1 + λbm−1

for any m ∈ N.

If we define

(y1 + y2)(x) = y1(x) + y2(x) and (λy1)(x) = λy1(x)

for all y1, y2 ∈ C̃ and λ ∈ C, then C̃ is a vector space over complex numbers. We
remark that the set C̃ is large enough to be a vector space.

We investigate an approximation property of Gaussian functions. More pre-
cisely, we prove the (local) Hyers-Ulam stability of the linear first order differential
equation (2.1) for the functions in C̃.

Theorem 3.1. Let λ 6= 0 and µ be a complex number and a real number, respec-
tively. If a function y ∈ C̃ satisfies the differential inequality∣∣y′(x) + λ(x− µ)y(x)

∣∣ ≤ ε (3.1)
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for all x ∈ (µ − ρ, µ + ρ) and for some ε ≥ 0, then there exists a solution yh :
(µ− ρ, µ+ ρ)→ C of the differential equation (2.1) such that∣∣y(x)− yh(x)

∣∣ ≤ (|b1| exp
{ |λ|

2
(x− µ)2

}
+
Kε

2
exp

{ |λ|
2 (x− µ)2

}
− 1

|λ|
2 (x− µ)2

)
|x− µ|

for any x ∈ (µ− ρ, µ+ ρ). In particular, it holds that yh ∈ C̃.

Proof. Since y belongs to C̃, y(x) can be expressed by y(x) =
∑∞
m=0 bm(x − µ)m

and it follows from (a) and (b) that

y′(x) + λ(x− µ)y(x)

= b1 +
∞∑
m=0

(m+ 2)bm+2(x− µ)m+1 +
∞∑
m=0

λbm(x− µ)m+1

= b1 +
∞∑
m=0

[
(m+ 2)bm+2 + λbm

]
(x− µ)m+1

=
∞∑
m=0

am(x− µ)m

(3.2)

for all x ∈ (µ− ρ, µ+ ρ). By considering (3.1) and (3.2), we have∣∣∣ ∞∑
m=0

am(x− µ)m
∣∣∣ ≤ ε

for any x ∈ (µ− ρ, µ+ ρ). This inequality, together with (b), yields
∞∑
m=0

∣∣am(x− µ)m
∣∣ ≤ K∣∣∣ ∞∑

m=0

am(x− µ)m
∣∣∣ ≤ Kε (3.3)

for all x ∈ (µ− ρ, µ+ ρ).
Now, it follows from Theorem 2.1, (2.6), (3.2), and (3.3) that there exists a

solution yh : (µ− ρ, µ+ ρ)→ C of the differential equation (2.1) such that∣∣y(x)− yh(x)
∣∣

≤
∞∑
m=0

|cm||x− µ|m ≤ |c0|+ |c1||x− µ|+
∞∑
m=2

|cm||x− µ|m

≤ |c0|+ |c1||x− µ|+
∞∑
m=2

[m/2]−1∑
i=0

|am−2i−1(x− µ)m−2i−1|
|λ(x− µ)|

i∏
k=0

|λ(x− µ)2|
m− 2k

+
∞∑
m=2

|c0,1||x− µ|m−2[m/2]

[m/2]−1∏
k=0

|λ(x− µ)2|
m− 2k

≤ |c0|+ |c1||x− µ|+
∞∑
m=2

|am−1(x− µ)m−1|
|λ(x− µ)|

|λ(x− µ)2|
m

+
∞∑
m=4

|am−3(x− µ)m−3|
|λ(x− µ)|

|λ(x− µ)2|
m

|λ(x− µ)2|
m− 2

+
∞∑
m=6

|am−5(x− µ)m−5|
|λ(x− µ)|

|λ(x− µ)2|
m

|λ(x− µ)2|
m− 2

|λ(x− µ)2|
m− 4

+ . . .
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+ |c0|
|λ(x− µ)2|

2
+ |c1||x− µ|

|λ(x− µ)2|
3

+ |c0|
|λ(x− µ)2|

4
|λ(x− µ)2|

2

+ |c1||x− µ|
|λ(x− µ)2|

5
|λ(x− µ)2|

3
+ |c0|

|λ(x− µ)2|
6

|λ(x− µ)2|
4

|λ(x− µ)2|
2

+ |c1||x− µ|
|λ(x− µ)2|

7
|λ(x− µ)2|

5
|λ(x− µ)2|

3
+ · · ·

≤ Kε
( |x− µ|

2
+
|λ(x− µ)3|

4 · 2
+
|λ2(x− µ)5|

6 · 4 · 2
+ · · ·

)
+ |c0|

(
1 +
|λ(x− µ)2|

2
+
|λ(x− µ)2|2

4 · 2
+
|λ(x− µ)2|3

6 · 4 · 2
+ · · ·

)
+ |c1||x− µ|

(
1 +
|λ(x− µ)2|

3
+
|λ(x− µ)2|2

5 · 3
+
|λ(x− µ)2|3

7 · 5 · 3
+ . . .

)
for all x ∈ (µ− ρ, µ+ ρ), where c0,1 = c0 for m even, c0,1 = c1 for m odd.

In view of (2.5), Remark 2.2, and (b), we know that yp(x) = b1(x − µ) +∑∞
m=2 cm(x−µ)m is a particular solution of the inhomogeneous differential equation

(1.1), i.e., we can set c0 = 0 and c1 = b1 in Theorem 2.1. Hence, we obtain∣∣y(x)− yh(x)
∣∣

≤ |c0|+ |c1||x− µ|+
( Kε

|λ(x− µ)|
+ |c0|+ |c1||x− µ|

) ∞∑
i=1

|λ(x− µ)2|i

2ii!

= |b1||x− µ|+
( Kε

|λ(x− µ)|
+ |b1||x− µ|

) ∞∑
i=1

1
i!

∣∣∣λ
2

(x− µ)2
∣∣∣i

=
(
|b1| exp

{ |λ|
2

(x− µ)2
}

+
Kε

2

exp
{
|λ|
2 (x− µ)2

}
− 1

|λ|
2 (x− µ)2

)
|x− µ|

for any x ∈ (µ− ρ, µ+ ρ).
As we already remarked, there exists a real number c such that

yh(x) = c exp
{
− λ

2
(x− µ)2

}
.

Hence, yh(x) has a power series expansion in x− µ, namely,

yh(x) =
∞∑
m=0

b∗m(x− µ)m, (3.4)

where

b∗2m = (−1)m
c

m!

(λ
2

)m
and b∗2m+1 = 0

for all m ∈ N0. The radius of convergence of the power series (3.4) is infinity.
It follows from (b) that a∗0 = b∗1 = 0 and

a∗2m = (2m+ 1)b∗2m+1 + λb∗2m−1 = 0

for every m ∈ N. Moreover, we have

a∗2m+1 = (2m+ 2)b∗2m+2 + λb∗2m

= (2m+ 2)(−1)m+1 c

(m+ 1)!

(λ
2

)m+1

+ λ(−1)m
c

m!

(λ
2

)m
= 0
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for all m ∈ N0, i.e., a∗m = 0 for all m ∈ N0. Therefore, yh(x) = c exp
{
− λ

2 (x−µ)2
}

satisfies both conditions (a) and (b). That is, yh belongs to C̃. �

According to the previous theorem, each approximate solution of the differential
equation (2.1) can be well approximated by a Gaussian function in a (small) neigh-
borhood of µ. More precisely, by applying l’Hospital’s rule, we can easily prove the
following corollary.

Corollary 3.2. Let λ 6= 0 and µ be a complex number and a real number, re-
spectively. If a function y ∈ C̃ satisfies the differential inequality (3.1) for all
x ∈ (µ − ρ, µ + ρ) and for some ε ≥ 0, then there exists a complex number c such
that ∣∣∣y(x)− c exp

{
− λ

2
(x− µ)2

}∣∣∣ = O
(
|x− µ|

)
as x→ µ,

where O(·) denotes the Landau symbol (big-O).
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