Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 03, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

AN APPROXIMATION PROPERTY OF GAUSSIAN FUNCTIONS

SOON-MO JUNG, HAMDULLAH ŞEVLI, SEBAHEDDIN ŞEVGIN

$$
\begin{aligned}
& \text { AbSTRACT. Using the power series method, we solve the inhomogeneous linear } \\
& \text { first order differential equation } \\
& \qquad y^{\prime}(x)+\lambda(x-\mu) y(x)=\sum_{m=0}^{\infty} a_{m}(x-\mu)^{m} \\
& \text { and prove an approximation property of Gaussian functions. }
\end{aligned}
$$

1. Introduction

Let Y and I be a normed space and an open subinterval of \mathbb{R}, respectively. If for any function $f: I \rightarrow Y$ satisfying the differential inequality

$$
\left\|a_{n}(x) y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\cdots+a_{1}(x) y^{\prime}(x)+a_{0}(x) y(x)+h(x)\right\| \leq \varepsilon
$$

for all $x \in I$ and for some $\varepsilon \geq 0$, there exists a solution $f_{0}: I \rightarrow Y$ of the differential equation

$$
a_{n}(x) y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\cdots+a_{1}(x) y^{\prime}(x)+a_{0}(x) y(x)+h(x)=0
$$

such that $\left\|f(x)-f_{0}(x)\right\| \leq K(\varepsilon)$ for any $x \in I$, where $K(\varepsilon)$ depends on ε only, then we say that the above differential equation satisfies the Hyers-Ulam stability (or the local Hyers-Ulam stability if the domain I is not the whole space \mathbb{R}). We may apply these terminologies for other differential equations. For a more detailed definition of the Hyers-Ulam stability, refer to [2, 3, 5].

Obłoza seems to be the first author who investigated the Hyers-Ulam stability of linear differential equations (see [9, 10]). Here, we introduce a result of Alsina and Ger (see [1]): If a differentiable function $f: I \rightarrow \mathbb{R}$ is a solution of the differential inequality $\left|y^{\prime}(x)-y(x)\right| \leq \varepsilon$, where I is an open subinterval of \mathbb{R}, then there exists a solution $f_{0}: I \rightarrow \mathbb{R}$ of the differential equation $y^{\prime}(x)=y(x)$ such that $\left|f(x)-f_{0}(x)\right| \leq 3 \varepsilon$ for any $x \in I$. This result of Alsina and Ger was generalized by Takahasi, Miura and Miyajima: They proved in [12] that the Hyers-Ulam stability holds for the Banach space valued differential equation $y^{\prime}(x)=\lambda y(x)$ (see also [7, 8, 11).

Using the conventional power series method, the first author investigated the general solution of the inhomogeneous linear first order differential equations of the

[^0]form,
$$
y^{\prime}(x)-\lambda y(x)=\sum_{m=0}^{\infty} a_{m}(x-c)^{m}
$$
where λ is a complex number and the convergence radius of the power series is positive. This result was applied for proving an approximation property of exponential functions in a neighborhood of c (see [4]).

Throughout this paper, we assume that ρ is a positive real number or infinity. In $\S 2$ of this paper, using an idea from [4], we will investigate the general solution of the inhomogeneous linear differential equation of the first order,

$$
\begin{equation*}
y^{\prime}(x)+\lambda(x-\mu) y(x)=\sum_{m=0}^{\infty} a_{m}(x-\mu)^{m} \tag{1.1}
\end{equation*}
$$

where the coefficients a_{m} of the power series are given such that the radius of convergence is at least ρ. Moreover, we prove the (local) Hyers-Ulam stability of linear first order differential equation (2.1) in a class of special analytic functions.

2. General Solution of 1.1

The linear first order differential equation

$$
\begin{equation*}
y^{\prime}(x)+\lambda(x-\mu) y(x)=0 \tag{2.1}
\end{equation*}
$$

has a general solution of the form $y(x)=c \exp \left\{-\frac{\lambda}{2}(x-\mu)^{2}\right\}$, which is called a Gaussian function. We recall that ρ is a positive real number or infinity.

Theorem 2.1. Let $\lambda \neq 0$ and μ be a complex number and a real number, respectively. Assume that the radius of convergence of power series $\sum_{m=0}^{\infty} a_{m}(x-\mu)^{m}$ is at least ρ. Every solution $y:(\mu-\rho, \mu+\rho) \rightarrow \mathbb{C}$ of the inhomogeneous differential equation 1.1 can be expressed as

$$
\begin{equation*}
y(x)=y_{h}(x)+\sum_{m=0}^{\infty} c_{m}(x-\mu)^{m} \tag{2.2}
\end{equation*}
$$

where the coefficients c_{m} are given by

$$
\begin{gather*}
c_{2 m}=\sum_{i=0}^{m-1}(-1)^{i} \frac{a_{2 m-1-2 i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2 m-2 k}+(-1)^{m} c_{0} \prod_{k=0}^{m-1} \frac{\lambda}{2 m-2 k}, \tag{2.3}\\
c_{2 m+1}=\sum_{i=0}^{m-1}(-1)^{i} \frac{a_{2 m-2 i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2 m+1-2 k}+(-1)^{m} c_{1} \prod_{k=0}^{m-1} \frac{\lambda}{2 m+1-2 k} \tag{2.4}
\end{gather*}
$$

for each $m \in \mathbb{N}_{0}$, and $y_{h}(x)$ is a solution of the corresponding homogeneous differential equation 2.1.

Proof. Since each solution of 1.1 can be expressed as a power series in $x-\mu$, we put $y(x)=\sum_{m=0}^{\infty} c_{m}(x-\mu)^{m}$ in 1.1) to obtain

$$
\begin{aligned}
y^{\prime}(x)+\lambda(x-\mu) y(x) & =c_{1}+\sum_{m=0}^{\infty}(m+2) c_{m+2}(x-\mu)^{m+1}+\sum_{m=0}^{\infty} \lambda c_{m}(x-\mu)^{m+1} \\
& =c_{1}+\sum_{m=0}^{\infty}\left[(m+2) c_{m+2}+\lambda c_{m}\right](x-\mu)^{m+1}
\end{aligned}
$$

$$
=a_{0}+\sum_{m=0}^{\infty} a_{m+1}(x-\mu)^{m+1}
$$

from which we obtain the following recurrence formula

$$
\begin{gather*}
c_{1}=a_{0} \\
(m+2) c_{m+2}+\lambda c_{m}=a_{m+1} \quad\left(m \in \mathbb{N}_{0}\right) \tag{2.5}
\end{gather*}
$$

We will now prove the formula (2.3) for any $m \in \mathbb{N}_{0}$: If we set $m=0$ in (2.3), then we get $c_{0}=c_{0}$ which is true. We assume that the formula (2.3) is true for some $m \in \mathbb{N}_{0}$. Then, it follows from (2.5) and the induction hypothesis that

$$
\begin{aligned}
& c_{2 m+2} \\
& =\frac{a_{2 m+1}}{2 m+2}-\frac{\lambda}{2 m+2} c_{2 m} \\
& =\frac{a_{2 m+1}}{2 m+2}-\frac{\lambda}{2 m+2}\left[\sum_{i=0}^{m-1}(-1)^{i} \frac{a_{2 m-1-2 i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2 m-2 k}+(-1)^{m} c_{0} \prod_{k=0}^{m-1} \frac{\lambda}{2 m-2 k}\right] \\
& =\frac{a_{2 m+1}}{2 m+2}+\sum_{i=0}^{m-1}(-1)^{i+1} \frac{a_{2 m-1-2 i}}{\lambda} \prod_{k=-1}^{i} \frac{\lambda}{2 m-2 k}+(-1)^{m+1} c_{0} \prod_{k=-1}^{m-1} \frac{\lambda}{2 m-2 k} \\
& =\frac{a_{2 m+1}}{2 m+2}+\sum_{i=0}^{m-1}(-1)^{i+1} \frac{a_{2 m-1-2 i}}{\lambda} \prod_{k=0}^{i+1} \frac{\lambda}{2 m+2-2 k}+(-1)^{m+1} c_{0} \prod_{k=0}^{m} \frac{\lambda}{2 m+2-2 k} \\
& =\frac{a_{2 m+1}}{2 m+2}+\sum_{i=1}^{m}(-1)^{i} \frac{a_{2 m+1-2 i}^{i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2(m+1)-2 k}+(-1)^{m+1} c_{0} \prod_{k=0}^{m} \frac{\lambda}{2(m+1)-2 k} \\
& =\sum_{i=0}^{m}(-1)^{i} \frac{a_{2 m+1-2 i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2(m+1)-2 k}+(-1)^{m+1} c_{0} \prod_{k=0}^{m} \frac{\lambda}{2(m+1)-2 k},
\end{aligned}
$$

which can be obtained provided we replace m in 2.3 with $m+1$. Hence, we conclude that the formula (2.3) is true for all $m \in \mathbb{N}_{0}$. Similarly, we can also prove the validity of (2.4) for all $m \in \mathbb{N}_{0}$.

Indeed, in view of 2.5), $y_{p}(x)=\sum_{m=0}^{\infty} c_{m}(x-\mu)^{m}$ is a solution of the inhomogeneous linear differential equation (1.1). Since every solution of Eq. (1.1) is a sum of a solution $y_{h}(x)$ of the corresponding homogeneous equation and a particular solution $y_{p}(x)$ of the inhomogeneous equation, it can be expressed by 2.2 .

The formulas 2.3 and 2.4 can be merged in a new one:

$$
\begin{equation*}
c_{m}=\sum_{i=0}^{[m / 2]-1}(-1)^{i} \frac{a_{m-1-2 i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{m-2 k}+(-1)^{[m / 2]} c_{0,1} \prod_{k=0}^{[m / 2]-1} \frac{\lambda}{m-2 k} \tag{2.6}
\end{equation*}
$$

for all $m \in \mathbb{N}_{0}$, where $c_{0,1}=c_{0}$ for m even, $c_{0,1}=c_{1}$ for m odd, and [$m / 2$] denotes the largest integer not exceeding $m / 2$. Let us define

$$
C:=\max \left\{\left.\frac{1}{|\lambda|} \prod_{k=0}^{i} \frac{|\lambda|}{m-2 k} \right\rvert\, m \in \mathbb{N}_{0} ; i \in\{0,1, \ldots,[m / 2]-1\}\right\}
$$

For any $\varepsilon>0$, we can choose an (sufficiently large) integer m_{ε} such that

$$
\prod_{k=0}^{[m / 2]-1} \frac{|\lambda|}{m-2 k} \leq \varepsilon
$$

for all integers $m \geq m_{\varepsilon}$. Thus, in view of 2.6 , there exists a constant $D>0$ such that

$$
\begin{equation*}
\left|c_{m}\right| \leq(C+D) \sum_{i=0}^{m-1}\left|a_{i}\right| \tag{2.7}
\end{equation*}
$$

for all sufficiently large integers m. (Since the inhomogeneous term $\sum_{m=0}^{\infty} a_{m}(x-$ $\mu)^{m}$ has to be nonzero for some $x \in(\mu-\rho, \mu+\rho)$, there exists an $m_{0} \in \mathbb{N}_{0}$ such that $a_{m_{0}} \neq 0$ and hence, $\sum_{i=0}^{m-1}\left|a_{i}\right|>0$ for all sufficiently large integer m.)

Finally, it follows from (2.7) and [6, Problem 8.8.1 (p)] that

$$
\begin{aligned}
\limsup _{m \rightarrow \infty}\left|c_{m}\right|^{1 / m} & =\limsup _{m \rightarrow \infty}\left(\frac{1}{m}\left|c_{m}\right|\right)^{1 / m} \\
& \leq \limsup _{m \rightarrow \infty}\left(\frac{C+D}{m} \sum_{i=0}^{m-1}\left|a_{i}\right|\right)^{1 / m} \\
& \leq \limsup _{m \rightarrow \infty}\left|a_{m}\right|^{1 / m}
\end{aligned}
$$

By use of the Cauchy-Hadamard theorem (see [6, Theorem 8.8.2]), the radius of convergence of the power series for $y_{p}(x)$ is at least ρ. Therefore, $y(x)$ in Eq. 2.2 is well defined on $(\mu-\rho, \mu+\rho)$.

Remark 2.2. We notice that Theorem 2.1 is true if we set $c_{0}=0$.

3. Local Hyers-Ulam stability of 2.1

Let ρ be a positive real number or the infinity. We denote by \widetilde{C} the set of all functions $f:(\mu-\rho, \mu+\rho) \rightarrow \mathbb{C}$ with the following properties:
(a) $f(x)$ is expressible by a power series $\sum_{m=0}^{\infty} b_{m}(x-\mu)^{m}$ whose radius of convergence is at least ρ;
(b) There exists a constant $K \geq 0$ such that

$$
\sum_{m=0}^{\infty}\left|a_{m}(x-\mu)^{m}\right| \leq K\left|\sum_{m=0}^{\infty} a_{m}(x-\mu)^{m}\right|
$$

for all $x \in(\mu-\rho, \mu+\rho)$, where $a_{0}=b_{1}$ and $a_{m}=(m+1) b_{m+1}+\lambda b_{m-1}$ for any $m \in \mathbb{N}$.
If we define

$$
\left(y_{1}+y_{2}\right)(x)=y_{1}(x)+y_{2}(x) \quad \text { and } \quad\left(\lambda y_{1}\right)(x)=\lambda y_{1}(x)
$$

for all $y_{1}, y_{2} \in \widetilde{C}$ and $\lambda \in \mathbb{C}$, then \widetilde{C} is a vector space over complex numbers. We remark that the set \widetilde{C} is large enough to be a vector space.

We investigate an approximation property of Gaussian functions. More precisely, we prove the (local) Hyers-Ulam stability of the linear first order differential equation 2.1 for the functions in \widetilde{C}.

Theorem 3.1. Let $\lambda \neq 0$ and μ be a complex number and a real number, respectively. If a function $y \in \widetilde{C}$ satisfies the differential inequality

$$
\begin{equation*}
\left|y^{\prime}(x)+\lambda(x-\mu) y(x)\right| \leq \varepsilon \tag{3.1}
\end{equation*}
$$

for all $x \in(\mu-\rho, \mu+\rho)$ and for some $\varepsilon \geq 0$, then there exists a solution y_{h} : $(\mu-\rho, \mu+\rho) \rightarrow \mathbb{C}$ of the differential equation (2.1) such that

$$
\left|y(x)-y_{h}(x)\right| \leq\left(\left|b_{1}\right| \exp \left\{\frac{|\lambda|}{2}(x-\mu)^{2}\right\}+\frac{K \varepsilon}{2} \frac{\exp \left\{\frac{|\lambda|}{2}(x-\mu)^{2}\right\}-1}{\frac{|\lambda|}{2}(x-\mu)^{2}}\right)|x-\mu|
$$

for any $x \in(\mu-\rho, \mu+\rho)$. In particular, it holds that $y_{h} \in \widetilde{C}$.
Proof. Since y belongs to $\widetilde{C}, y(x)$ can be expressed by $y(x)=\sum_{m=0}^{\infty} b_{m}(x-\mu)^{m}$ and it follows from (a) and (b) that

$$
\begin{align*}
& y^{\prime}(x)+\lambda(x-\mu) y(x) \\
& =b_{1}+\sum_{m=0}^{\infty}(m+2) b_{m+2}(x-\mu)^{m+1}+\sum_{m=0}^{\infty} \lambda b_{m}(x-\mu)^{m+1} \\
& =b_{1}+\sum_{m=0}^{\infty}\left[(m+2) b_{m+2}+\lambda b_{m}\right](x-\mu)^{m+1} \tag{3.2}\\
& =\sum_{m=0}^{\infty} a_{m}(x-\mu)^{m}
\end{align*}
$$

for all $x \in(\mu-\rho, \mu+\rho)$. By considering (3.1) and (3.2), we have

$$
\left|\sum_{m=0}^{\infty} a_{m}(x-\mu)^{m}\right| \leq \varepsilon
$$

for any $x \in(\mu-\rho, \mu+\rho)$. This inequality, together with (b), yields

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|a_{m}(x-\mu)^{m}\right| \leq K\left|\sum_{m=0}^{\infty} a_{m}(x-\mu)^{m}\right| \leq K \varepsilon \tag{3.3}
\end{equation*}
$$

for all $x \in(\mu-\rho, \mu+\rho)$.
Now, it follows from Theorem 2.1, (2.6), (3.2), and (3.3) that there exists a solution $y_{h}:(\mu-\rho, \mu+\rho) \rightarrow \mathbb{C}$ of the differential equation (2.1) such that

$$
\begin{aligned}
& \left|y(x)-y_{h}(x)\right| \\
& \leq \\
& \leq \sum_{m=0}^{\infty}\left|c_{m}\right||x-\mu|^{m} \leq\left|c_{0}\right|+\left|c_{1}\right||x-\mu|+\sum_{m=2}^{\infty}\left|c_{m}\right||x-\mu|^{m} \\
& \leq \\
& \left|c_{0}\right|+\left|c_{1}\right||x-\mu|+\sum_{m=2}^{\infty} \sum_{i=0}^{[m / 2]-1} \frac{\left|a_{m-2 i-1}(x-\mu)^{m-2 i-1}\right|}{|\lambda(x-\mu)|} \prod_{k=0}^{i} \frac{\left|\lambda(x-\mu)^{2}\right|}{m-2 k} \\
& \quad+\sum_{m=2}^{\infty}\left|c_{0,1}\right||x-\mu|^{m-2[m / 2]} \prod_{k=0}^{[m / 2]-1} \frac{\left|\lambda(x-\mu)^{2}\right|}{m-2 k} \\
& \leq \\
& \quad\left|c_{0}\right|+\left|c_{1}\right||x-\mu|+\sum_{m=2}^{\infty} \frac{\left|a_{m-1}(x-\mu)^{m-1}\right|}{|\lambda(x-\mu)|} \frac{\left|\lambda(x-\mu)^{2}\right|}{m} \\
& \quad+\sum_{m=4}^{\infty} \frac{\left|a_{m-3}(x-\mu)^{m-3}\right|}{|\lambda(x-\mu)|} \frac{\left|\lambda(x-\mu)^{2}\right|}{m} \frac{\left|\lambda(x-\mu)^{2}\right|}{m-2} \\
& \quad+\sum_{m=6}^{\infty} \frac{\left|a_{m-5}(x-\mu)^{m-5}\right|}{|\lambda(x-\mu)|} \frac{\left|\lambda(x-\mu)^{2}\right|}{m} \frac{\left|\lambda(x-\mu)^{2}\right|}{m-2} \frac{\left|\lambda(x-\mu)^{2}\right|}{m-4}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& +\left|c_{0}\right| \frac{\left|\lambda(x-\mu)^{2}\right|}{2}+\left|c_{1}\right||x-\mu| \frac{\left|\lambda(x-\mu)^{2}\right|}{3}+\left|c_{0}\right| \frac{\left|\lambda(x-\mu)^{2}\right|}{4} \frac{\left|\lambda(x-\mu)^{2}\right|}{2} \\
& +\left|c_{1}\right||x-\mu| \frac{\left|\lambda(x-\mu)^{2}\right|}{5} \frac{\left|\lambda(x-\mu)^{2}\right|}{3}+\left|c_{0}\right| \frac{\left|\lambda(x-\mu)^{2}\right|}{6} \frac{\left|\lambda(x-\mu)^{2}\right|}{4} \frac{\left|\lambda(x-\mu)^{2}\right|}{2} \\
& +\left|c_{1}\right||x-\mu| \frac{\left|\lambda(x-\mu)^{2}\right|}{7} \frac{\left|\lambda(x-\mu)^{2}\right|}{5} \frac{\left|\lambda(x-\mu)^{2}\right|}{3}+\cdots \\
& \leq K \varepsilon\left(\frac{|x-\mu|}{2}+\frac{\left|\lambda(x-\mu)^{3}\right|}{4 \cdot 2}+\frac{\left|\lambda^{2}(x-\mu)^{5}\right|}{6 \cdot 4 \cdot 2}+\cdots\right) \\
& +\left|c_{0}\right|\left(1+\frac{\left|\lambda(x-\mu)^{2}\right|}{2}+\frac{\left|\lambda(x-\mu)^{2}\right|^{2}}{4 \cdot 2}+\frac{\left|\lambda(x-\mu)^{2}\right|^{3}}{6 \cdot 4 \cdot 2}+\cdots\right) \\
& +\left|c_{1}\right||x-\mu|\left(1+\frac{\left|\lambda(x-\mu)^{2}\right|}{3}+\frac{\left|\lambda(x-\mu)^{2}\right|^{2}}{5 \cdot 3}+\frac{\left|\lambda(x-\mu)^{2}\right|^{3}}{7 \cdot 5 \cdot 3}+\ldots\right)
\end{aligned}
$$

for all $x \in(\mu-\rho, \mu+\rho)$, where $c_{0,1}=c_{0}$ for m even, $c_{0,1}=c_{1}$ for m odd.
In view of 2.5), Remark 2.2, and (b), we know that $y_{p}(x)=b_{1}(x-\mu)+$ $\sum_{m=2}^{\infty} c_{m}(x-\mu)^{m}$ is a particular solution of the inhomogeneous differential equation 1.1., i.e., we can set $c_{0}=0$ and $c_{1}=b_{1}$ in Theorem 2.1. Hence, we obtain

$$
\begin{aligned}
& \left|y(x)-y_{h}(x)\right| \\
& \leq\left|c_{0}\right|+\left|c_{1}\right||x-\mu|+\left(\frac{K \varepsilon}{|\lambda(x-\mu)|}+\left|c_{0}\right|+\left|c_{1}\right||x-\mu|\right) \sum_{i=1}^{\infty} \frac{\left|\lambda(x-\mu)^{2}\right|^{i}}{2^{i} i!} \\
& =\left|b_{1}\right||x-\mu|+\left(\frac{K \varepsilon}{|\lambda(x-\mu)|}+\left|b_{1}\right||x-\mu|\right) \sum_{i=1}^{\infty} \frac{1}{i!}\left|\frac{\lambda}{2}(x-\mu)^{2}\right|^{i} \\
& =\left(\left|b_{1}\right| \exp \left\{\frac{|\lambda|}{2}(x-\mu)^{2}\right\}+\frac{K \varepsilon}{2} \frac{\exp \left\{\frac{|\lambda|}{2}(x-\mu)^{2}\right\}-1}{\frac{|\lambda|}{2}(x-\mu)^{2}}\right)|x-\mu|
\end{aligned}
$$

for any $x \in(\mu-\rho, \mu+\rho)$.
As we already remarked, there exists a real number c such that

$$
y_{h}(x)=c \exp \left\{-\frac{\lambda}{2}(x-\mu)^{2}\right\}
$$

Hence, $y_{h}(x)$ has a power series expansion in $x-\mu$, namely,

$$
\begin{equation*}
y_{h}(x)=\sum_{m=0}^{\infty} b_{m}^{*}(x-\mu)^{m} \tag{3.4}
\end{equation*}
$$

where

$$
b_{2 m}^{*}=(-1)^{m} \frac{c}{m!}\left(\frac{\lambda}{2}\right)^{m} \quad \text { and } \quad b_{2 m+1}^{*}=0
$$

for all $m \in \mathbb{N}_{0}$. The radius of convergence of the power series 3.4 is infinity.
It follows from (b) that $a_{0}^{*}=b_{1}^{*}=0$ and

$$
a_{2 m}^{*}=(2 m+1) b_{2 m+1}^{*}+\lambda b_{2 m-1}^{*}=0
$$

for every $m \in \mathbb{N}$. Moreover, we have

$$
\begin{aligned}
a_{2 m+1}^{*} & =(2 m+2) b_{2 m+2}^{*}+\lambda b_{2 m}^{*} \\
& =(2 m+2)(-1)^{m+1} \frac{c}{(m+1)!}\left(\frac{\lambda}{2}\right)^{m+1}+\lambda(-1)^{m} \frac{c}{m!}\left(\frac{\lambda}{2}\right)^{m}=0
\end{aligned}
$$

for all $m \in \mathbb{N}_{0}$, i.e., $a_{m}^{*}=0$ for all $m \in \mathbb{N}_{0}$. Therefore, $y_{h}(x)=c \exp \left\{-\frac{\lambda}{2}(x-\mu)^{2}\right\}$ satisfies both conditions (a) and (b). That is, y_{h} belongs to \widetilde{C}.

According to the previous theorem, each approximate solution of the differential equation (2.1) can be well approximated by a Gaussian function in a (small) neighborhood of μ. More precisely, by applying l'Hospital's rule, we can easily prove the following corollary.

Corollary 3.2. Let $\lambda \neq 0$ and μ be a complex number and a real number, respectively. If a function $y \in \widetilde{C}$ satisfies the differential inequality (3.1) for all $x \in(\mu-\rho, \mu+\rho)$ and for some $\varepsilon \geq 0$, then there exists a complex number c such that

$$
\left|y(x)-c \exp \left\{-\frac{\lambda}{2}(x-\mu)^{2}\right\}\right|=O(|x-\mu|) \quad \text { as } \quad x \rightarrow \mu,
$$

where $O(\cdot)$ denotes the Landau symbol (big-O).
Acknowledgments. This research was completed with the support of the Scientific and Technological Research Council of Turkey while the first author was a visiting scholar at Istanbul Commerce University, Istanbul, Turkey.

References

[1] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), 373-380.
[2] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Sci. Publ., Singapore, 2002.
[3] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
[4] S.-M. Jung, An approximation property of exponential functions, Acta Math. Hungar. 124 (2009), no. 1-2, 155-163.
[5] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications Vol. 48, Springer, New York, 2011.
[6] W. Kosmala, A Friendly Introduction to Analysis - Single and Multivariable (2nd edn), Pearson Prentice Hall, London, 2004.
[7] T. Miura, S.-M. Jung and S.-E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations $y^{\prime}=\lambda y$, J. Korean Math. Soc. 41 (2004), 995-1005.
[8] T. Miura, H. Oka, S.-E. Takahasi and N. Niwa, Hyers-Ulam stability of the first order linear differential equation for Banach space-valued holomorphic mappings, J. Math. Inequal. 3 (2007), 377-385.
[9] M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993), 259-270.
[10] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141-146.
[11] D. Popa and I. Raşa, On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl. 381 (2011), 530-537.
[12] S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach spacevalued differential equation $y^{\prime}=\lambda y$, Bull. Korean Math. Soc. 39 (2002), 309-315.

Soon-Mo Jung (corresponding author)
Mathematics Section, College of Science and Technology, Hongik University, 339-701
Jochiwon, South Korea
E-mail address: smjung@hongik.ac.kr
Hamdullah Şevli
Department of Mathematics, Faculty of Sciences and Arts, Istanbul Commerce University, 34672 Uskudar, Istanbul, Turkey

E-mail address: hsevli@yahoo.com

Sebaheddin Şevgin
Department of Mathematics, Faculty of Art and Science, Yuzuncu Yil University, 65080 Van, Turkey

E-mail address: ssevgin@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 34A30, 34A40, 41A30, 39B82, 34A25.
 Key words and phrases. Linear first order differential equation; power series method;
 Gaussian function; approximation; Hyers-Ulam stability; local Hyers-Ulam stability.
 (C) 2013 Texas State University - San Marcos.

 Submitted October 5, 2012. Published January 7, 2013.

