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ASYMPTOTICALLY PERIODIC SOLUTIONS FOR
DIFFERENTIAL AND DIFFERENCE INCLUSIONS IN

HILBERT SPACES

GHEORGHE MOROŞANU, FIGEN ÖZPINAR

Abstract. Let H be a real Hilbert space and let A : D(A) ⊂ H → H be

a (possibly set-valued) maximal monotone operator. We investigate the ex-

istence of asymptotically periodic solutions to the differential equation (in-
clusion) u′(t) + Au(t) 3 f(t) + g(t), t > 0, where f ∈ L2

loc(R+, H) is a

T -periodic function (T > 0) and g ∈ L1(R+, H). Consider also the follow-
ing difference inclusion (which is a discrete analogue of the above inclusion):

∆un + cnAun+1 3 fn + gn, n = 0, 1, . . . , where (cn) ⊂ (0, +∞), (fn) ⊂ H
are p-periodic sequences for a positive integer p and (gn) ∈ `1(H). We inves-

tigate the weak or strong convergence of its solutions to p-periodic sequences.

We show that the previous results due to Baillon, Haraux (1977) and Djafari
Rouhani, Khatibzadeh (2012) corresponding to g ≡ 0, respectively gn = 0,

n = 0, 1, . . . , remain valid for g ∈ L1(R+, H), respectively (gn) ∈ l1(H).

1. Introduction

Let H be a real Hilbert space with inner product (·, ·) and the induced Hilbertian
norm ‖ · ‖. Let A : D(A) ⊂ H → H be a (possibly multivalued) maximal monotone
operator. Consider the following differential equation (inclusion)

du

dt
(t) +Au(t) 3 f(t) + g(t), t > 0, (1.1)

where f ∈ L2
loc(R+, H) is a T -periodic function for a given T > 0 and g ∈

L1(R+, H). In this paper we investigate the behavior at infinity of solutions to
(1.1).

Consider also the following difference equation (inclusion) (which is the discrete
analogue of (1.1))

∆un + cnAun+1 3 fn + gn, n = 0, 1, . . . , (1.2)

where (cn) ⊂ (0,+∞), (fn) ⊂ H are p-periodic sequences for a positive integer
p, (gn) ∈ `1(H) := {u = (u1, u2, . . . ) :

∑∞
n=1 ‖un‖ < ∞} and ∆ is the difference

operator defined as usual, i.e., ∆un = un+1−un. We investigate the weak or strong
convergence of solutions to p-periodic sequences.
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More precisely, in this article we show that the previous results due to Baillon,
Haraux [1] and Djafari Rouhani, Khatibzadeh [2] related to the equations (inclu-
sions),

du

dt
(t) +Au(t) 3 f(t), t > 0, (1.3)

and
∆un + cnAun+1 3 fn, n = 0, 1, . . . , (1.4)

respectively, remain valid for (1.1) and (1.2), where g ∈ L1(R+, H) and (gn) ∈
l1(H).

2. Preliminaries

To obtain our main results we recall the following results on the existence of
asymptotically periodic solutions of the equations (1.3) and (1.4).

Lemma 2.1 ([1], [3, p. 169]). Assume that A is the subdifferential of a proper,
convex, and lower semicontinuous function ϕ : H → (−∞,+∞], A = ∂ϕ. Let
f ∈ L2

loc(R+, H) be a T -periodic function (for a given T > 0). Then, equation (1.3)
has a solution bounded on R+ if and only if it has at least a T -periodic solution.
In this case all solutions of (1.3) are bounded on R+ and for every solution u(t),
t ≥ 0, there exists a T -periodic solution q of (1.3) such that

u(t)− q(t)→ 0, as t→∞,
weakly in H. Moreover, every two periodic solutions of (1.3) differ by an additive
constant, and

dun

dt
→ dq

dt
, as n→∞,

strongly in L2(0, T ;H), where un(t) = u(t+ nT ), n = 1, 2, . . .

Lemma 2.2 ([2], [4]). Assume that A : D(A) ⊂ H → H is a maximal monotone
operator. Let cn > 0 and fn ∈ H be p-periodic sequences; i.e., cn+p = cn, fn+p = fn

(n = 0, 1, . . . ), for a given positive integer p. Then (1.4) has a bounded solution if
and only if it has at least one p-periodic solution. In this case all solutions of (1.4)
are bounded and for every solution (un) of (1.4) there exists a p-periodic solution
(ωn) of (1.4) such that

un − ωn → 0, weakly in H, as n→∞.

Moreover, every two periodic solutions differ by an additive constant vector.

3. Results on asymptotically periodic solutions

We begin this section with the following result regarding the continuous case,
which is an extension of Lemma 2.1.

Theorem 3.1. Assume that A : D(A) ⊂ H → H is the subdifferential of a proper,
convex, lower semicontinuous function ϕ : H → (−∞,+∞], A = ∂ϕ. Let f ∈
L2

loc(R+, H) be a T -periodic function (T > 0) and let g ∈ L1(R+, H). Then equation
(1.1) has a bounded solution if and only if equation (1.3) has at least a T -periodic
solution. In this case all solutions of (1.1) are bounded on R+ and for every solution
u(t) of (1.1) there exists a T -periodic solution ω(t) of (1.3) such that

u(t)− ω(t)→ 0, weakly in H, as t→∞.
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Proof. If a solution u(t), t ≥ 0, of equation (1.1) is bounded on R+, then any other
solution ũ(t), t ≥ 0, of equation (1.1) is also bounded, because

‖u(t)− ũ(t)‖ ≤ ‖u(0)− ũ(0)‖. (3.1)

If a solution u(t) of (1.1) is bounded, then any solution v(t) of (1.3) is bounded
and conversely, because

‖u(t)− v(t)‖ ≤ ‖u(0)− v(0)‖+
∫ t

0

‖g(s)‖ds ≤ ‖u(0)− v(0)‖+
∫ ∞

0

‖g(s)‖ds <∞,

for t ≥ 0. Thus, the first part of the theorem follows by Lemma 2.1. To prove the
second part, we define gm : R+ → H as follows:

gm(t) =

{
g(t) for a.e. t ∈ (0,m)
0 if t ≥ m,

where m = 1, 2, . . . .
Let u(t), t ≥ 0, be an arbitrary bounded solution of (1.1). For each m = 1, 2, . . .

denote by um(t), t ≥ 0, the solution of the Cauchy problem

dum(t)
dt

+A(um(t)) 3 f(t) + gm(t), t > 0, (3.2)

um(0) = u(0). (3.3)

Since um(t), t ≥ m, is a solution of equation (1.3), it follows by Lemma 2.1 that
there is a T -periodic solution qm(t) of (1.3), such that

um(t)− qm(t)→ 0, weakly in H, as t→∞. (3.4)

In fact, since any two periodic solutions of (1.3) differ by an additive constant (cf.
Lemma 2.1), it follows that

qm(t) = q(t) + cm, m = 1, 2, . . . ,

for a fixed periodic solution q(t) of (1.3), where (cm) is a sequence in H. Thus,
(3.4) becomes

um(t)− q(t)→ cm as t→∞, (3.5)

weakly in H. Moreover,

dq(t)
dt

+A(q(t) + cm) 3 f(t). (3.6)

On the other hand, it is easy to see that, for all m < r, we have

‖[um(t)− q(t)]− [ur(t)− q(t)]‖ = ‖um(t)− ur(t)‖ ≤ ‖u(0)− u(0)‖+
∫ r

m

‖g(t)‖ dt.

Therefore, taking the limit as t→∞, it follows (see (3.5)),

‖cm − cr‖ ≤
∫ r

m

‖g(t)‖ dt, (3.7)

which shows that (cm) is a convergent sequence; i.e., there exists a point a ∈ H,
such that

‖cm − a‖ → 0, as m→∞. (3.8)
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Since A is maximal monotone (hence demiclosed), we can pass to the limit in
(3.6), as m → ∞, to deduce that ω(t) := q(t) + a is a solution of (1.3) (which is
T -periodic). Note also that

‖u(t)− um(t)‖ ≤
∫ t

m

‖g(s)‖ ds ≤
∫ ∞

m

‖g(s)‖ ds, t ≥ m. (3.9)

To conclude, we use the decomposition

u(t)− ω(t) = [u(t)− um(t)] + [um(t)− qm(t)] + [qm(t)− ω(t)]

= [u(t)− um(t)] + [um(t)− q(t)− cm] + [(q(t) + cm)− (q(t) + a)],

which shows that u(t)− ω(t) converges weakly to zero, as t → ∞ (cf. (3.5), (3.8),
(3.9)). In other words, u(t) is asymptotically periodic with respect to the weak
topology of H. �

It is well known that, even in the case g ≡ 0, the above result (Theorem 3.1) is
not valid for a general maximal monotone operator A, so we cannot expect more
in our case.

Theorem 3.2. Assume that A : D(A) ⊂ H → H is a maximal monotone operator.
Let (gn) ∈ `1(H) and let cn > 0, fn ∈ H be p-periodic sequences, i.e., cn+p = cn,
fn+p = fn (n = 0, 1, . . . ), for a given positive integer p. Then equation (1.2) has a
bounded solution if and only if equation (1.4) has at least one p-periodic solution.
In this case all solutions of (1.2) are bounded and for every solution (un) of (1.2)
there exists a p-periodic solution (ωn) of (1.4) such that

un − ωn → 0, weakly in H, as n→∞.

Proof. Consider the initial condition

u0 = x, (3.10)

for a given x ∈ H. We can rewrite equation (1.2) in the form:

un+1 − un + cnAun+1 3 fn + gn.

The solution of the problem (1.2)-(3.10) is calculated successively from

un+1 =
(
I + cnA

)−1(
un + fn + gn

)
, n = 0, 1, . . . ,

in a unique manner, which will give a unique solution (un)n≥0.
If a solution (un) of (1.2) is bounded, then any other solution (ũn) of (1.2) is

bounded, because

‖un − ũn‖ ≤ ‖u0 − ũ0‖ for n = 0, 1, . . . (3.11)

If a solution (un) of (1.2) is bounded, then any solution (vn) of (1.4) is bounded
and conversely, because

‖un − vn‖ ≤ ‖u0 − v0‖+
n−1∑
k=0

‖gk‖ ≤ ‖u0 − v0‖+
∞∑

k=0

‖gk‖ <∞.

According to Lemma 2.2 the first part of the theorem is proved. For the second
part we define (gn,m)n,m≥0 as follows:

gn,m =

{
gn if n < m,

0 if n ≥ m.
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Let (zn) be an arbitrary solution of (1.2) (which is bounded). For each m = 0, 1, . . .
denote by (zn,m)n≥0 the (unique) solution of the problem

zn+1,m − zn,m + cnAzn+1,m 3 fn + gn,m (3.12)

z0,m = z0. (3.13)

Note that (zn,m)n≥m is a solution of equation (1.4). By Lemma 2.2 there is a
p-periodic (with respect to n) solution (ωn,m) of (1.4) such that

zn,m − ωn,m → 0, weakly in H, as n→∞. (3.14)

For each m ≥ 0 we have

ω1,m − ω0,m + c0Aω1,m 3 f0,

ω2,m − ω1,m + c1Aω2,m 3 f1,

. . .

ωp,m − ωp−1,m + cp−1Aωp,m 3 fp−1,

where ωp,m = ω0,m. Since any two periodic solutions of (1.4) differ by an additive
constant, we can write

ωt,m = ζt + am t ∈ {0, 1, . . . , p− 1}, (3.15)

where (ζt) is a an arbitrary but fixed periodic solution of (1.4), and (am)m≥0 is a
sequence in H. Thus

ζ1 − ζ0 + c0A(ζ1 + am) 3 f0,

ζ2 − ζ1 + c1A(ζ2 + am) 3 f1,

. . .

ζp − ζp−1 + cp−1A(ζp + am) 3 fp−1,

(3.16)

for all m ≥ 0, where ζp = ζ0. Also we can rewrite (3.14) as

zkp+t,m → ζt + am, weakly in H, as k →∞, (3.17)

for m ≥ 0 and t ∈ {0, 1, . . . , p− 1}. On the other hand, for 0 ≤ m < r, we have (cf.
(3.12), (3.13))

‖zkp+t,m − zkp+t,r‖ ≤
r−1∑
j=m

‖gj‖.

According to (3.17) this implies

‖am − ar‖ ≤
r−1∑
j=m

‖gj‖ ≤
∞∑

j=m

‖gj‖, (3.18)

for all 0 ≤ m < r, so there exists an a ∈ H such that

‖am − a‖ → 0, as m→∞. (3.19)

Since A is maximal monotone (hence demiclosed), we can pass to the limit in (3.16)
as m→∞ to obtain

ζ1 − ζ0 + c0A(ζ1 + a) 3 f0,

ζ2 − ζ1 + c1A(ζ2 + a) 3 f1,

. . .

ζp − ζp−1 + cp−1A(ζp + a) 3 fp−1,
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where ζp = ζ0. So ωn := ζn + a is a p-periodic solution of equation (1.4). We can
also see that

‖zn − zn,m‖ ≤ ‖z0 − z0,m‖+
n−1∑
j=m

‖gj‖ ≤
∞∑

j=m

‖gj‖. (3.20)

Finally, for all natural n, we have n = kp+ t, t ∈ {0, 1, . . . , p− 1}, and

zn − ωn = [zn − zn,m] + [zn,m − ωt,m] + [ωt,m − ωn]

= [zn − zn,m] + [zkp+t,m − ζt − am] + [ζt + am − ζt − a],

thus the conclusion of the theorem follows by (3.17), (3.19) and (3.20). �

If in addition A is strongly monotone, then we can easily extend Theorem 2 in
[4], as follows.

Theorem 3.3. Assume that A : D(A) ⊂ H → H is a maximal monotone operator,
that is also strongly monotone; i.e., there is a constant b > 0, such that

(x1 − x2, y1 − y2) ≥ b‖x1 − x2‖2, ∀xi ∈ D(A), yi ∈ Axi, i = 1, 2.

Let cn > 0 and fn ∈ H be p-periodic sequences for a given positive integer p and
(gn) ∈ `1(H). Then equation (1.4) has a unique p-periodic solution (ωn) and for
every solution (un) of (1.2) we have

un − ωn → 0, strongly in H, as n→∞.

The proof relies on arguments similar to the one above.
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