Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 08, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC SOLUTIONS FOR NONLINEAR THIRD-ORDER DIFFERENTIAL INCLUSIONS

TOUMA HADDAD, TAHAR HADDAD

$$
\begin{aligned}
& \text { AbSTRACT. In this article, we study the existence of anti-periodic solutions } \\
& \text { for the third-order differential inclusion } \\
& \qquad u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+F(t, u(t)) \quad \text { a.e. on }[0, T] \\
& \qquad u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T),
\end{aligned}
$$

where φ is a proper convex, lower semicontinuous and even function, and F is an upper semicontinuous convex compact set-valued mapping. Also uniqueness of anti-periodic solution is studied.

1. Introduction

Existence and uniqueness of anti-periodic solutions for differential inclusions generated by the subdifferential of a convex lower semicontinuous even function appear in several articles; see [2, 3, 4, 5, 6, 11, 12]. Okochi [13] initiated the study of antiperiodic solutions of the differential inclusion

$$
\begin{gather*}
f(t) \in u^{\prime}(t)+\partial \varphi(u(t)) \quad \text { a.e. } t \in[0, T] \\
u(0)=-u(T) \tag{1.1}
\end{gather*}
$$

in Hilbert spaces, where $\partial \varphi$ is the subdifferential of an even function φ on a real Hilbert space H and $f \in L^{2}([0, T], H)$. It was shown in [14, by applying a fixed point theorem for nonexpansive mapping, that 1.1 has a unique solution. Later Aftabizadeh and al [1 studied the anti-periodic solution of third-order differential inclusion

$$
\begin{gather*}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+f(t) \quad \text { a.e. } t \in[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T), \tag{1.2}
\end{gather*}
$$

by using maximal monotone operator theory.
The aim of this article is to study the existence of anti-periodic solutions for the third-order differential inclusion

$$
\begin{array}{cl}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+F(t, u(t)) & \text { a.e. } t \in[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T), \tag{1.3}
\end{array}
$$

2000 Mathematics Subject Classification. 34C25, 34G20, 49J52.
Key words and phrases. Anti-periodic solution; differential inclusions; subdifferential.
(C) 2013 Texas State University - San Marcos.

Submitted September 28, 2012. Published January 9, 2013.
where $\varphi: H \rightarrow]-\infty,+\infty]$ is a convex lower semicontinuous even function and $F:[0, T] \times H \rightarrow 2^{H}$ is an upper semicontinuous convex compact set-valued mapping bounded above by L^{2} function. Furthermore, an existence and uniqueness result when F is single-valued is also studied.

2. Preliminaries

Let H be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$. The open ball centered at x with radius r is defined by $\mathbb{B}_{r}(x)=\{y \in H:\|y-x\|<r\}$, where $\overline{\mathbb{B}_{r}}(x)$ denotes its closure. For a proper lower semicontinuous convex function $\varphi: H \rightarrow]-\infty,+\infty]$, the set-valued mapping $\partial \varphi: H \rightarrow 2^{H}$ defined by

$$
\partial \varphi(x)=\{\xi \in H: \varphi(y)-\varphi(x) \geq\langle\xi, y-x\rangle, \forall y \in H\}
$$

which is the subdifferential of φ. Let us recall a classical closure type lemma from [7].

Lemma 2.1. Let H be a separable Hilbert space. Let φ be a convex lower semicontinuous function defined on H with values in $]-\infty,+\infty]$. Let $\left(u_{n}\right)_{n \in \mathbb{N} \cup\{\infty\}}$ be a sequence of measurable mappings from $[0, T]$ into H such that $u_{n} \rightarrow u_{\infty}$ pointwise with respect to the norm topology. Assume that $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $L^{2}([0, T], H)$ satisfying

$$
\xi_{n}(t) \in \partial \varphi\left(u_{n}(t)\right) \quad \text { a.e. } t \in[0, T]
$$

for each $n \in \mathbb{N}$ and converging weakly to $\xi_{\infty} \in L^{2}([0, T], H)$. Then we have

$$
\xi_{\infty}(t) \in \partial \varphi\left(u_{\infty}(t)\right) \quad \text { a.e. } t \in[0, T] .
$$

Let us recall a useful result.
Lemma 2.2 ([15]). Let H be a real Hilbert space. Let $u \in W_{\mathrm{loc}}^{1,2}(\mathbb{R}, H)$ be $2 T$ periodic and satisfying $\int_{0}^{2 T} u(t) d t=0$, then

$$
\|u\|_{L^{2}([0,2 T], H)} \leq \frac{T}{\pi}\left\|u^{\prime}\right\|_{L^{2}([0,2 T], H)} .
$$

3. Main Results

We state and summarize some useful results for anti-periodic mappings that are crucial for our purpose.

Proposition 3.1. Let H be a real Hilbert space. Let $u \in W^{3,2}([0, T], H)$ satisfying $u(0)=-u(T), u^{\prime}(0)=-u^{\prime}(T), u^{\prime \prime}(0)=-u^{\prime \prime}(T)$, then the following inequalities hold
(A1) $\|u\|_{\mathcal{C}([0, T], H)} \leq \frac{\sqrt{T}}{2}\left\|u^{\prime}\right\|_{L^{2}([0, T], H)} ;$
(A2) $\|u\|_{L^{2}([0, T], H)} \leq \frac{T}{\pi}\left\|u^{\prime}\right\|_{L^{2}([0, T], H)}$;
(B1) $\left\|u^{\prime}\right\|_{\mathcal{C}([0, T], H)} \leq \frac{\sqrt{T}}{2}\left\|u^{\prime \prime}\right\|_{L^{2}([0, T], H)}$;
(B2) $\left\|u^{\prime}\right\|_{L^{2}([0, T], H)} \leq \frac{T}{\pi}\left\|u^{\prime \prime}\right\|_{L^{2}([0, T], H)}$;
(C1) $\left\|u^{\prime \prime}\right\|_{\mathcal{C}([0, T], H)} \leq \frac{\sqrt{T}}{2}\left\|u^{\prime \prime \prime}\right\|_{L^{2}([0, T], H)}$.
Proof. (A1) Since $u(t)=u(0)+\int_{0}^{t} u^{\prime}(s) d s$ and $u(t)=u(T)-\int_{t}^{T} u^{\prime}(s) d s$, for all $t \in[0, T]$, by adding these equalities, by anti-periodicity, we obtain

$$
2 u(t)=\int_{0}^{t} u^{\prime}(s) d s-\int_{t}^{T} u^{\prime}(s) d s, \quad \forall t \in[0, T] .
$$

Hence we have

$$
2\|u(t)\| \leq \int_{0}^{t}\left\|u^{\prime}(s)\right\| d s+\int_{t}^{T}\left\|u^{\prime}(s)\right\| d s=\int_{0}^{T}\left\|u^{\prime}(s)\right\| d s, \quad \forall t \in[0, T]
$$

and so, by Holder inequality

$$
\|u\|_{\mathcal{C}([0, T], H)}=\sup _{t \in[0, T]}\|u(t)\| \leq \frac{\sqrt{T}}{2}\left\|u^{\prime}\right\|_{L^{2}([0, T], H)}
$$

(A2) For the sake of simplicity, we use the same notation $u(t), t \in \mathbb{R}$, to denote the anti-periodic extension of $u(t), t \in[0, T]$, such that

$$
u(t+T)=-u(t) \quad \text { and } \quad u^{\prime}(t+T)=-u^{\prime}(t), \quad \text { for } t \in \mathbb{R}
$$

Then u is $2 T$-periodic function since

$$
u(t+2 T)=u(t+T+T)=-u(t+T)=u(t)
$$

Also, since

$$
\int_{0}^{2 T} u(t) d t=\int_{0}^{T} u(t) d t+\int_{T}^{2 T} u(t) d t=\int_{0}^{T} u(t) d t-\int_{0}^{T} u(t) d t=0
$$

so, by Lemma 2.2 ,

$$
\int_{0}^{2 T}\|u(t)\|^{2} d t \leq \frac{T^{2}}{\pi^{2}} \int_{0}^{2 T}\left\|u^{\prime}(t)\right\|^{2} d t
$$

Let us observe that $\|u(t)\|^{2}$ and $\left\|u^{\prime}(t)\right\|^{2}$ are T-periodic because $\|u(t+T)\|^{2}=$ $\|-u(t)\|^{2}=\|u(t)\|^{2}$ and similarly $\left\|u^{\prime}(t+T)\right\|^{2}=\left\|-u^{\prime}(t)\right\|^{2}=\left\|u^{\prime}(t)\right\|^{2}$.
Hence we deduce that

$$
\int_{0}^{2 T}\|u(t)\|^{2} d t=2 \int_{0}^{T}\|u(t)\|^{2} d t \quad \text { and } \quad \int_{0}^{2 T}\left\|u^{\prime}(t)\right\|^{2} d t=2 \int_{0}^{T}\left\|u^{\prime}(t)\right\|^{2} d t
$$

Finally we get the required inequality

$$
\int_{0}^{T}\|u(t)\|^{2} d t \leq \frac{T^{2}}{\pi^{2}} \int_{0}^{T}\left\|u^{\prime}(t)\right\|^{2} d t
$$

Similarly, we prove (B1), (B2) and (C1), using $u^{\prime}(0)=-u^{\prime}(T)$, and $u^{\prime \prime}(0)=-u^{\prime \prime}(T)$ respectively.

The following result deal with convex compact valued perturbations of a thirdorder differential inclusion governed by subdifferential operators of convex lower semicontinuous functions with anti-periodic boundary conditions. First, to simplify we will assume that $H=\mathbb{R}^{d}$.

Theorem 3.2. Let $\left.\left.H=\mathbb{R}^{d}, \varphi: H \rightarrow\right]-\infty,+\infty\right]$ be a proper, convex, lower semicontinuous and even function. Let $F:[0, T] \times H \rightarrow 2^{H}$ be a convex compact set-valued mapping, measurable on $[0, T]$ and upper semicontinuous on H satisfying: there is a function $\alpha(\cdot) \in L^{2}\left([0, T], \mathbb{R}_{+}\right)$such that

$$
F(t, x) \subset \Gamma(t):=\overline{\mathbb{B}}_{\alpha(t)}(0) \quad \text { for all }(t, x) \in[0, T] \times H
$$

Then the problem

$$
\begin{gathered}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+F(t, u(t)) \quad \text { a.e. } t \in[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T),
\end{gathered}
$$

has at least an anti-periodic $W^{3,2}([0, T], H)$ solution.

Proof. Recall that a $W^{3,2}([0, T], H)$ function $u:[0, T] \rightarrow H$ is a solution of the problem under consideration if there exists a function $h \in L^{2}([0, T] ; H)$ such that

$$
\begin{gathered}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+h(t) \quad \text { a.e. } t \in[0, T], \\
h(t) \in F(t, u(t)) \quad \text { a.e. } t \in[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T) .
\end{gathered}
$$

Let us denote by S_{Γ}^{2} the set of all $L^{2}([0, T] ; H)$-selection of Γ

$$
S_{\Gamma}^{2}:=\left\{f \in L^{2}([0, T], H): f(t) \in \Gamma(t) \text { a.e. } t \in[0, T]\right\}
$$

By [2, Theorem 2.1], for all $f \in S_{\Gamma}^{2}$, there is a unique $W^{3,2}([0, T], H)$ solution u_{f} of

$$
\begin{gathered}
u_{f}^{\prime \prime \prime}(t) \in \partial \varphi\left(u_{f}^{\prime}(t)\right)+f(t) \quad \text { a.e. } t \in[0, T] \\
u_{f}(0)=-u_{f}(T), \quad u_{f}^{\prime}(0)=-u_{f}^{\prime}(T), \quad u_{f}^{\prime \prime}(0)=-u_{f}^{\prime \prime}(T)
\end{gathered}
$$

such that

$$
\begin{equation*}
\left\|u_{f}^{\prime \prime \prime}\right\|_{L^{2}([0, T], H)} \leq\|f\|_{L^{2}([0, T], H)} \tag{3.1}
\end{equation*}
$$

For each $f \in S_{\Gamma}^{2}$, let us define the set-valued mapping

$$
\Psi(f):=\left\{g \in L^{2}([0, T], H) ; g(t) \in F\left(t, u_{f}(t)\right) \quad \text { a.e. } t \in[0, T]\right\}
$$

Then it is clear that $\Psi(f)$ is a nonempty convex weakly compact subset of S_{Γ}^{2}, here the nonemptiness follows from [10, theorem VI.4]. From the above consideration, we need to prove that the convex weakly compact set-valued mapping $\Psi: S_{\Gamma}^{2} \rightarrow 2^{S_{\Gamma}^{2}}$ admits a fixed point. By Kakutani-Ky Fan fixed point theorem, it is sufficient to prove that Ψ is upper semicontinuous when S_{Γ}^{2} is endowed with the weak topology of $L^{2}([0, T], H)$. As $L^{2}([0, T], H)$ is separable, S_{Γ}^{2} is compact metrizable with respect to the weak topology of $L^{2}([0, T], H)$. So it turns out to check that the graph $\operatorname{gph}(\Psi)$ is sequentially weakly closed in $S_{\Gamma}^{2} \times S_{\Gamma}^{2}$. Let $\left(f_{n}, g_{n}\right)_{n} \in g p h(\Psi)$ weakly converging to $(f, g) \in S_{\Gamma}^{2} \times S_{\Gamma}^{2}$. From the definition of Ψ, that means $u_{f_{n}}$ is the unique $W^{3,2}([0, T], H)$ solution of

$$
\begin{gathered}
u_{f_{n}}^{\prime \prime \prime}(t) \in \partial \varphi\left(u_{f_{n}}^{\prime}(t)\right)+f_{n}(t) \quad \text { a.e. } t \in[0, T] \\
u_{f_{n}}(0)=-u_{f_{n}}(T), \quad u_{f_{n}}^{\prime}(0)=-u_{f_{n}}^{\prime}(T), \quad u_{f_{n}}^{\prime \prime}(0)=-u_{f_{n}}^{\prime \prime}(T)
\end{gathered}
$$

with $f_{n} \in S_{\Gamma}^{2}$ and $g_{n}(t) \in F\left(t, u_{f_{n}}(t)\right)$ a.e. $t \in[0, T]$. Taking into account the antiperiodicity of $u_{f_{n}}^{\prime \prime}, u_{f_{n}}^{\prime}$ and $u_{f_{n}}$, proposition 3.1 gives

$$
\begin{aligned}
\left\|u_{f_{n}}^{\prime \prime}\right\|_{\mathcal{C}([0, T], H)} & \leq \frac{\sqrt{T}}{2}\left\|u_{f_{n}}^{\prime \prime \prime}\right\|_{L^{2}([0, T], H)} \\
\left\|u_{f_{n}}^{\prime}\right\|_{\mathcal{C}([0, T], H)} & \leq \frac{T \sqrt{T}}{2 \pi}\left\|u_{f_{n}}^{\prime \prime \prime}\right\|_{L^{2}([0, T], H)} \\
\left\|u_{f_{n}}\right\|_{\mathcal{C}([0, T], H)} & \leq \frac{T^{2} \sqrt{T}}{2 \pi^{2}}\left\|u_{f_{n}}^{\prime \prime \prime}\right\|_{L^{2}([0, T], H)}
\end{aligned}
$$

for all $n \geq 1$. Using the estimate (3.1), we have

$$
\left\|u_{f_{n}}^{\prime \prime \prime}\right\|_{L^{2}([0, T], H)} \leq\left\|f_{n}\right\|_{L^{2}([0, T], H)} \leq\|\alpha\|_{L^{2}([0, T], R)}<+\infty .
$$

We may conclude that

$$
\begin{aligned}
& \sup _{n \geq 1}\left\|u_{f_{n}}^{\prime \prime}\right\|_{\mathcal{C}([0, T], H)}<+\infty, \\
& \sup _{n \geq 1}\left\|u_{f_{n}}^{\prime}\right\|_{\mathcal{C}([0, T], H)}<+\infty,
\end{aligned}
$$

$$
\sup _{n \geq 1}\left\|u_{f_{n}}\right\|_{\mathcal{C}([0, T], H)}<+\infty
$$

By extracting suitable subsequences, we may assume that $\left(u_{f_{n}}^{\prime \prime \prime}\right)$ converges weakly in $L^{2}([0, T], H)$ to a function $\gamma \in L^{2}([0, T], H)$ and $\left(u_{f_{n}}^{\prime \prime}\right)$ converges pointwise to a function w, namely

$$
\begin{aligned}
w(t) & :=\lim _{n \rightarrow+\infty} u_{f_{n}}^{\prime \prime}(t)=\lim _{n \rightarrow+\infty}\left(u_{f_{n}}^{\prime \prime}(0)+\int_{0}^{t} u_{f_{n}}^{\prime \prime \prime}(s) d s\right) \\
& =\lim _{n \rightarrow+\infty} u_{f_{n}}^{\prime \prime}(0)+\int_{0}^{t} \gamma(s) d s, \quad \forall t \in[0, T]
\end{aligned}
$$

Then

$$
\begin{aligned}
v(t) & :=\lim _{n \rightarrow+\infty} u_{f_{n}}^{\prime}(t)=\lim _{n \rightarrow+\infty}\left(u_{f_{n}}^{\prime}(0)+\int_{0}^{t} u_{f_{n}}^{\prime \prime}(s) d s\right) \\
& =\lim _{n \rightarrow+\infty} u_{f_{n}}^{\prime}(0)+\int_{0}^{t} w(s) d s, \quad \forall t \in[0, T] .
\end{aligned}
$$

So we have

$$
\begin{aligned}
u(t) & :=\lim _{n \rightarrow+\infty} u_{f_{n}}(t)=\lim _{n \rightarrow+\infty}\left(u_{f_{n}}(0)+\int_{0}^{t} u_{f_{n}}^{\prime}(s) d s\right) \\
& =\lim _{n \rightarrow+\infty} u_{f_{n}}(0)+\int_{0}^{t} v(s) d s, \quad \forall t \in[0, T] .
\end{aligned}
$$

We conclude that $u \in W^{3,2}([0, T], H)$ with $u^{\prime}=v, u^{\prime \prime}=w$ and $u^{\prime \prime \prime}=\gamma$ and satisfying the anti-periodic conditions $u(0)=-u(T), u^{\prime}(0)=-u^{\prime}(T)$ and $u^{\prime \prime}(0)=$ $-u^{\prime \prime}(T)$. Furthermore, we see that $u_{f_{n}}^{\prime}$ converges pointwise to u^{\prime} and $u_{f_{n}}^{\prime \prime \prime}$ converges to $u^{\prime \prime \prime}$ with respect to the weak topology of $L^{2}([0, T], H)$. Combining these facts and applying Lemma 2.1 to the inclusion

$$
u_{f_{n}}^{\prime \prime \prime}(t)-f_{n}(t) \in \partial \varphi\left(u_{f_{n}}^{\prime}(t)\right) \quad \text { a.e. } t \in[0, T]
$$

it yields

$$
u^{\prime \prime \prime}(t)-f(t) \in \partial \varphi\left(u^{\prime}(t)\right) \quad \text { a.e. } t \in[0, T] .
$$

By uniqueness [1. Theorem 2.1], we have $u=u_{f}$. Further using the inclusion

$$
g_{n}(t) \in F\left(t, u_{f_{n}}(t)\right) \quad \text { a.e. } t \in[0, T]
$$

and invoking the closure type Lemma in [10, theorem VI.4], we have

$$
g(t) \in F\left(t, u_{f}(t)\right) \quad \text { a.e. } t \in[0, T] .
$$

We may then applying the Kakutani-Ky Fan fixed point theorem to the set-valued mapping Ψ to obtain some $f \in S_{\Gamma}^{2}$ such that $f \in \Psi(f)$ or

$$
f(t) \in F(t, u(t)) \quad \text { a.e. } t \in[0, T] .
$$

This means that

$$
\begin{gathered}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+f(t) \quad \text { a.e. } t \in[0, T], \\
f(t) \in F(t, u(t)) \quad \text { a.e. } t \in[0, T], \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T) .
\end{gathered}
$$

The proof is complete.

A more general version of the preceding result is available by introducing some inf-compactness assumption [2] on the function φ.

Theorem 3.3. Let H be a separable Hilbert space, $\varphi: H \rightarrow[0,+\infty]$ be a proper, convex, lower semicontinuous and even function satisfying: $\varphi(0)=0$ and for each $\beta_{1}, \beta_{2}>0$, the set $\left\{x \in D(\varphi):\|x\| \leq \beta_{1}, \varphi(x) \leq \beta_{2}\right\}$ is compact. Let F : $[0, T] \times H \rightarrow 2^{H}$ be a convex compact set-valued mapping, measurable on $[0, T]$ and upper semicontinuous on H satisfying: there is $\alpha(\cdot) \in L^{2}\left([0, T], \mathbb{R}_{+}\right)$such that

$$
F(t, x) \subset \Gamma(t):=\overline{\mathbb{B}}_{\alpha(t)}(0) \quad \forall(t, x) \in[0, T] \times H
$$

Then the problem

$$
\begin{gathered}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+F(t, u(t)) \quad \text { a.e. } t \in[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T)
\end{gathered}
$$

has at least an anti-periodic $W^{3,2}([0, T], H)$ solution.
Proof. Using the notation of the proof of Theorem 3.2, we have

$$
u_{f_{n}}^{\prime \prime \prime}(t)-f_{n}(t) \in \partial \varphi\left(u_{f_{n}}^{\prime}(t)\right) \quad \text { a.e. } t \in[0, T]
$$

for every $f_{n} \in S_{\Gamma}^{2}$. The absolute continuity of $\varphi\left(u_{f_{n}}^{\prime}(\cdot)\right)$ and the chain rule theorem [9, yield

$$
\left\langle u_{f_{n}}^{\prime \prime \prime}(t), u_{f_{n}}^{\prime \prime}(t)\right\rangle-\left\langle f_{n}(t), u_{f_{n}}^{\prime \prime}(t)\right\rangle=\frac{d}{d t} \varphi\left(u_{f_{n}}^{\prime}(t)\right),
$$

for every $f_{n} \in S_{\Gamma}^{2}$, so that

$$
+\infty>\sup _{n \geq 1} \int_{0}^{T}\left|\left\langle u_{f_{n}}^{\prime \prime \prime}(t), u_{f_{n}}^{\prime \prime}(t)\right\rangle-\left\langle f_{n}(t), u_{n}^{\prime \prime}(t)\right\rangle\right| d t=\sup _{n \geq 1} \int_{0}^{T}\left|\frac{d}{d t} \varphi\left(u_{f_{n}}^{\prime}(t)\right)\right| d t
$$

Further applying the classical definition of the subdifferential to convex function φ yields

$$
0=\varphi(0) \geq \varphi\left(u_{f_{n}}^{\prime}(t)\right)+\left\langle 0-u_{f_{n}}^{\prime}(t), u_{f_{n}}^{\prime \prime \prime}(t)-f_{n}(t)\right\rangle
$$

or

$$
0 \leq \varphi\left(u_{f_{n}}^{\prime}(t)\right) \leq\left\langle u_{f_{n}}^{\prime}(t), u_{f_{n}}^{\prime \prime \prime}(t)-f_{n}(t)\right\rangle .
$$

Hence

$$
\sup _{n \geq 1}\left|\varphi\left(u_{f_{n}}^{\prime}\right)\right|_{L_{\mathbb{R}}^{1}([0, T])}<+\infty
$$

For all $t \in[0, T]$, we have

$$
\varphi\left(u_{f_{n}}^{\prime}(t)\right)=\varphi\left(u_{f_{n}}^{\prime}(0)\right)+\int_{0}^{t} \frac{d}{d t} \varphi\left(u_{f_{n}}^{\prime}(s)\right) d s \leq \varphi\left(u_{f_{n}}^{\prime}(0)\right)+\sup _{n \geq 1}\left|\varphi\left(u_{f_{n}}^{\prime}\right)\right|_{L_{\mathbb{R}}([0, T])}
$$

Now we assert that $\varphi\left(u_{f_{n}}^{\prime}(t)\right) \leq \beta_{2}$ for every $t \in[0, T]$, here β_{2} is a positive constant. Indeed for all $t \in[0, T]$, we have

$$
\begin{aligned}
\varphi\left(u_{f_{n}}^{\prime}(0)\right) & \leq\left|\varphi\left(u_{f_{n}}^{\prime}(t)\right)-\varphi\left(u_{f_{n}}^{\prime}(0)\right)\right|+\varphi\left(u_{f_{n}}^{\prime}(t)\right) \\
& \leq \int_{0}^{T}\left|\frac{d}{d t} \varphi\left(u_{f_{n}}^{\prime}(t)\right)\right| d t+\varphi\left(u_{f_{n}}^{\prime}(t)\right) .
\end{aligned}
$$

Hence

$$
\varphi\left(u_{f_{n}}^{\prime}(0)\right) \leq \sup _{n \geq 1} \int_{0}^{T}\left|\frac{d}{d t} \varphi\left(u_{f_{n}}^{\prime}(t)\right)\right| d t+\frac{1}{T} \sup _{n \geq 1} \int_{0}^{T} \varphi\left(u_{f_{n}}^{\prime}(t)\right) d t<+\infty
$$

Whence we have

$$
\beta_{1}:=\sup _{n \geq 1} \sup _{t \in[0, T]}\left\|u_{f_{n}}^{\prime}(t)\right\|<+\infty, \quad \beta_{2}:=\sup _{n \geq 1} \sup _{t \in[0, T]} \varphi\left(u_{f_{n}}^{\prime}(t)\right)<+\infty .
$$

So that $\left(u_{f_{n}}^{\prime}(t)\right)$ is relatively compact with respect to the norm topology of H using the inf-compactness assumption on φ. The proof can be therefore achieved as Theorem 3.2 by invoking Lemma 2.1 and a closure type lemma in [10, Theorem VI-4].

Here is an existence and uniqueness result related to Theorem 3.3 when the perturbation is single-valued.

Theorem 3.4. Let H be a separable Hilbert space, $\varphi: H \rightarrow[0,+\infty]$ is a proper, convex, lower semicontinuous and even function satisfying: $\varphi(0)=0$ and for each $\alpha, \beta>0$, the set $\{x \in D(\varphi):\|x\| \leq \alpha, \varphi(x) \leq \beta\}$ is compact and $f:[0, T] \times H \rightarrow H$ is a Carathéodory mapping satisfying :
$\left(\mathcal{H}_{1}\right)\|f(t, u)-f(t, v)\| \leq L\|u-v\|$ for all $(t, u, v) \in[0, T] \times H \times H$, for some positive constant $L>0$.
$\left(\mathcal{H}_{2}\right)$ There is a $L^{2}\left([0, T] ; \mathbb{R}^{+}\right)$integrable function $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{+}$such that $\|f(t, u)\| \leq$ $\alpha(t)$ for all $(t, u) \in[0, T] \times H$. If $0<T<\frac{\pi}{\sqrt[3]{L}}$, then the inclusion

$$
\begin{gathered}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+f(t, u(t)) \quad \text { a.e. } t \in[0, T], \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T),
\end{gathered}
$$

admits a unique $W^{3,2}([0, T] ; H)$-anti-periodic solution.
Proof. Existence of at least one $W^{3,2}([0, T] ; H)$-anti-periodic solution is ensured by Theorem 3.3. Indeed, we put $F(t, u):=\{f(t, u)\}$ for all $(t, u) \in[0, T] \times H$, As f is a Carathéodory function, then: $u \longmapsto f(t, u)$ is continuous, for almost all $t \in[0, T]$ and $t \longmapsto f(t, u)$ is Lebesgue measurable, for all $u \in H$. More, by assumption; there is a $L^{2}\left([0, T] ; \mathbb{R}^{+}\right)$integrable function $\alpha(\cdot)$ such that

$$
\|f(t, u)\| \leq \alpha(t) \quad \text { for all }(t, u) \in[0, T] \times H
$$

Therefore, F satisfies hypotheses of Theorem 3.3.
To prove uniqueness, we assume that $\left(u_{1}\right)$ and $\left(u_{2}\right)$ are two solutions of the inclusion under consideration.

$$
\begin{gathered}
u_{1}^{\prime \prime \prime}(t) \in \partial \varphi\left(u_{1}^{\prime}(t)\right)+f\left(t, u_{1}(t)\right) \quad \text { a.e. } t \in[0, T] \\
u_{1}(0)=-u_{1}(T), \quad u_{1}^{\prime}(0)=-u_{1}^{\prime}(T), \quad u_{1}^{\prime \prime}(0)=-u_{1}^{\prime \prime}(T),
\end{gathered}
$$

and

$$
\begin{gathered}
u_{2}^{\prime \prime \prime}(t) \in \partial \varphi\left(u_{2}^{\prime}(t)\right)+f\left(t, u_{2}(t)\right) \quad \text { a.e. } t \in[0, T] \\
u_{2}(0)=-u_{2}(T), \quad u_{2}^{\prime}(0)=-u_{2}^{\prime}(T), \quad u_{2}^{\prime \prime}(0)=-u_{2}^{\prime \prime}(T)
\end{gathered}
$$

For simplicity, let us set

$$
\begin{array}{ll}
v_{1}(t)=u_{1}^{\prime \prime \prime}(t)-f\left(t, u_{1}(t)\right), & \forall t \in[0, T] \\
v_{2}(t)=u_{2}^{\prime \prime \prime}(t)-f\left(t, u_{2}(t)\right), & \forall t \in[0, T] .
\end{array}
$$

Then we have

$$
\begin{equation*}
v_{1}(t)-v_{2}(t)=u_{1}^{\prime \prime \prime}(t)-u_{2}^{\prime \prime \prime}(t)-f\left(t, u_{1}(t)\right)+f\left(t, u_{2}(t)\right), \quad \text { a.e. } t \in[0, T] \tag{3.2}
\end{equation*}
$$

Multiplying scalarly 3.2 by $\left(u_{1}^{\prime}-u_{2}^{\prime}\right)$ and integrating on [0,T] yields

$$
\begin{align*}
& \int_{0}^{T}\left\langle v_{1}(t)-v_{2}(t), u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\rangle d t \\
& =\int_{0}^{T}\left\langle u_{1}^{\prime \prime \prime}(t)-u_{2}^{\prime \prime \prime}(t), u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\rangle d t \tag{3.3}\\
& \quad-\int_{0}^{T}\left\langle f\left(t, u_{1}(t)\right)-f\left(t, u_{2}(t)\right), u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\rangle d t
\end{align*}
$$

As $v_{1} \in \partial \varphi\left(u_{1}^{\prime}\right)$ and $v_{2} \in \partial \varphi\left(u_{2}^{\prime}\right)$ by monotonicity of $(\partial \varphi)$, 3.3) implies

$$
\begin{align*}
& \int_{0}^{T}\left\langle u_{1}^{\prime \prime \prime}(t)-u_{2}^{\prime \prime \prime}(t), u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\rangle d t \tag{3.4}\\
& \geq \int_{0}^{T}\left\langle f\left(t, u_{1}(t)\right)-f\left(t, u_{2}(t)\right), u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\rangle d t
\end{align*}
$$

By antiperiodicity, we have

$$
\begin{aligned}
& \int_{0}^{T}\left\langle u_{1}^{\prime \prime \prime}(t)-u_{2}^{\prime \prime \prime}(t), u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\rangle d t \\
& =\left\langle u_{1}^{\prime \prime}(T)-u_{2}^{\prime \prime}(T), u_{1}^{\prime}(T)-u_{2}^{\prime}(T)\right\rangle-\left\langle u_{1}^{\prime \prime}(0)-u_{2}^{\prime \prime}(0), u_{1}^{\prime}(0)-u_{2}^{\prime}(0)\right\rangle \\
& \quad-\int_{0}^{T}\left\langle u_{1}^{\prime \prime}(t)-u_{2}^{\prime \prime}(t), u_{1}^{\prime \prime}(t)-u_{2}^{\prime \prime}(t)\right\rangle d t \\
& =-\int_{0}^{T}\left\|u_{1}^{\prime \prime}(t)-u_{2}^{\prime \prime}(t)\right\|^{2} d t
\end{aligned}
$$

The inequality (3.4) gives

$$
\begin{aligned}
\int_{0}^{T}\left\|u_{1}^{\prime \prime}(t)-u_{2}^{\prime \prime}(t)\right\|^{2} d t & \leq \int_{0}^{T}\left\langle f\left(t, u_{2}(t)\right)-f\left(t, u_{1}(t)\right), u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\rangle d t \\
& \leq L \int_{0}^{T}\left\|u_{1}(t)-u_{2}(t)\right\|\left\|u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\| d t
\end{aligned}
$$

By Holder's inequality, we obtain

$$
\left\|u_{1}^{\prime \prime}-u_{2}^{\prime \prime}\right\|_{L^{2}([0, T], H)}^{2} \leq L\left\|u_{1}-u_{2}\right\|_{L^{2}([0, T], H)}\left\|u_{1}^{\prime}-u_{2}^{\prime}\right\|_{L^{2}([0, T], H)}
$$

Using the estimates (A1) and (A2) in proposition 3.1, we obtain

$$
\frac{\pi^{2}}{T^{2}}\left\|u_{1}^{\prime}-u_{2}^{\prime}\right\|_{L^{2}([0, T], H)}^{2} \leq L \frac{T}{\pi}\left\|u_{1}^{\prime}-u_{2}^{\prime}\right\|_{L^{2}([0, T], H)}^{2}
$$

or

$$
\left\|u_{1}^{\prime}-u_{2}^{\prime}\right\|_{L^{2}([0, T], H)}^{2} \leq L \frac{T^{3}}{\pi^{3}}\left\|u_{1}^{\prime}-u_{2}^{\prime}\right\|_{L^{2}([0, T], H)}^{2}
$$

It follows from the choice of T that $\left\|u_{1}^{\prime}-u_{2}^{\prime}\right\|_{L^{2}([0, T], H)}^{2}=0$. By inequality (A2) in lemma 2.2 , we conclude that $u_{1}(t)-u_{2}(t)=0$ for all $t \in[0, T]$. This completes the proof.

4. Applications

Let Ω be a bounded domain in \mathbb{R}^{n} with a smooth boundary $\partial \Omega$. Let γ be a maximal monotone operator on \mathbb{R} such that $\gamma=\partial j$, where $j: \mathbb{R} \rightarrow[0,+\infty]$ is proper, convex, lower semicontinuous and even with $j(0)=0$. We are concerned with the third-order boundary-value problem

$$
\begin{gather*}
-u_{t t t}(t, x)-\Delta_{x} u_{t}(t, x)+f(t, u(t, x))=0 \quad \text { in }[0, T] \times \Omega, \\
\frac{\partial u_{t}}{\partial \nu}(t, x) \in \gamma\left(u_{t}(t, x)\right) \quad \text { on }[0, T] \times \partial \Omega \tag{4.1}\\
u(0, x)=-u(T, x), \quad u_{t}(0, x)=-u_{t}(T, x) \quad u_{t t}(0, x)=-u_{t t}(T, x) \quad \text { in } \Omega,
\end{gather*}
$$

where $\frac{\partial}{\partial \nu}$ denotes outward normal derivative, $\Delta_{x}=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$, and $f:[0, T] \times \mathbb{R} \rightarrow$ \mathbb{R} is a Carathéodory function satisfying:
(i) $|f(t, u)-f(t, v)| \leq L|u-v|$ for all $(t, u, v) \in[0, T] \times \mathbb{R}^{2}$, for some positive constant $L>0$,
(ii) There is an $L^{2}\left([0, T] ; \mathbb{R}^{+}\right)$integrable function $\alpha:[0, T] \rightarrow \mathbb{R}^{+}$such that $|f(t, u)| \leq \alpha(t)$ for all $(t, u) \in[0, T] \times \mathbb{R}$.
Let $H=L^{2}(\Omega)$, and define $\varphi: H \rightarrow[0,+\infty]$ by

$$
\varphi(u)= \begin{cases}\frac{1}{2} \int_{\Omega}|\operatorname{grad} u|^{2} d x+\int_{\partial \Omega} j(u) d \sigma, & \text { if } u \in H^{1}(\Omega) \text { and } j(u) \in L^{1}(\partial \Omega) \\ +\infty, & \text { otherwise. }\end{cases}
$$

According to Brézis [8, Theorem 12], φ is proper, convex and lower semicontinuous on H, with $\partial \varphi(u)=-\Delta_{x} u$, and $D(\varphi)=\left\{u \in W^{1,2}(\Omega):-\frac{\partial u}{\partial \nu} \in \gamma(u)\right.$, a.e. on $\left.\partial \Omega\right\}$. We consider $u=u(t, x)=u(t)(x)$ and we rewriter the problem 4.1) in the abstract form

$$
\begin{aligned}
& -u^{\prime \prime \prime}(t)+\partial \varphi\left(u^{\prime}(t)\right)+f(t, u(t)) \ni 0 \quad \text { a.e. } t \in[0, T] \\
& u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T)
\end{aligned}
$$

or

$$
\begin{gathered}
u^{\prime \prime \prime}(t) \in \partial \varphi\left(u^{\prime}(t)\right)+f(t, u(t)) \quad \text { a.e. } t \in[0, T], \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T), \quad u^{\prime \prime}(0)=-u^{\prime \prime}(T) .
\end{gathered}
$$

We remark that $\varphi(0)=0, \varphi$ is even and that the inf-compactness condition on φ holds because $W^{1,2}(\Omega)$ is compactly imbedded in $L^{2}(\Omega)$. Then, we can applying Theorem 3.4 to derive the existence of a solution to 4.1 . If $0<T<\frac{\pi}{\sqrt[3]{L}}$, then the solution is unique.

Acknowledgments. The authors would like to thank the anonymous referees for their careful and thorough reading of the original manuscript.

References

[1] A. R. Aftabizadeh, Y. K. Huang, N.H. Pavel; Nonlinear Third-Order Differential Equations with Anti-Periodic Boundary Conditions and some Optimal Control Problems, J. Math. Anal. Appl. 192, (1995), 266-293.
[2] S. Aizicovici, N. H. Pavel; Anti-Periodic Solutions to a class of Nonlinear Differential Equations in Hilbert Space, J. Fun. Anal. 99 (1991) 387-408.
[3] S. Aizicovici, N. H. Pavel; Anti-Periodic boundary value problems for higher order differential equations in Hilbert spaces, Nonlinear Anal. 18 (1992) 253-267.
[4] S. Aizicovici, N. H. Pavel; On class of second order anti-periodic boundary value problem, J. Math. Appl. 171 (1992) 301-320.
[5] S. Aizicovici, N. H. Pavel, I. I. Vrabie; Anti-Periodic Solutions to Strongly Nonlinear Evolutions Equations in Hilbbert Space, Analele Stiintifice Ale Universitatii "A.I.Cuza" Iasi, Tomul XIV, s.I.a. Matematica, 1998.
[6] C. Castaing, T. Haddad; Relaxation and Bolza Problem Involving a Second Order Evolution Inclusion, Yokohama Publishers, Volum 9, Number 2, 2008, 141-159.
[7] C. Castaing, P. Raynaud de Fitte, A. Salvadori; Some variational convergence results with application to evolution inclusions, Adv. Math. Econ, 8 (2006), 33-73.
[8] H. Brézis; Monotonicity methods in Hilbert space and some applications to nonlinear partial differential equations, Contribution to Nonlinear Functional Analysis, Acadimic press, New York, 1971, pp. 101-156.
[9] H. Brézis; Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
[10] C. Castaing, M. Valadier; Convex analysis and measurable multifunctions, Lectures Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin (1977).
[11] J. F Couchouron, R. Precup; Anti-periodic solution for second order differential inclusions, Electron. J. Differential Equations 2004 (2004) 1-17.
[12] A. Haraux; Anti-periodic solutions of some nonlinear evolution equations, Manuscripta. Math. 63 (1989) 479-505.
[13] H. Okochi; On the existence of periodic solution of some nonlinear abstract parabolic equations, J. Math. sOC. Japon 40 (1988) 541-553.
[14] H. Okochi; On the existence of anti-periodic solutions to nonlinear evolutions equations associated with odd subdifferential operators, J. Funct. Aal. 90 (1990) 246-258.
[15] P. Souplet; Optimal uniqueness condition for the anti-periodic solutions of some nonlinear parabolic equations, Nonlinear Analysis, Theory, Methods and Applications, Vol. 32, No. 2, pp. 279-286, 1998.

Touma Haddad
Département de Mathématiques, Faculté des Sciences, Université de Jijel, B.P. 98, Algérie

E-mail address: touma.haddad@yahoo.com
Tahar Haddad
Laboratoire LMPA, Faculté des Sciences, Université de Jijel, B.P. 98, Algérie
E-mail address: haddadtr2000@yahoo.fr

