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NONLINEAR CONVECTION IN REACTION-DIFFUSION
EQUATIONS UNDER DYNAMICAL BOUNDARY CONDITIONS

GAËLLE PINCET MAILLY, JEAN-FRANÇOIS RAULT

Abstract. We study the blow-up phenomena for positive solutions of nonlin-

ear reaction-diffusion equations including a nonlinear convection term ∂tu =
∆u − g(u) · ∇u + f(u) in a bounded domain of RN under the dissipative dy-

namical boundary conditions σ∂tu + ∂νu = 0. Some conditions on g and f

are discussed to state if the positive solutions blow up in finite time or not.
Moreover, for certain classes of nonlinearities, an upper-bound for the blow-up

time can be derived and the blow-up rate can be determined.

1. Introduction

We consider the nonlinear parabolic problem
∂tu = ∆u− g(u) · ∇u+ f(u) in Ω for t > 0,

σ∂tu+ ∂νu = 0 on ∂Ω for t > 0,

u(·, 0) = u0 ≥ 0 in Ω,
(1.1)

where g : R → RN , f : R → R, Ω is a bounded domain of RN with C2-boundary
∂Ω. We denote by ν : ∂Ω→ RN the outer unit normal vector field, and by ∂ν the
outer normal derivative.

These equations arise in different areas, especially in population growth, chemical
reactions and heat conduction. For instance, in the case of a heat transfer in a
medium Ω, the first equation ∂tu = ∆u − g(u) · ∇u + f(u) is a heat equation
including a nonlinear convection term g(u) · ∇u and a nonlinear source f . On
the boundary ∂Ω, if σ is positive, the dynamical boundary conditions describe the
fact that a heat wave with the propagation speed 1

σ is sent into the region into an
infinitesimal layer near the boundary due to the heat flux across the boundary (see
[6] and [11]).

There are various results in the literature about the theory of blow-up for semi-
linear parabolic equations, in particular for reaction-diffusion equations, see e.g.
[8, 9, 10, 12]. In this work, we discuss a problem involving a nonlinear convection
term. Whereas a Burgers’ equation has been studied in [5] in the one-dimensional
case, we now consider a more general convection term and we set in a regular do-
main of RN . After recalling some qualitative properties in Section 2, we construct a
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global upper-solution for Problem (1.1) in Section 3 and we deduce some conditions
on f and g guaranteeing global existence of the solutions (Theorem 3.3). In Section
4, we investigate two methods to ensure the blow-up of solutions of Problem (1.1).
The first one is an eigenfunction method valid for the model problem

∂tu = ∆u− g(u) · ∇u+ up in Ω for t > 0,
σ∂tu+ ∂νu = 0 on ∂Ω for t > 0,

u(·, 0) = u0 in Ω,

(1.2)

with p > 1 (Theorem 4.2). We also derive some upper bounds for the blow-up time.
The second method, devoted to the problem

∂tu = ∆u− g(u) · ∇u+ epu in Ω for t > 0,
σ∂tu+ ∂νu = 0 on ∂Ω for t > 0,

u(·, 0) = u0 in Ω,

(1.3)

with p > 0, requires a self-similar lower-solution which blows up in finite time
(Theorem 4.3). We prove the blow-up of solutions of Problem (1.3). Finally, in
Section 5, we determine the blow-up rate of the solutions of Problem (1.2) in the
L∞-norm when approaching the blow-up time (Theorem 5.2).

Throughout, we shall assume the dissipativity condition

σ ≥ 0 on ∂Ω× (0,∞). (1.4)

To study classical solutions, we always assume that the parameters in the equations
of Problem (1.1) are smooth

σ ∈ C1
b (∂Ω× (0,∞)), (1.5)

f ∈ C1(R), f(s) > 0 for s > 0, (1.6)

g ∈ C1(R,RN ). (1.7)

The initial data is continuous, non-trivial and non-negative in Ω

u0 ∈ C(Ω), u0 6≡ 0, u0 ≥ 0. (1.8)

Let T = T (σ, u0) denote the maximal existence time of the unique maximal
classical solution of Problem (1.1),

uσ ∈ C(Ω× [0, T )) ∩ C2,1(Ω× (0, T ))

with the coefficient σ in the boundary conditions and the initial data u0. As for
the well-posedness and the local existence of the solutions of Problem (1.1), we
refer to [2], [6] and [7]. From [6], since the convection term depends linearly on the
gradiant ∇u of the solution, the maximal existence time T is the blow-up time of
the solution with respect to the L∞-norm:

T = inf
{
s > 0 : lim

t↗s
sup

Ω

|u(x, t)| =∞
}
.

2. Qualitative properties

The aim of this section is to compare the solutions for different parameters σ and
initial data u0 and to summarize some positivity results on the classical solutions
of Problem (1.1).

Using the maximum principle from [2], we extend some results obtained in [3] in
the case of reaction-diffusion to our problem with convection.
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Theorem 2.1. Assume hypotheses (1.4)–(1.8). Suppose that σ does not depend on
time

σ ∈ C1(∂Ω). (2.1)
Then the solution u of Problem (1.1) satisfies

u > 0 in Ω× (0, T (σ, u0)),

∂tu ≥ 0 in Ω× [0, T (σ, u0)),

∂tu > 0 in Ω× (0, T (σ, u0)).

Moreover, for all ξ ∈ (0, T (σ, u0)), there exists d > 0 such that

∂tu > d in Ω× [ξ, T (σ, u0)).

Proof. Let τ ∈ (0, T (σ, u0)). Since u is C2,1(Ω × [0, τ ]) and because f and g are
smooth ((1.6) and (1.7)), we can define these constants

C = sup
Ω×[0,τ ]

g(u), M = sup
Ω×[0,τ ]

g′(u) · ∇u− f ′(u).

First, the positivity principle [2, Corollary 2.4] applied to Problem (1.1) implies
u ≥ 0 in Ω× [0, τ ] since f ≥ 0 by condition (1.6). Thus we obtain

∂tu ≥ ∆u− g(u) · ∇u ≥ ∆u− C|∇u| in Ω for t > 0,
σ∂tu+ ∂νu = 0 on ∂Ω for t > 0,

u(·, 0) = u0 in Ω.

The strong maximum principle from [2] implies

m := min
Ω×[0,τ ]

u = min
Ω
u0 ,

and if this minimum m is attained in Ω× (0, τ ], u ≡ m in Ω× [0, τ ]. Since f > 0 in
(0,∞), the first equation in Problem (1.1) leads to m = 0, and we obtain u0 ≡ 0,
a contradiction with equation (1.8). Hence u > m ≥ 0 in Ω × (0, τ ]. Then,
since the coefficients in the equations of Problem (1.1) are sufficiently smooth,
classical regularity results in [13] imply that u ∈ C2,2(Ω × [0, τ ]). Thus y = ∂tu ∈
C2,1(Ω× [0, τ ]) and satisfies

∂ty = ∆y − g(u) · ∇y − (g′(u) · ∇u)y + f ′(u)y in Ω for t > 0,
σ∂ty + ∂νy = 0 on ∂Ω for t > 0.

By continuity, condition (1.8) implies y(·, 0) ≥ 0 in Ω. Again, Corollary 2.4 from
[2] implies y ≥ 0 in Ω × [0, τ ]. To apply properly the strong maximum principle,
we have to introduce w = yeMt ≥ 0. By definition of C and M , we obtain

∂tw ≥ ∆w − g(u) · ∇w ≥ ∆w − C|∇w| in Ω for t > 0,
σ∂tw + ∂νw ≥ 0 on ∂Ω for t > 0.

Again, the strong maximum principle from [2] implies

m̃ := min
Ω×[0,τ ]

w = min
Ω
w(·, 0) ,

and if this minimum m̃ is attained in Ω× (0, τ ], w ≡ m̃ in Ω× [0, τ ]. In particular,
if m̃ = 0, we have ∂tu ≡ 0 in Ω× [0, τ ], thus u(·, t) = u0 for all t ∈ [0, τ ]. Hence u
attains its minimum in Ω× (0, τ ], which is impossible according to the first part of
the proof. Thus w and ∂tu are positive in Ω× (0, τ ].
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Finally, let ξ ∈ (0, τ). Because y is continuous and thanks to the previous point,
there exists d > 0 such that y(·, ξ) > d in Ω. As y satisfies

∂ty = ∆y − g(u) · ∇y −
(
g′(u) · ∇u+ f ′(u)

)
y in Ω× [ξ, τ ],

σ∂ty + ∂νy = 0 on ∂Ω× [ξ, τ ],

the weak maximum principle from [2] implies

min
Ω×[ξ,τ ]

y = min
Ω
y(·, ξ) .

Hence y > d in Ω× [ξ, τ ]. Note that d depends only on ξ, not on τ . Without this
step, we only have y ≥ m̃e−Mτ which may vanish as τ → T (σ, u0). �

Let 0 ≤ σ1 ≤ σ2 be two coefficients satisfying condition (1.5), v0 ≤ u0 be two
initial data fulfilling hypothesis (1.8) and w0 a function in C0(Ω) with 0 ≤ w0 ≤ v0.
Denote by uσ1 , uσ2 , v and w the maximal solutions of the following four problems

∂tuσ1 = ∆uσ1 − g(uσ1) · ∇uσ1 + f(uσ1) in Ω for t > 0,
σ1∂tuσ1 + ∂νuσ1 = 0 on ∂Ω for t > 0,

uσ1(·, 0) = u0 in Ω;

∂tuσ2 = ∆uσ2 − g(uσ2) · ∇uσ2 + f(uσ2) in Ω for t > 0,
σ2∂tuσ2 + ∂νuσ2 = 0 on ∂Ω for t > 0,

uσ2(·, 0) = u0 in Ω;

∂tv = ∆v − g(v) · ∇v + f(v) in Ω for t > 0,
σ2∂tv + ∂νv = 0 on ∂Ω for t > 0,

v(·, 0) = v0 in Ω;

and

∂tw = ∆w − g(w) · ∇w + f(w) in Ω for t > 0,
w = 0 on ∂Ω for t > 0,

w(·, 0) = w0 in Ω.

Let T (σ1, u0), T (σ2, u0), T (σ2, v0) and T (w0) be their respective maximal exis-
tence times. For the reader convenience, we recall some results stemming from the
comparison principle [2].

Theorem 2.2 ([4]). Under the aforementioned hypotheses, we have

T (σ2, u0) ≤ T (σ2, v0) ≤ T (w0),

0 ≤ w ≤ v ≤ uσ2 in Ω× [0, T (σ2, u0)) .

In addition, if u0 ∈ C2(Ω) with

∆u0 − g(u0) · ∇u0 + f(u0) ≥ 0 in Ω, (2.2)

we have

T (σ1, u0) ≤ T (σ2, u0),
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uσ2 ≤ uσ1 in Ω× [0, T (σ1, u0)) .

An important fact comes from the last statement of Theorem 2.1. For any
positive solution u of Problem (1.1), the maximum principle implies that for any
s ∈ (0, T (σ, u0)), there exists c > 0 such that u(·, s) ≥ c in Ω. Then, consider the
solution ũ of (1.1) with the constant initial data c and σ̃ = supσ in the boundary
conditions. Theorem 2.2 implies ũ ≤ u. Since c satisfies (2.2), Theorem 2.1 leads
to ∂tũ > d > 0. Thus, ũ can be big enough after a long time (maybe it blows up).
So does u, even if u0 does not satisfy condition (2.2).

3. Existence of global solutions

In this section, we give some conditions on the function g in the convection term,
which ensure the existence of global solutions to Problem (1.1) for various reaction
terms f . We use the comparison method from [2]. Thus, we just need to find an
appropriate upper-solution of Problem (1.1) which does not blow up. This is our
first lemma.

Lemma 3.1. Let α > 0 and K > 0 be two real numbers and let η ∈ C1([0,∞))
with η′ ≥ α2. For any integer 1 ≤ j ≤ N , the function U defined in Ω× [0,∞) by

U(x, t) = K exp
(
αxj + η(t)

)
,

satisfies

∂tU ≥ ∆U − g(U) · ∇U + f(U) in Ω for t > 0,
σ∂tU + ∂νU ≥ 0 on ∂Ω for t > 0,

U(·, 0) > 0 in Ω,

if

αgj(ω) ≥ f(ω)
ω

for all ω ≥ 0 (3.1)

and if
σ(x, t) ≥ α

η′(t)
for all t > 0. (3.2)

Proof. A simple computation of the derivatives of U leads us to

∂tU −∆U + g(U) · ∇U =
(
η′ − α2

)
U + αgj(U)U in Ω for t > 0.

Since we assume η′ ≥ α2, hypothesis (3.1) implies

∂tU −∆U + g(U) · ∇U − f(U) ≥ 0 in Ω× (0,∞).

Furthermore, on the boundary ∂Ω, for t > 0, we have

σ∂tU + ∂νU =
(
ση′(t) + ανj(x)

)
U

≥
(
ση′(t)− α

)
U ≥ 0,

(3.3)

by hypothesis (3.2) since ν is normalized, and clearly U(x, 0) = K exp
(
αxj +

η(0)
)
> 0 in Ω. �

Remark 3.2. In the case of the Dirichlet boundary conditions, we can use this
upper-solution with the special choice η ≡ 0 (see [14]). However, for the dynamical
boundary conditions, we must use a positive time-dependent η because our solutions
are not bounded, see Theorem 2.1.
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Now we can state the following theorems for a nonlinear reaction term f growing
as a power of u (Problem (1.2)), or as an exponential function (Problem (1.3)).

Theorem 3.3. Let σ be a coefficient fulfilling conditions (1.4), (1.5) and such that
there exists δ > 0 with

inf
∂Ω
σ ≥ δ sup

∂Ω
σ for t > 0 and

(
sup
x∈∂Ω

σ(x, ·)
)−1

∈ L1
loc(R+).

Assume u0 satisfies condition (1.8). If there exists an integer 1 ≤ j ≤ N such that

lim inf
ω→∞

gj(ω)
ωp−1

> 0, (3.4)

then the solution of Problem (1.2) is a global solution.

Proof. In view of Theorem 2.1 and (3.4), we can suppose that u0 is sufficiently big
such that there exists C > 0 with

gj(u) ≥ Cup−1 in Ω for t > 0.

For

η(t) = Cδ−1

∫ t

0

(
sup
x∈∂Ω

σ(x, s)
)−1

ds+ C2t.

we have η′ ≥ C2 and (3.2) is satisfied. Let K be a positive number such that

K ≥ u0(x)e−Cxj−η(0) for all x ∈ Ω.

Then by hypotheses (1.5), (1.8) and (3.2), the function U defined in Lemma 3.1 is
an upper-solution of (1.2) since U(·, 0) ≥ u0 in Ω. Using the comparison principle
from [2], the unique solution u of Problem (1.1) satisfies

0 ≤ u(x, t) ≤ U(x, t) for all x ∈ Ω and t > 0 ,

thus u does not blow up. �

This theorem holds in particular for a nonlinearity g in the form

g(u) = (α1u
q1 , . . . , αiu

qi , . . . , αNu
qN )

with at least one integer j such that αj > 0 and qj ≥ p − 1. A similar result can
be derived for Problem (1.3).

Theorem 3.4. Under the aforementioned assumptions, the solution of Problem
(1.3) is a global solution if the convection term g(u)·∇u has (at least) one component
gj satisfying gj(u) = αje

qju with αj > 0 and qj > p.

Proof. Thanks to qj > p, condition (3.1) is fulfilled because αjeqju ≥ αje
pu/u for

u sufficiently big. �

Remark 3.5. Condition (3.4) is optimal for Problem (1.2), see Theorems 3.3 and
4.2. But it can be improved in some special cases, for example, if the reaction term
is f(u) = u lnu. Lemma 3.1 implies that all solutions of Problem (1.1) are global if
one component gj of g satisfies gj(u) ≥ αj lnu. In fact, in that case, every positive
solution of (1.1) is global, without any assumption on the convection term g, since∫∞
c

1/f(y) dy =∞ for c > 0, see [6, Theorem 3.2].
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Condition (3.2) on σ allows us to consider fast decaying functions σ, but, to
ensure global existence, it is essential that σ does not vanish on the whole ∂Ω.
Indeed let us prove the following blow-up result related to the Neumann boundary
conditions, for σ ≡ 0 on ∂Ω.

Theorem 3.6. Assume that σ ≡ 0, u0 fulfills hypothesis (1.8) and f is positive in
(0,∞) such that ∫ ∞

c

1
f(y)

dy <∞ for some c > 0 . (3.5)

Then every positive solution of (1.1) blows up in finite time.

Proof. Let u be a non-trivial positive solution of
∂tu = ∆u− g(u) · ∇u+ f(u) in Ω for t > 0,

∂νu = 0 on ∂Ω for t > 0,

u(·, 0) = u0 in Ω.
(3.6)

Using the maximum principle from [2], we have u(·, ξ) > 0 in Ω for ξ > 0. Hence,
without loss of generality, we suppose u0 > c in Ω. Now, consider the maximal
solution z of the ODE ż = f(z) with the initial data z(0) = inf{u0(x) : x ∈ Ω}.
Condition (3.5) implies that its maximal existence time Tz is finite:

Tz =
∫ ∞
z(0)

1
f(y)

dy <∞.

Since ∇z = 0, z is a lower solution of Problem (3.6). Using the comparison principle
from [2], we obtain z(t) ≤ u(·, t) in Ω for t > 0. Thus, u must blow up in finite
time with 0 < T < Tz. �

Remark 3.7. This section illustrates the damping effect of the dissipative dynam-
ical boundary conditions: we have shown that for nontrivial σ ≥ 0 the maximal
existence time of the solutions of Problem (1.1) can be strictly greater than the
ones under the Neumann boundary conditions.

4. Blow-up

In this section, we investigate the blow-up in finite time for the solutions of
Problems (1.2) and (1.3). Let G be a primitive of g and suppose that there exist
α > 0 and q < p such that

G(ω) ≤ αωq for ω > 0. (4.1)

By applying the eigenfunction method (see [4, 9, 12]), we obtain some conditions
on the initial data u0 which guarantee the finite time blow-up and we derive some
upper bounds for the blow-up times. This is a general technique which can be
applied to the following problem, where the boundary behaviour of the solutions is
not involved:

∂tu = ∆u− g(u) · ∇u+ up in Ω for t > 0,
u ≥ 0 on ∂Ω for t > 0,

u(·, 0) = u0 in Ω.

(4.2)

Henceforth, we denote by λ the first eigenvalue of −∆ in H1
0 (Ω) and by ϕ an

eigenfunction associated to λ satisfying

ϕ ∈ H1
0 (Ω), 0 < ϕ ≤ 1 in Ω. (4.3)
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Theorem 4.1. Let α > 0, 1 < q < p, m = p/(p − q) and suppose G satisfies
condition (4.1). Assume hypotheses (1.4), (1.5), (1.7) and (1.8) are fulfilled. If∫

Ω

u0ϕ
m dx > (2|Ω|p−1C)1/p (4.4)

with

C = (p− 1)|Ω|
( 4λ
p− q

) 1
p−1

+
( 4q
p− q

) q
p−q

αm
∫

Ω

|∇ϕ|m dx ,

then the maximal classical solutions u of Problem (4.2) blow up in finite time T
satisfying

T ≤
2
∫

Ω
u0ϕ

m dx

(p− 1)
(
|Ω|1−p

( ∫
Ω
u0ϕm dx

)p
− 2C

) =: T̃ . (4.5)

Proof. Define

M(t) =
∫

Ω

u(x, t)ϕ(x)m dx.

Thus,

Ṁ(t) =
∫

Ω

∆uϕm dx−
∫

Ω

g(u) · ∇uϕm dx+
∫

Ω

upϕm dx.

First, we prove that∫
Ω

∆uϕm dx ≥ −mλ|Ω|
p−1
p

(∫
Ω

upϕm dx
)1/p

. (4.6)

Observe that the behaviour of ϕ and ∂νϕ on ∂Ω imply∫
∂Ω

∂νuϕ
m ds = 0 and

∫
∂Ω

u∂ν(ϕm) ds ≤ 0, (4.7)

since u ≥ 0 on ∂Ω for t > 0. As in [14], Equation (4.7) and Green’s formula yield∫
Ω

∆uϕm dx ≥ −mλ
∫

Ω

uϕm dx. (4.8)

Since ϕ ≤ 1,
∫

Ω
uϕm dx ≤

∫
Ω
uϕ

m
p dx and by Hölder’s inequality, (4.6) holds.

Now, we show that

−
∫

Ω

g(u) · ∇uϕm dx ≥ −mα
(∫

Ω

|∇ϕ|m dx
)1/m(∫

Ω

upϕm dx
)q/p

. (4.9)

By Green’s formula and by definition of G and ϕ, we have

−
∫

Ω

g(u) · ∇uϕm dx = −
∫

Ω

div(G(u))ϕm dx = m

∫
Ω

(G(u) · ∇ϕ)ϕm−1 dx .

Equation (4.1) and Hölder’s inequality lead to∣∣∣ ∫
Ω

(G(u) · ∇ϕ)ϕm−1 dx
∣∣∣ ≤ α ∫

Ω

uqϕm−1|∇ϕ| dx

≤ α
(∫

Ω

|∇ϕ|m dx
)1/m(∫

Ω

upϕ
(m−1)p

q dx
)q/p

,

and (4.9) is satisfied. Henceforth, introduce

C1 = mλ|Ω|
p−1
p , C2 = mα

(∫
Ω

|∇ϕ|m dx
)1/m

.
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Then we obtain

Ṁ(t) ≥
∫

Ω

up ϕm dx− C1

(∫
Ω

upϕm dx
)1/p

− C2

(∫
Ω

upϕm dx
)q/p

. (4.10)

Set

ε1 =
p1/p

41/pC1
, ε2 =

pq/p

(4q)q/pC2
.

Recall Young’s inequality: for a > 0 and ε > 0,

a =
εa

ε
≤ εrar

r
+

1
sεs

for r, s > 1 with r−1 + s−1 = 1. It yields

C1

(∫
Ω

up ϕm dx
)1/p

≤ 1
4

∫
Ω

up ϕm dx+
p− 1

pε
p
p−1
1︸ ︷︷ ︸

:=C3

,

and in the same way we have

C2

(∫
Ω

up ϕm dx
)q/p

≤ 1
4

∫
Ω

up ϕm dx+ C4,

with
C4 =

1
mεm2

.

Then
Ṁ(t) ≥ 1

2

∫
Ω

up ϕm dx− C

with C = C3 + C4 > 0. By (4.3) and Hölder’s inequality, we obtain that

Ṁ(t) ≥ 1
2
|Ω|1−pMp − C.

Since M is increasing with respect to t, by (4.4) we have

Ṁ(t) ≥
(1

2
|Ω|1−p − CM(0)−p

)
Mp,

and we can conclude that u can not exist globally. To derive an upper bound for
the blow-up time, we integrate the previous differential inequality between 0 and
t > 0. We obtain

M(t) ≥
(
M(0)1−p − (p− 1)

(1
2
|Ω|1−p − CM(0)−p

)
t
) −1
p−1

.

Hence M blows up before T̃ = M(0)1−p(p− 1)−1
(

1
2 |Ω|

1−p −CM(0)−p
)−1, so does

u. Thus, T ≤ T̃ . �

Note that Condition (4.4) on the initial data is only necessary to derive an
upper bound for the maximal existence time. Thanks to Theorem 2.1, we obtain
the following result.

Theorem 4.2. Let q < p and suppose G satisfies

lim sup
ω→∞

G(ω)
ωq

<∞.

Assume that σ and u0 satisfy conditions (1.4), (1.5), (1.7) and (1.8). All the
positive solutions of Problem (1.2) blow up in finite time.
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Proof. Let u be a positive solution of Problem (1.2). Theorem 2.1 permits to
ensure that there exist t0 > 0 and C > 0 such that u(·, t0) is big enough to satisfy
Equation (4.4) and G(u) ≤ Cuq in Ω for t > t0. Thus applying Theorem 4.1 to
v(x, t) = u(x, t+ t0), we prove that v blows up in a finite time Tv satisfying (4.5).
Hence, u blows up in a finite time Tu = t0 + Tv. � �

Now, we prove the blow-up of positive solutions of Problem (1.3).

Theorem 4.3. Assume σ and u0 satisfy conditions (1.4), (1.5), (1.7) and (1.8).
If

lim sup
ω→∞

|g(ω)|
eqω

<∞,

then all the positive solutions of Problem (1.3) blow up in finite time.

Proof. Let u be a positive solution of Problem (1.3) and define v = eγu with
γ ∈ (q, p) and γ > 1/2. As in the previous proof, we suppose that u is sufficiently
big such that for some C > 0

|g(u)| ≤ Cequ in Ω for t > 0. (4.11)

Computing the derivatives of v, we obtain

∂tv = ∆v − 1
v
|∇v|2 − g(u) · ∇v + γv

p+γ
γ in Ω for t > 0.

Using condition (4.11), we obtain

∂tv ≥ ∆v − 1
v
|∇v|2 − Cvq/γ |∇v|+ γv

p+γ
γ in Ω for t > 0.

Young’s inequality

Cvq/γ |∇v| ≤ C2

2
|∇v|2 +

1
2
v2q/γ ,

leads to

∂tv ≥ ∆v − 2 + C2

2
|∇v|2 + γv

p+γ
γ − 1

2
v

2q
γ in Ω for t > 0,

since v ≥ 1. Morevover, we have

γv
p+γ
γ − 1

2
v

2q
γ ≥ (γ − 1

2
)v

p+γ
γ

by definition of γ. Thus, we obtain

∂tv ≥ ∆v − µ|∇v|2 + κv
p+γ
γ in Ω for t > 0,

v ≥ 0 on ∂Ω for t > 0,

v(·, 0) > 0 in Ω,

(4.12)

with µ = (2 + C2)/2 and κ = γ − 1/2. Without loss of generality (see Theorem
2.1), we can suppose that v(·, 0) ≥ V (·, 0) in Ω, where

V (x, t) = (1− εt)
−1
p−1W

( |x|
(1− εt)m

)
,

with 0 < m < min{ 1
2 ,

p−q
q(p−1)}, W (y) = 1 + A/2 − y2/(2A), A > 1

m(p−1) and

ε < 2κ(p−1)
2+A . According to Souplet & Weissler [15], V is a blowing-up sub-solution

for Problem (4.12). By the comparison principle from [2], v ≥ V and u blows up
in finite time. �
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Remark 4.4. In this section, we point out the accelerating effect of the dynam-
ical boundary conditions, in comparison with the Dirichlet boundary conditions.
Indeed, we prove that, even if the initial data u0 is small, the solutions of Problem
(1.2) blow up in finite time. But, if we replace the dynamical boundary conditions
by the Dirichlet boundary conditions in the second equation of Problem (1.2), it is
well known that the solutions are global and decay to 0 if the initial data are small
enough, see for instance references [16] and [17].

5. Growth Order

In this section, we are interested in the blow-up rate for Problem (1.2) when
approaching the blow-up time T . For the convection term, we assume that

g(u) = (g1(u), . . . , gn(u)) with gi(u) = uq ∀i = 1, . . . , n, 1 < q ∈ R. (5.1)

First, we derive a lower blow-up estimate for p > q + 1, valid for any non-negative
initial data u0 ∈ C(Ω).

Lemma 5.1. Let p > q+ 1, and assume hypotheses (1.4)–(1.8). Then the classical
maximal solution u of (1.2) satisfies

‖u(·, t)‖∞ ≥ (p− 1)
−1
p−1 (T − t)

−1
p−1

for 0 < t < T .

Proof. Let t ∈ [0, T ). Denote by ζ ∈ C1((0, t1)) the maximal solution of the IVP

ζ̇ = ζp in (0, t1)

ζ(0) = ‖u(·, t)‖∞

with t1 = 1
p−1‖u(·, t)‖1−p∞ . Introduce v ∈ C(Ω × [0, T − t)) ∩ C2,1(Ω × (0, T − t))

defined by v(x, s) = u(x, s+ t) for x ∈ Ω and s ∈ [0, T − t). Then v is the maximal
solution of the problem

∂tv = ∆v − g(v) · ∇v + vp in Ω for 0 < s < T − t,
σ∂tv + ∂νv = 0 on ∂Ω for 0 < s < T − t,

v(·, 0) = u(·, t) in Ω.

The comparison principle from [2] implies that t1 ≤ T − t. �

This result remains valid for Problem (1.1) as soon as blow-up occurs. We just
need a positive function f such that an explicit primitive of 1

f is known. We im-
prove the technique developed in [5, Theorem 2.3] for an one-dimensional Burgers’
problem and inspired by Friedman and McLeod [10] to prove that the growth order
of the solution of (1.2) amounts to −1/(p− 1) for p > 2q + 1 > 3, when the time t
approaches the blow-up time T .

Theorem 5.2. Suppose conditions (1.4), (1.8), (2.1) and (5.1) are fulfilled. For

p > 2q + 1 , (5.2)

there exists a positive constant C such that the classical maximal solution u of (1.2)
satisfies

‖u(·, t)‖∞ ≤
C

(T − t)1/p−1
for t ∈ [0, T ).
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Proof. Let β > 1 such that

p(p− 1)(p− 2q − 1) =
Nq2

β
> 0, (5.3)

and choose M > 1 such that

M ≥ Nq

2(2q + 1)
β

2q
p−2q−1 .

First, for ξ ∈ (0, T ), we shall prove that there exists δ > 0 such that

∂tu ≥ δe−Mt(up + βu2q+1)

in Ω× [ξ, T ). Introduce
J = ∂tu− δd(t)k(u)

with d(t) = e−Mt and k(u) = up + βu2q+1. Note that classical regularity results
from [13] yield J ∈ C2,1

(
Ω× [ξ, T )

)
. We recall that Theorem 2.1 implies that

there exists c > 0 such that ∂tu ≥ c > 0 in Ω × [ξ, T ). Thus, we can choose δ > 0
sufficiently small such that

J(·, ξ) ≥ 0 in Ω.
The function J satisfies the boundary condition

σ∂tJ + ∂νJ = ∂t(σ∂tu+ ∂νu)− δdk′(u)(σ∂tu+ ∂νu)− σδd′k(u)

= σδMe−Mtk(u) ≥ 0.

Furthermore, J satisfies

∂tJ −∆J + g(u) · ∇J − (pup−1 − g′(u) · ∇u)J = δdH(u) in Ω× [ξ, T ),

where

H(u) := pup−1k(u)− k′(u)up + k
′′
(u)|∇u|2 − d′

d
k(u)− k(u)g′(u) · ∇u.

To prove that H(u) ≥ 0, we shall show that

q
√
Nuq−1|∇u|(up + βu2q+1) ≤M(up + βu2q+1) + β(p− 2q − 1)up+2q

+ (p(p− 1)up−2 + 2q(2q + 1)βu2q−1)|∇u|2.
(5.4)

Inequality (5.4) is trivial in the case where M ≥ q
√
Nuq−1|∇u|. Now, sup-

pose that M < q
√
Nuq−1|∇u|. When q

√
Nuq+1 ≤ 2q(2q + 1)|∇u|, we have

q
√
Nuq−1up|∇u| ≤ p(p − 1)up−2|∇u|2 and q

√
Nu3q|∇u| ≤ 2q(2q + 1)u2q−1|∇u|2

since p > 3 then (5.4) follows. In the case where q
√
Nuq+1 > 2q(2q+ 1)|∇u|, since

u >
(2(2q + 1)

Nq
M
)1/2q

≥ β
1

p−2q−1 ,

we obtain
up + βu2q+1 ≤ 2up. (5.5)

Moreover, (5.3) yields

2
√
N quq+1|∇u| = 2

√
βp(p− 1)(p− 2q − 1)uq+1|∇u|

≤
(√

β(p− 2q − 1)uq+1 −
√
p(p− 1) |∇u|

)2

+ 2
√
βp(p− 1)(p− 2q − 1)uq+1|∇u|

≤ β(p− 2q − 1)u2(q+1) + p(p− 1)|∇u|2.
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Thus, multiplying by up−2 leads to

2
√
Nquq−1|∇u|up ≤ β(p− 2q − 1)up+2q + p(p− 1)up−2|∇u|2,

and by (5.5), the inequality (5.4) holds. Finally, we can conclude by the comparison
principle from [2] that J ≥ 0 in Ω× [ξ, T ), in particular, ∂tu ≥ εup with ε > 0.

Now, we shall derive the upper blow-up rate estimate of ‖u(·, t)‖∞ for t ∈ [ξ, T ).
For each x ∈ Ω, the integral∫ τ

t

∂tu(x, s)
up(x, s)

ds =
∫ u(x,τ)

u(x,t)

1
ηp
dη

converges as τ → T . Integrating the inequality ∂tu ≥ εup leads to

ε(τ − t) ≤ u(x, τ)1−p − u(x, t)1−p

1− p
≤ u(x, t)1−p

p− 1
.

Letting τ → T implies u(x, t) ≤
(
ε(p − 1)(T − t)

) −1
p−1

and we can conclude as in
the proof of Theorem 2.3 from [5]. �
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