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EXISTENCE OF BOUNDED SOLUTIONS FOR NONLINEAR
FOURTH-ORDER ELLIPTIC EQUATIONS WITH

STRENGTHENED COERCIVITY AND LOWER-ORDER TERMS
WITH NATURAL GROWTH

MICHAIL V. VOITOVICH

Abstract. In this article, we consider nonlinear elliptic fourth-order equa-

tions with the principal part satisfying a strengthened coercivity condition,

and a lower-order term having a “natural” growth with respect to the deriva-
tives of the unknown function. We assume that there is an absorption term

in the equation, but we do not assume that the lower-order term satisfies the

sign condition with respect to unknown function. We prove the existence of
bounded generalized solutions for the Dirichlet problem, and present some a

priori estimates.

1. Introduction

Skrypnyk [11] introduced a class of nonlinear elliptic equations of the form∑
|α|≤m

(−1)|α|DαAα(x, u, . . . , Dmu) = 0 in Ω, (1.1)

where m > 1 and Ω is a bounded domain of Rn. All generalized solutions to this
equation are bounded and Hölder continuous. This class of equations is character-
ized by a strengthened coercivity condition on coefficients Aα, 1 ≤ |α| ≤ m. In a
typical case this condition means that for every x ∈ Ω and every ξ = {ξα ∈ R :
|α| ≤ m}, the following inequality holds:∑

1≤|α|≤m

Aα(x, ξ)ξα ≥ C
{ ∑
|α|=1

|ξα|q +
∑
|α|=m

|ξα|p
}

(1.2)

where p ≥ 2, mp < q < n and C > 0. At the same time, in [11] it was assumed that
the lower-order term A0 may have the growth of a rate less than nq/(n − q) − 1
with respect to the function u and the growth rates are definitely less than q and
p with respect to the derivatives Dαu, |α| = 1, and the derivatives Dαu, |α| = m,
accordingly.

We observe that the proof of the boundedness of generalized solutions in [11] uses
a modification of Moser’s method [10]. Using an analogue of Stampacchia’s method
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(see [12], [13] and [5]), a weaker (exact) condition on integrability of data was
established in [8] to guarantee the boundedness of generalized solutions of nonlinear
fourth-order equations with a strengthened coercivity. Moreover, a dependence of
summability of generalized solutions of these equations on integrability of data
was described in [8]. Analogous results for nonlinear high-order equations with a
strengthened coercivity were obtained in [14].

In the present article, we consider a class of nonlinear fourth-order equations of
type (1.1) with the principal part satisfying a strengthened coercivity condition like
(1.2), where m = 2, and with the lower-order term A0 admitting, unlike [8, 11, 14],
the growth of the rate q with respect to the derivatives Dαu, |α| = 1, and the
growth of the rate p with respect to the derivatives Dαu, |α| = 2. The main result
of the article is a theorem on the existence and L∞-estimate of bounded generalized
solutions of the Dirichlet problem for the equations under investigation. We note
that in the case under consideration, q and p are exponents of an energy space
corresponding to the given problem.

Similar results for nonlinear fourth-order equations with strengthened coercivity
and a lower-order term of natural growth were established in [15] in the case where
the lower-order term satisfies the sign condition A0(x, u,Du,D2u)u ≥ 0 and admits
an arbitrary growth with respect to u. In the given article, we do not assume that
the sign condition is satisfied. At the same time the presence of an absorption term
in the left-hand side of the equation is required.

Existence and L∞-estimate of bounded solutions of nonlinear elliptic second-
order equations with natural growth lower-order terms were established for instance
in [1]–[3]. At the same time, in [1, 2] it is not assumed that the lower-order terms
satisfy the sign condition. Observe that in order to obtain an L∞-estimate of a
solution by Stampacchia’s method, in [1, 2] superpositions of the solution and the
functions

(exp(λ|s− Tk(s)|)− 1) sign(s− Tk(s)), k > 0, s ∈ R, (1.3)

were used as test functions. Here Tk(s) = max{min{s, k},−k} is the standard cut-
off function. The use of the function (exp(λ|s|)− 1) sign s with a suitable λ > 0 in
the test functions (superpositions) leads to the absorption of the lower-order term
of natural growth by the coercive principal part of the equation (see [1, 2]).

In this article, for obtaining L∞-estimates, we modify the method of [8] and use
the functions

|s− hk(s)|λk exp(λ|s− hk(s)|) sign(s− hk(s)), k > 0, s ∈ R,

which play a role similar to that of functions (1.3) in the case of elliptic second-order
equations with lower-order terms of natural growth. Here hk is an odd ”cut-off ”
function of the class C2(R) such that hk(s) = s if |s| ≤ k, and h′k(s) = 0 if |s| ≥ 2k.

We remark that a theory of existence and properties of solutions of nonlinear
elliptic fourth-order equations with coefficients satisfying a strengthened coercivity
condition and L1-right-hand sides was developed in [6, 7].

2. Preliminaries and the statement of the main result

Let n ∈ N, n > 2, and let Ω be a bounded open set of Rn.
We shall use the following notation: Λ is the set of all n-dimensional multi-

indices α such that |α| = 1 or |α| = 2; Rn,2 is the space of all mappings ξ : Λ→ R;
if u ∈ W 2,1(Ω), then ∇2u : Ω → Rn,2, and for every x ∈ Ω and for every α ∈ Λ,
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(∇2u(x))α = Dαu(x). If r ∈ [1,+∞], then ‖ · ‖r is the norm in Lr(Ω) and r′ =
r/(r − 1). For every measurable set E ⊂ Ω we denote by measE n-dimensional
Lebesgue measure of the set E.

Let p ∈ (1, n/2) and q ∈ (2p, n). We denote by W 1,q
2,p (Ω) the set of all functions

in W 1,q(Ω) that have the second-order generalized derivatives in Lp(Ω). The set
W 1,q

2,p (Ω) is a Banach space with the norm

‖u‖ = ‖u‖W 1,q(Ω) +
( ∑
|α|=2

∫
Ω

|Dαu|pdx
)1/p

.

We denote by W̊ 1,q
2,p (Ω) the closure of the set C∞0 (Ω) in W 1,q

2,p (Ω).
We set q∗ = nq/(n− q). As is known (see for instance [4, Chapter 7]),

W̊ 1,q(Ω) ⊂ Lq∗(Ω), (2.1)

and there exists a positive constant c depending only on n and q such that for every
function u ∈ W̊ 1,q(Ω),(∫

Ω

|u|q
∗
dx
)1/q∗

≤ c
( ∑
|α|=1

∫
Ω

|Dαu|qdx
)1/q

. (2.2)

Next, let c0, c1, c2, c3, c4, c5 > 0, let g1, g2, g3, g4, g5 be nonnegative summable
functions on Ω, g5 ∈ Lq

′
(Ω), and let A0 : Ω × R → R, B : Ω × R × Rn,2 → R and

Aα : Ω×Rn,2 → R, α ∈ Λ, be Carathéodory functions. We assume that for almost
every x ∈ Ω, for every s ∈ R and for every ξ ∈ Rn,2 the following inequalities hold:∑

|α|=1

|Aα(x, ξ)|q/(q−1) ≤ c1
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ g1(x), (2.3)

∑
|α|=2

|Aα(x, ξ)|p/(p−1) ≤ c2
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ g2(x), (2.4)

∑
α∈Λ

Aα(x, ξ)ξα ≥ c3
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}
− g3(x), (2.5)

|B(x, s, ξ)| ≤ c4
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ g4(x), (2.6)

A0(x, s)s ≥ c0|s|q, (2.7)

|A0(x, s)| ≤ c5|s|q−1 + g5(x). (2.8)

Further, let
f ∈ Lq

∗/(q∗−1)(Ω). (2.9)

We consider the Dirichlet problem∑
α∈Λ

(−1)|α|DαAα(x,∇2u) +A0(x, u) +B(x, u,∇2u) = f in Ω, (2.10)

Dαu = 0, |α| = 0, 1, on ∂Ω. (2.11)

Observe that, by (2.3) and (2.4), for every u, v ∈ W̊ 1,q
2,p (Ω) and for every α ∈ Λ

the function Aα(x,∇2u)Dαv is summable on Ω. By (2.8), for every u, v ∈ W̊ 1,q
2,p (Ω)

the function A0(x, u)v belongs to L1(Ω), and by (2.6), for every u ∈ W̊ 1,q
2,p (Ω) and

for every v ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω) the function B(x, u,∇2u)v is summable on Ω.
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Moreover, it follows from (2.1) and (2.9) that for every v ∈ W̊ 1,q
2,p (Ω) the function

fv is summable on Ω.

Definition 2.1. A generalized solution of problem (2.10), (2.11) is a function
u ∈ W̊ 1,q

2,p (Ω) such that for every function v ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω),∫

Ω

{∑
α∈Λ

Aα(x,∇2u)Dαv +A0(x, u)v +B(x, u,∇2u)v
}
dx =

∫
Ω

fvdx. (2.12)

The following theorem is the main result of the present article.

Theorem 2.2. Let r > n/q, let the functions g2, g3, g4 and f belong to Lr(Ω),
and let for almost every x ∈ Ω and for every ξ, ξ′ ∈ Rn,2, ξ 6= ξ′, the following
inequality holds: ∑

α∈Λ

[Aα(x, ξ)−Aα(x, ξ′)](ξα − ξ′α) > 0. (2.13)

Then there exists a generalized solution u0 of problem (2.10), (2.11) such that u0 ∈
L∞(Ω) and

‖u0‖∞ ≤ C1 (2.14)

where C1 is a positive constant depending only on n, p, q, r, meas Ω, c, c0, c2, c3,
c4 and the functions g2, g3, g4 and f .

Let us give an example of functions satisfying conditions (2.3)–(2.8) and (2.13).

Example 2.3. Let for every n-dimensional multiindex α, |α| = 1, Aα : Ω×Rn,2 →
R be the function defined by

Aα(x, ξ) =
( ∑
|β|=1

ξ2
β

)(q−2)/2

ξα, (x, ξ) ∈ Ω× Rn,2,

and let for every n-dimensional multiindex α, |α| = 2, Aα : Ω × Rn,2 → R be the
function defined by

Aα(x, ξ) =
( ∑
|β|=2

ξ2
β

)(p−2)/2

ξα, (x, ξ) ∈ Ω× Rn,2.

Then the functions Aα, α ∈ Λ, satisfy inequalities (2.3)–(2.5) and (2.13). Next, let

B(x, s, ξ) = b(x)
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}
, (x, s, ξ) ∈ Ω× R× Rn,2,

A0(x, s) = c0|s|q−2s, (x, s) ∈ Ω× R,

where c0 > 0 and b ∈ L∞(Ω). Then the function B satisfies inequality (2.6), and
the function A0 satisfies inequalities (2.7) and (2.8).

Observe that the coefficients of the biharmonic operator ∆2u do not satisfy
condition (2.5).

We will prove Theorem 2.2 in Section 6. The key point of its proof is obtaining
a priori energy- and L∞-estimates for bounded generalized solutions of problem
(2.10), (2.11). These estimates are contained in the following two theorems which
will be established in Sections 4 and 5 respectively.
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Theorem 2.4. Let the functions g2, g3, g4 and f belong to Ln/q(Ω), and let u be a
generalized solution of problem (2.10), (2.11) such that u ∈ L∞(Ω). Then for every
λ > c4/c3 we have∫

Ω

( ∑
|α|=1

|Dαu|q +
∑
|α|=2

|Dαu|p
)

exp(λ|u|)dx ≤ C2 (2.15)

where C2 is a positive constant depending only on n, p, q, meas Ω, c, c0, c2, c3, c4,
λ and the functions g2, g3, g4 and f .

Theorem 2.5. Let r > n/q, let the functions g2, g3, g4 and f belong to Lr(Ω),
and let u be a generalized solution of problem (2.10), (2.11) such that u ∈ L∞(Ω).
Then

‖u‖∞ ≤ C1 (2.16)

where C1 is the positive constant from Theorem 2.2.

Remark 2.6. The condition r > n/q in the statements of Theorems 2.2 and 2.5
coincides with the condition of boundedness of generalized solutions of the Dirichlet
problem considered in [8] for equation (2.10) with A0 ≡ 0 and B ≡ 0.

Before proving Theorems 2.2, 2.4 and 2.5, we give several auxiliary results.

3. Auxiliary results

By analogy with [6, Lemma 2.2], we establish the following result.

Lemma 3.1. Let u ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω), h ∈ C2(R) and h(0) = 0. Then h(u) ∈

W̊ 1,q
2,p (Ω) ∩ L∞(Ω) and the following assertions hold:

(a) for every n-dimensional multi-index α, |α| = 1,

Dαh(u) = h′(u)Dαu a. e. in Ω,

(b) for every n-dimensional multi-index α, |α| = 2,

Dαh(u) = h′(u)Dαu+ h′′(u)DβuDγu a. e. in Ω,

where α = β + γ, |β| = |γ| = 1.

Lemma 3.2. Let h be an odd function on R such that h ∈ C1(R), h ∈ C2(R \ {0})
and h′′ has a discontinuity of the first kind at the origin. Let

u ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω). (3.1)

Then h(u) ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω) and the following assertions hold:

(i) for every n-dimensional multi-index α, |α| = 1,

Dαh(u) = h′(u)Dαu a. e. in Ω;

(ii) for every n-dimensional multi-index α, |α| = 2,

Dαh(u) =

{
h′(u)Dαu+ h′′(u)DβuDγu a. e. in {u 6= 0},
h′(0)Dαu a. e. in {u = 0}

where α = β + γ, |β| = |γ| = 1.
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Proof. Let u ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω). We define the function H : R→ R by

H(s) = h(s)− h′(0)s, s ∈ R. (3.2)

Let
wα = H ′(u)Dαu if |α| = 1, (3.3)

and let

wα =

{
H ′(u)Dαu+H ′′(u)DβuDγu in {u 6= 0},
0 in {u = 0}

(3.4)

if |α| = 2 and α = β + γ, |β| = |γ| = 1. Clearly,

wα ∈ Lq(Ω) if |α| = 1 and wα ∈ Lp(Ω) if |α| = 2. (3.5)

We fix ε > 0. Let Hε : R→ R be the function such that

Hε(s) =


H(s) + ( 1

2εH
′′(ε)−H ′(ε))(s− ε) + 1

6ε
2H ′′(ε)−H(ε) if s > ε,

H ′′(ε)s3/(6ε) if |s| ≤ ε,
H(s) + ( 1

2εH
′′(ε)−H ′(ε))(s+ ε)− 1

6ε
2H ′′(ε) +H(ε) if s < −ε.

We have

Hε ∈ C2(R), (3.6)

H ′ε(s) =

{
H ′(s) + εH ′′(ε)/2−H ′(ε) if |s| > ε,

H ′′(ε)s2/(2ε) if |s| ≤ ε,

H ′′ε (s) =

{
H ′′(s) if |s| > ε,

H ′′(ε)s/ε if |s| ≤ ε.

The following limit relations hold:

lim
ε→0

Hε(s) = H(s) ∀s ∈ R, (3.7)

lim
ε→0

H ′ε(s) = H ′(s) ∀s ∈ R, (3.8)

lim
ε→0

H ′′ε (s) =

{
H ′′(s) if s ∈ R \ {0},
0 if s = 0.

(3.9)

Using inclusions (3.1) and (3.6), the equalityHε(0) = 0 and Lemma 3.1, we establish
that Hε(u) ∈ W̊ 1,q

2,p (Ω)∩L∞(Ω), DαHε(u) = H ′ε(u)Dαu if |α| = 1, and DαHε(u) =
H ′ε(u)Dαu+H ′′ε (u)DβuDγu if |α| = 2 and α = β + γ, |β| = |γ| = 1. Hence, using
(3.1), (3.7)–(3.9) along with Dominated Convergence Theorem, we deduce that

lim
ε→0
‖Hε(u)−H(u)‖Lq(Ω) = 0, (3.10)

lim
ε→0

∑
|α|=1

‖DαHε(u)− wα‖Lq(Ω) = 0, lim
ε→0

∑
|α|=2

‖DαHε(u)− wα‖Lp(Ω) = 0.

(3.11)

Using these limit relations, in the usual way we establish that for every α ∈ Λ there
exists the generalized derivative DαH(u), and DαH(u) = wα a. e. on Ω. Then,
by (3.5), (3.10) and (3.11), the function H(u) belong to W̊ 1,q

2,p (Ω) ∩ L∞(Ω), and
(3.2)–(3.4) imply that assertions (i) and (ii) hold. The proof is complete. �

The next result is similar to the corresponding part of Stampacchia’s lemma [13].
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Lemma 3.3. Let ϕ be a nonincreasing nonnegative function on [0,+∞). Let C >
0, b1 ≥ 0, b2 ≥ 0, 0 ≤ τ1 < τ2, γ > 1 and k0 ≥ 0. Let for every k and l such that
k0 < k < l < 2k the following inequality holds:

ϕ(l) ≤ Ckτ1k+b1

(l − k)τ2k+b2
[ϕ(k)]γ . (3.12)

Let d > max{k0, 1} and

d(τ2−τ1)(k0+d/2)+b2−b1 ≥ 22τ1d+b1+(2γ−1)(2τ2d+b2)/(γ−1)C[ϕ(k0)]γ−1. (3.13)

Then ϕ(k0 + d) = 0.

Proof. We set a = (2τ2d+ b2)/(γ − 1), and let for every j ∈ N,

kj = k0 + d− d

2j
. (3.14)

Then for every j ∈ N we have

k0 < kj < kj+1 < 2kj , kj+1 − kj =
d

2j+1
, kj < 2d, kj ≥ k0 + d/2.

Using these relations, (3.12) and the inequality d > 1, we establish that for every
j ∈ N,

ϕ(kj+1) ≤ C22τ1d+b1 · 2(j+1)(2τ2d+b2)

d(τ2−τ1)(k0+d/2)+b2−b1
[ϕ(kj)]γ .

By means of the latter inequality and (3.13), we establish by induction on j, that
for every j ∈ N,

ϕ(kj) ≤ 2−a(j−1)ϕ(k0).
Using this result and relation (3.14) and taking into account that the function

ϕ is nonincreasing and nonnegative, we deduce that ϕ(k0 + d) = 0. The proof is
complete. �

4. Proof of Theorem 2.4

Let the functions g2, g3, g4 and f belong to Ln/q(Ω), and let u be a bounded
generalized solution of problem (2.10), (2.11). We fix an arbitrary positive number
λ such that

λ > c4/c3. (4.1)
By ci, i = 6, 7, . . . , we shall denote positive constants depending only on n, p,

q, meas Ω, c, c0, c2, c3, c4, λ and the functions g2, g3, g4 and f . We define the
function h : R→ R by

h(s) = (eλ|s| − 1) sign s, s ∈ R.

We set c6 = c3λ− c4. By (4.1), we have c6 > 0. Elementary calculations show that

c3h
′ − c4|h| > c6h

′ in R. (4.2)

We set

I ′ =
∫
{u 6=0}

{ ∑
|α|=2

|Aα(x,∇2u)|
}{ ∑
|β|=1

|Dβu|2
}
|h′′(u)|dx,

Φ =
∑
|α|=1

|Dαu|q +
∑
|α|=2

|Dαu|p.
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By Lemma 3.2, h(u) ∈
◦
W 1,q

2,p(Ω) ∩ L∞(Ω). Then, by (2.12), we have∫
Ω

{∑
α∈Λ

Aα(x,∇2u)Dαh(u) +A0(x, u)h(u) +B(x, u,∇2u)h(u)
}
dx =

∫
Ω

fh(u)dx.

From this equality and assertions (i) and (ii) of Lemma 3.2 we deduce that∫
Ω

{∑
α∈Λ

Aα(x,∇2u)Dαu
}
h′(u)dx+

∫
Ω

A0(x, u)h(u)dx

≤
∫

Ω

|B(x, u,∇2u)||h(u)|dx+
∫

Ω

|f ||h(u)|dx+ I ′.

Hence, using (2.5)–(2.7) and the facts that 0 < h′ = λ|h|+ λ and sign h(s) = sign
s in R, we obtain∫

Ω

Φ(c3h′(u)− c4|h(u)|)dx+ c0

∫
Ω

|u|q−1|h(u)|dx

≤
∫

Ω

(λg3 + g4 + |f |)|h(u)|dx+ λ

∫
Ω

g3dx+ I ′.

From this and (4.2) it follows that

c6

∫
Ω

h′(u)Φdx+ c0

∫
Ω

|u|q−1|h(u)|dx

≤
∫

Ω

(λg3 + g4 + |f |)|h(u)|dx+ λ

∫
Ω

g3dx+ I ′.

(4.3)

Let us estimate the integral I ′. We fix an arbitrary ε > 0. It is obvious that

p− 1
p

+
2
q

+
q − 2p
qp

= 1.

Using this equality and Young’s inequality, we establish that if α ∈ Λ, |α| = 2, and
β ∈ Λ, |β| = 1, then

|Aα(x,∇2u)||Dβu|2 ≤ ε2|Aα(x,∇2u)|p/(p−1) + ε2|Dβu|q + ε2−2qp/(q−2p) on Ω.

From this and (2.4) we deduce that

I ′ ≤ n(c2 + n)ε2

∫
{u6=0}

Φ|h′′(u)|dx+ nε2

∫
{u 6=0}

g2|h′′(u)|dx

+ n3ε2−2qp/(q−2p)

∫
{u6=0}

|h′′(u)|dx.

Putting in this inequality ε = ( c6
2λn(c2+n) )1/2, and noting that |h′′| = λh′ and

|h′′| = λ2|h|+ λ2 on R \ {0}, we obtain

I ′ ≤ c6
2

∫
Ω

h′(u)Φdx+ c7

∫
Ω

(g2 + 1)|h(u)|dx+ c8.

From this and (4.3) it follows that

c6
2

∫
Ω

h′(u)Φdx+ c0

∫
Ω

|u|q−1|h(u)|dx ≤ c9
∫

Ω

F |h(u)|dx+ c10 (4.4)

where F = g2 + λg3 + g4 + |f |+ 1.
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Now, we estimate the integral
∫

Ω
F |h(u)|dx. We fix an arbitrary K > 0. It is

clear that∫
Ω

F |h(u)|dx

=
∫
{F>K,|u|≥1}

F |h(u)|dx+
∫
{F<K}

F |h(u)|dx+
∫
{F>K,|u|<1}

F |h(u)|dx,
(4.5)

∫
{F<K}

F |h(u)|dx < K

∫
Ω

|h(u)|dx, (4.6)∫
{F>K,|u|<1}

F |h(u)|dx < (eλ − 1)
∫

Ω

Fdx. (4.7)

Before estimating the first integral in the right-hand side of equality (4.5), we
remark that there exists a positive constant cq,λ depending only on q and λ such
that

|h(s)| ≤ cq,λ|h(s/q)|q for every s ≥ 1. (4.8)

Note also that, by (2.2), assertion (i) of Lemma 3.2 and equality (h′(s/q))q =
λq−1h′(s), s ∈ R, we have(∫

Ω

|h(u/q)|q
∗
dx
)q/q∗

≤ (cλq−1/qq)
∫

Ω

h′(u)Φdx. (4.9)

Now, using Holder’s inequality, (4.8) and (4.9), we obtain∫
{F>K,|u|≥1}

F |h(u)|dx ≤
(∫
{F>K}

Fn/qdx
)q/n(∫

{|u|≥1}
|h(u)|n/(n−q)dx

)(n−q)/n

≤ cq,λ‖F‖Ln/q({F>K})
(∫

Ω

|h(u/q)|q
∗
dx
)q/q∗

≤ cq,λcλq−1q−q‖F‖Ln/q({F>K})
∫

Ω

h′(u)Φdx.

From this along with (4.5)–(4.7) it follows that∫
Ω

F |h(u)|dx ≤ c11‖F‖Ln/q({F>K})
∫

Ω

h′(u)Φdx+
∫

Ω

K|h(u)|dx+ c12. (4.10)

Now, choosing K > 0 such that c9c11‖F‖Ln/q({F>K}) < c6/4, from (4.4) and
(4.10) we derive that

c6
4

∫
Ω

h′(u)Φdx+
∫

Ω

c0|u|q−1|h(u)|dx ≤
∫

Ω

c9K|h(u)|dx+ c13. (4.11)

It is clear that

c0

∫
Ω

|u|q−1|h(u)|dx ≥ c0
∫
{c0|u|q−1>c9K}

|u|q−1|h(u)|dx

> c9

∫
{c0|u|q−1>c9K}

K|h(u)|dx,
(4.12)
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c9

∫
Ω

K|h(u)|dx

= c9

∫
{c0|u|q−1>c9K}

K|h(u)|dx+ c9

∫
{c0|u|q−1≤c9K}

K|h(u)|dx

≤ c9
∫
{c0|u|q−1>c9K}

K|h(u)|dx+ c9K(eλ(c9K/c0)1/(q−1)
− 1) meas Ω.

(4.13)

From (4.11)–(4.13) it follows that
c6
4

∫
Ω

h′(u)Φdx ≤ c13.

Hence, taking into account that for every s ∈ R, h′(s) = λ exp(λ|s|), we deduce
(2.15). The proof is comlete.

5. Proof of Theorem 2.5

Let r > n/q, let the functions g2, g3, g4 and f belong to Lr(Ω), and let M be
a majorant for ‖g2‖r, ‖g3‖r, ‖g4‖r and ‖f‖r. Let u be a generalized solution of
problem (2.10), (2.11) such that

u ∈ L∞(Ω). (5.1)

In view of the assumption r > n/q, we have

qr/(r − 1) < q∗. (5.2)

We set
F̃ = 1 + g2 + g3 + g4 + |f |, (5.3)

Φ =
∑
|α|=1

|Dαu|q +
∑
|α|=2

|Dαu|p.

Observe that, by Theorem 2.4, we have∫
Ω

Φdx ≤ C2. (5.4)

By ci, i = 14, 15, . . . , we shall denote positive constants depending only on n, p,
q, meas Ω, c, c0, c2, c3, c4, C2, r and M .

Step 1. Let ϕ be the function on [0,+∞) such that for every s ∈ [0,+∞),

ϕ(s) = meas{|u| ≥ s}.
Our main goal is to establish relation (3.12) for this function. Let us introduce

some auxiliary numbers and functions. Let δ, ϑ, θ and t be positive numbers such
that

1 + δ(2− 2qp/(q − 2p)) > (r − 1)/r, (5.5)

ϑ = q/n− 1/r − 2qpδ/(q − 2p), (5.6)

θ(q − 1)− ϑq∗ < 0, (5.7)

t = 2 + 1/δ. (5.8)

We set
λ = 2c4/c3. (5.9)

Without loss of generality, we may assume that

λ > 1. (5.10)
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By (2.2) and (5.4), for every k > 0 we have

ϕ(k) ≤ Cq
∗/q

2 cq
∗
k−q

∗
. (5.11)

Therefore, there exists a positive number k∗ depending only on n, p, q, t, θ, ϑ, c,
c2, c3, c4, C2, and ‖F̃‖r such that

∀k ≥ k∗, 2(c2 + n)(λt(t+ 1)nk)2[ϕ(k)]1/(t−2) < min{1/2, c3/12}, (5.12)

∀k ≥ k∗, (c/q)q(λ(t+ 1))q−1‖F̃‖rkθ(q−1)[ϕ(k)]ϑ < c3/6. (5.13)

Observe that for establishing the last assertion we used not only (5.11) but also
(5.7).

Let ψ be the function on (0,+∞) such that for every s ∈ (0,+∞),

ψ(s) = s− st +
t− 1
t+ 1

st+1.

We set
k0 = max{k∗, q, 1 + c3/c4, (12nt(c2 + n)/c3)t/(t−1)} (5.14)

and fix an arbitrary number k ≥ k0.
Let hk and Gk be the functions on R such that

hk(s) =


s if |s| ≤ k,
[ψ( |s|−kk ) + 1]k sign s if k < |s| < 2k,
2kt
t+1 sign s if |s| ≥ 2k,

and for every s ∈ R, Gk(s) = s− hk(s).
Note that the function hk was the main instrument in the realization of the

Stampacchia’s method for nonlinear elliptic fourth-order equations with strength-
ened coercivity in [8] and [15]. The functions of this type were introduced and used
for other purposes in [6]. We consider the properties of the functions hk and Gk,
which are needed in this paper. We have

hk ∈ C2(R), (5.15)

|Gk(s)| = k
( |s| − k

k

)t(
1− t− 1

t+ 1
· |s| − k

k

)
if k < |s| < 2k, (5.16)

G′k(s) = t
( |s| − k

k

)t−1

− (t− 1)
( |s| − k

k

)t
if k < |s| < 2k, (5.17)

0 ≤ G′k ≤ 1 in R, (5.18)

|h′′k | ≤
t2

k
in R. (5.19)

Moreover, the following assertions hold:

(A1) if ε ∈ (0, 1), s ∈ R and k ≤ |s| ≤ k(1 + ε), then

|h′′k(s)| ≤ t2

k
εt−2;

(A2) if ε ∈ (0, 1), s ∈ R and k(1 + ε) ≤ |s| ≤ 2k, then

|h′′k(s)| ≤ t

kε
G′k(s);
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(A3) if k < l ≤ 2k, s ∈ R and |s| ≥ l, then

|Gk(s)| ≥ 2
t+ 1

(l − k)
( l − k

k

)t−1

;

(A4) if ε ∈ (0, 1), s ∈ R and k ≤ |s| ≤ k(1 + ε), then

|Gk(s)| ≤ kεt.

Proofs of assertions (A1)–(A3) are given in [8]. It remains to prove assertion
(A4).

Let ε ∈ (0, 1), s ∈ R, k ≤ |s| ≤ k(1 + ε) and y = (|s| − k)/k. Using (5.16) and
the inequality 0 ≤ y ≤ ε < 1, we obtain

|Gk(s)| = kyt(1− t− 1
t+ 1

y) ≤ kεt.

Thus, assertion (A4) is valid.
We set

µ = λk. (5.20)
Let Ψ : R→ R be the function such that

Ψ(s) = |s|µ exp(λ|s|) sign s. (5.21)

By (5.14), we have µ > 2. Hence,

Ψ ∈ C2(R), (5.22)

and for every s ∈ R the following equalities hold:

Ψ′(s) = |s|µ−1 exp(λ|s|)(µ+ λ|s|) = λ|Ψ(s)|+ µ|s|µ−1 exp(λ|s|), (5.23)

Ψ′′(s) = |s|µ−2 exp(λ|s|)(µ(µ− 1) + 2λµ|s|+ λ2s2) sign s. (5.24)

Let us prove the following assertion:
(A5) if s ∈ R, then

c3Ψ′(Gk(s))G′k(s)− c4|Ψ(Gk(s))| ≥ c3
2

Ψ′(Gk(s))G′k(s). (5.25)

Indeed, if s ∈ R and |s| ≤ k, then both sides of inequality (5.25) are equal zero and
therefore, this inequality is true.

Now, let k < |s| < 2k and y = (|s| − k)/k. By (5.16), (5.17) and the inequality
y < 1, we have

|Gk(s)|
G′k(s)

=
k

t+ 1

(
y +

t

(t− 1)(t− (t− 1)y)
− 1
t− 1

)
<

k

t+ 1

(
1 +

t

t− 1
− 1
t− 1

)
=

2k
t+ 1

.

(5.26)

Using (5.20), (5.21), (5.23), (5.26) and the inequality t > 1, we obtain

c3Ψ′(Gk(s))G′k(s)− c4|Ψ(Gk(s))|
= |Gk(s)|µ−1 exp(λ|Gk(s)|)G′k(s)(c3µ+ c3λ|Gk(s)| − c4|Gk(s)|/G′k(s))

≥ |Gk(s)|µ−1 exp(λ|Gk(s)|)G′k(s)(c3µ+ c3λ|Gk(s)| − c4k)

≥ c3
2
|Gk(s)|µ−1 exp(λ|Gk(s)|)G′k(s)(2µ− 2c4k

c3
+ λ|Gk(s)|) =

c3
2

Ψ′(Gk(s))G′k(s).

Thus, inequality (5.25) holds.
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Finally, let |s| ≥ 2k. Using (5.9), (5.21), (5.23) and the equality G′k(s) = 1, we
obtain

c3Ψ′(Gk(s))G′k(s)− c4|Ψ(Gk(s))|
= |Gk(s)|µ−1 exp(λ|Gk(s)|)(c3µ+ (λc3 − c4)|Gk(s)|)

≥ c3
2
|Gk(s)|µ−1 exp(λ|Gk(s)|)(µ+ λ|Gk(s)|)

=
c3
2

Ψ′(Gk(s))G′k(s).

Therefore, inequality (5.25) holds. Thus, inequality (5.25) holds for every s ∈ R,
and assertion (A5) is proved.

Step 2. Using inclusions (5.1), (5.15), (5.22), the equalities Gk(0) = Ψ(0) = 0

and Lemma 3.1, we establish that Ψ(Gk(u)) ∈
◦
W 1,q

2,p(Ω)∩L∞(Ω) and the following
assertions hold:

(A6) for every n-dimensional multi-index α, |α| = 1,

DαΨ(Gk(u)) = Ψ′(Gk(u))G′k(u)Dαu a. e. in Ω;

(A7) for every n-dimensional multi-index α, |α| = 2,

DαΨ(Gk(u)) = Ψ′(Gk(u))G′k(u)Dαu+
[
Ψ′′(Gk(u))(G′k(u))2

−Ψ′(Gk(u))h′′k(u)
]
DβuDγu a. e. in Ω

where α = β + γ, |β| = |γ| = 1.
We set

I ′k =
∫

Ω

{ ∑
|α|=2

|Aα(x,∇2u)|
}{ ∑
|β|=1

|Dβu|2
}

Ψ′(Gk(u))|h′′k(u)|dx,

I ′′k =
∫

Ω

{ ∑
|α|=2

|Aα(x,∇2u)|
}{ ∑
|β|=1

|Dβu|2
}

Ψ′′(Gk(u))(G′k(u))2dx.

Putting the function Ψ(Gk(u)) into (2.12) instead of v, we obtain∫
Ω

{∑
α∈Λ

Aα(x,∇2u)DαΨ(Gk(u))
}
dx

+
∫

Ω

A0(x, u)Ψ(Gk(u))dx+
∫

Ω

B(x, u,∇2u)Ψ(Gk(u))dx

=
∫

Ω

fΨ(Gk(u))dx.

From this equality and assertions (A6) and (A7) we deduce that∫
Ω

{∑
α∈Λ

Aα(x,∇2u)Dαu
}

Ψ′(Gk(u))G′k(u)dx+
∫

Ω

A0(x, u)Ψ(Gk(u))dx

≤ I ′k + I ′′k +
∫

Ω

|B(x, u,∇2u)||Ψ(Gk(u))|dx+
∫

Ω

|f ||Ψ(Gk(u))|dx.

Hence, using (2.5)–(2.7), we obtain∫
Ω

{
c3Ψ′(Gk(u))G′k(u)− c4|Ψ(Gk(u))|

}
Φdx+ c0

∫
Ω

|u|q−1|Ψ(Gk(u))|dx
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≤ I ′k + I ′′k +
∫

Ω

g3Ψ′(Gk(u))G′k(u)dx+
∫

Ω

(g4 + |f |)|Ψ(Gk(u))|dx.

In turn, from this and assertion (A5) it follows that

c3
2

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx

≤ I ′k + I ′′k +
∫

Ω

g3Ψ′(Gk(u))G′k(u)dx+
∫

Ω

(g4 + |f |)|Ψ(Gk(u))|dx.
(5.27)

Step 3. Let us obtain suitable estimates for the addends in the right-hand side
of this inequality.

First, assume that ϕ(k) > 0. We set

ε = [ϕ(k)]1/(t−2). (5.28)

Since k ≥ k0, by (5.12) and (5.14) we have ϕ(k) < 1. Therefore,

0 < ε < 1. (5.29)

We shall prove the inequality

I ′k ≤
c3
12

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx+
1
2

∫
Ω

g2|Ψ(Gk(u))|dx

+
1
2
ε−2qp/(q−2p)

∫
Ω

|Ψ(Gk(u))|dx+ c14[ϕ(k)]1/r
′
.

(5.30)

Obviously,

p− 1
p

+
2
q

+
q − 2p
qp

= 1.

Using this equality and the Young’s inequality, we establish that if α is an n-
dimensional multi-index, |α| = 2, and β is an n-dimensional multi-index, |β| = 1,
then

|Aα(x,∇2u)||Dβu|2 ≤ ε2|Aα(x,∇2u)|p/(p−1) + ε2|Dβu|q + ε2−2qp/(q−2p) on Ω.

This and relation (2.4) yields

I ′k ≤ n(c2 + n)ε2

∫
Ω

ΦΨ′(Gk(u))|h′′k(u)|dx+ nε2

∫
Ω

g2Ψ′(Gk(u))|h′′k(u)|dx

+ n3ε2−2qp/(q−2p)

∫
Ω

Ψ′(Gk(u))|h′′k(u)|dx.
(5.31)

Let us estimate the second integral in the right-hand side of (5.31). By (5.19),
(5.20), (5.23) and the inequality k > 1, we have∫

Ω

g2Ψ′(Gk(u))|h′′k(u)|dx ≤ λt2
∫

Ω

g2(|Ψ(Gk(u))|+ |Gk(u)|µ−1 exp(λ|Gk(u)|))dx.

(5.32)
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Also, it is clear that∫
Ω

g2|Gk(u)|µ−1 exp(λ|Gk(u)|)dx

=
∫
{|Gk(u)|<1}

g2|Gk(u)|µ−1 exp(λ|Gk(u)|)dx

+
∫
{|Gk(u)|≥1}

g2|Gk(u)|µ−1 exp(λ|Gk(u)|)dx

≤ eλ
∫
{|u|≥k}

g2dx+
∫

Ω

g2|Ψ(Gk(u))|dx

≤ eλ‖g2‖r[ϕ(k)]1/r
′
+
∫

Ω

g2|Ψ(Gk(u))|dx.

(5.33)

From (5.32) and (5.33) it follows that∫
Ω

g2Ψ′(Gk(u))|h′′k(u)|dx ≤ 2λt2
∫

Ω

g2|Ψ(Gk(u))|dx+ c15‖g2‖r[ϕ(k)]1/r
′
. (5.34)

Similar to (5.34) we obtain the following estimate of the third integral in the
right-hand side of inequality (5.31):∫

Ω

Ψ′(Gk(u))|h′′k(u)|dx ≤ 2λt2
∫

Ω

|Ψ(Gk(u))|dx+ c15[ϕ(k)]. (5.35)

Before estimating the first integral in the right-hand side of inequality (5.31), we
remark that

Ψ′(Gk(s)) < 2λeλkεt(µ−1) if k ≤ |s| < k(1 + εk−1/t). (5.36)

Indeed, let k ≤ |s| < k(1 + εk−1/t). Then, by (5.20), (5.23), (5.29), assertion (A4)
and the inequality k > 1, we have

Ψ′(Gk(s)) = |Gk(s)|µ−1(λk + λ|Gk(s)|) exp(λ|Gk(s)|)

< εt(µ−1)eλε
t

(λk + λ) < 2λeλkεt(µ−1).

Hence, assertion (5.36) is true.
Next, it is clear that∫
Ω

ΦΨ′(Gk(u))|h′′k(u)|dx =
∫
{k≤|u|<k(1+εk−1/t)}

ΦΨ′(Gk(u))|h′′k(u)|dx

+
∫
{k(1+εk−1/t)≤|u|≤2k}

ΦΨ′(Gk(u))|h′′k(u)|dx.
(5.37)

From assertions (A1), (5.36) and (5.4) it follows that∫
{k≤|u|<k(1+εk−1/t)}

ΦΨ′(Gk(u))|h′′k(u)|dx ≤ 2λeλC2t
2

k1−2/t
εtµ−2, (5.38)

and by assertion (A2), we have∫
{k(1+εk−1/t)≤|u|≤2k}

ΦΨ′(Gk(u))|h′′k(u)|dx

≤ t

k1−1/tε

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx.
(5.39)
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From (5.37)–(5.39) it follows that∫
Ω

ΦΨ′(Gk(u))|h′′k(u)|dx ≤ 2λeλC2t
2

k1−2/t
εtµ−2 +

t

k1−1/tε

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx.

(5.40)
In turn, using (5.31), (5.34), (5.35) and (5.40) and taking into account (5.5), (5.8),
(5.9), (5.12), (5.14), (5.28) and (5.29), and the inequality µ > 1, we obtain (5.30).

Step 4. Let us estimate the integral I ′′k . We shall establish the inequality

I ′′k ≤
c3
12

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx+
1
2

∫
Ω

g2|Ψ(Gk(u))|dx

+
1
2
ε−2qp/(q−2p)

∫
Ω

|Ψ(Gk(u))|dx+ c16[ϕ(k)]1/r
′
.

(5.41)

Similar to (5.31), we have

I ′′k ≤ n(c2 + n)ε2

∫
Ω

Φ|Ψ′′(Gk(u))|(G′k(u))2dx+ nε2

∫
Ω

g2|Ψ′′(Gk(u))|(G′k(u))2dx

+ n3ε2−2qp/(q−2p)

∫
Ω

|Ψ′′(Gk(u))|(G′k(u))2dx.

(5.42)
Let us estimate the first integral in the right-hand side of inequality (5.42). By

(5.23), (5.24) and (5.18), for every s ∈ R,

|Ψ′′(Gk(s))|(G′k(s))2 ≤ µ2|Gk(s)|µ−2 exp(λ|Gk(s)|)(G′k(s))2 + 2λΨ′(Gk(s))G′k(s).

From this it follows that∫
Ω

Φ|Ψ′′(Gk(u))|(G′k(u))2dx ≤
∫

Ω

Φµ2|Gk(u)|µ−2 exp(λ|Gk(u)|)(G′k(u))2dx

+ 2λ
∫

Ω

ΦΨ′(Gk(u))G′k(u)dx.

(5.43)
Clearly,∫

Ω

Φµ2|Gk(u)|µ−2 exp(λ|Gk(u)|)(G′k(u))2dx

=
∫
{k≤|u|<k(1+εk−1/(t−2))}

Φµ2|Gk(u)|µ−2 exp(λ|Gk(u)|)(G′k(u))2dx

+
∫
{|u|≥k(1+εk−1/(t−2))}

Φµ2|Gk(u)|µ−2 exp(λ|Gk(u)|)(G′k(u))2dx.

(5.44)

Now, observe that the following assertions hold:

(A8) if ε ∈ (0, 1), s ∈ R and k ≤ |s| ≤ k(1 + εk−1/(t−2)), then

µ2|Gk(s)|µ−2 exp(λ|Gk(s)|)(G′k(s))2 ≤ (λt)2eλεµ(t−2);

(A9) if ε ∈ (0, 1), s ∈ R and |s| ≥ k(1 + εk−1/(t−2)), then

µ2|Gk(s)|µ−2G′k(s) exp(λ|Gk(s)|) ≤ λt(t+ 1)k1/(t−2)

2ε
Ψ′(Gk(s)).
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Indeed, let s ∈ R, k ≤ |s| ≤ k(1 + εk−1/(t−2)) and y = (|s| − k)/k. Using assertions
(5.16), (5.17) and (A4), equality (5.20) and the inequalities 0 ≤ y ≤ εk−1/(t−2) < 1,
k > 1 and µ > 1, we obtain

µ2|Gk(s)|µ−2 exp(λ|Gk(s)|)(G′k(s))2

= λ2(t− (t− 1)y)2kµytµ−2
(

1− t− 1
t+ 1

y
)µ−2

exp(λ|Gk(s)|)

≤ (λt)2(kyt−2)µeλ

≤ (λt)2eλεµ(t−2).

Consequently, assertion (A8) is true.
Now let s ∈ R, k(1+εk−1/(t−2)) ≤ |s| ≤ 2k and y = (|s|−k)/k. Using assertions

(5.16) and (5.17), equalities (5.20) and (5.23) and the inequality εk−1/(t−2) ≤ y ≤ 1,
we obtain

µ2|Gk(s)|µ−2G′k(s) exp(λ|Gk(s)|)

= λµkµ−1yt(µ−1)
(

1− t− 1
t+ 1

y
)µ−1 (t− (t− 1)y)

y(1− t−1
t+1y)

exp(λ|Gk(s)|)

≤ λt(t+ 1)
2y

µ|Gk(s)|µ−1 exp(λ|Gk(s)|)

≤ λt(t+ 1)k1/(t−2)

2ε
Ψ′(Gk(s)).

Finally, suppose that s ∈ R and |s| ≥ 2k. Then, by the definitions of the
functions hk and Gk, we have

|Gk(s)| = |s| − 2kt
t+ 1

≥ 2k
t+ 1

.

Therefore,

k ≤ (t+ 1)|Gk(s)|/2. (5.45)

Using (5.20), (5.23), (5.45), the equality G′k(s) = 1 and taking into account the
inequalities t > 2, k > 1 and (5.29), we obtain

µ2|Gk(s)|µ−2G′k(s) exp(λ|Gk(s)|)
= λµk|Gk(s)|µ−2 exp(λ|Gk(s)|)

≤ λ(t+ 1)
2

µ|Gk(s)|µ−1 exp(λ|Gk(s)|)

≤ λt(t+ 1)k1/(t−2)

2ε
Ψ′(Gk(s)).

Thus, assertion (A9) holds.
From assertion (A8) and (5.4) it follows that∫

{k≤|u|<k(1+εk−1/(t−2))}
Φµ2|Gk(u)|µ−2 exp(λ|Gk(u)|)(G′k(u))2dx

≤ C2(λt)2eλεµ(t−2),

(5.46)
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and by assertion (A9), we have∫
{|u|≥k(1+εk−1/(t−2))}

Φµ2|Gk(u)|µ−2 exp(λ|Gk(u)|)(G′k(u))2dx

≤ λt(t+ 1)k1/(t−2)

2ε

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx,
(5.47)

From (5.9), (5.44), (5.46) and (5.47) we deduce the inequality∫
Ω

Φµ2|Gk(u)|µ−2 exp(λ|Gk(u)|)(G′k(u))2dx

≤ c17ε
µ(t−2) +

λt(t+ 1)k1/(t−2)

2ε

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx.

In turn, from this inequality and (5.43) we obtain the following estimate for the
first integral in the right-hand side of inequality (5.42),∫

Ω

Φ|Ψ′′(Gk(u))|(G′k(u))2dx

≤ c17ε
µ(t−2) +

λt(t+ 1)k1/(t−2)

ε

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx.
(5.48)

Now, let us estimate the second integral in the right-hand side of inequality
(5.42). By (5.21) and (5.24), for every s ∈ R, we have

|Ψ′′(s)| ≤ µ2|s|µ−2 exp(λ|s|) + 2λµ|s|µ−1 exp(λ|s|) + λ2|Ψ(s)|.
Hence, ∫

Ω

g2|Ψ′′(Gk(u))|(G′k(u))2dx

≤
∫

Ω

µ2|Gk(u)|µ−2(G′k(u))2 exp(λ|Gk(u)|)g2dx

+ 2λ
∫

Ω

µ|Gk(u)|µ−1(G′k(u))2 exp(λ|Gk(u)|)g2dx

+ λ2

∫
Ω

g2|Ψ(Gk(u))|(G′k(u))2dx.

(5.49)

Clearly,∫
Ω

µ2|Gk(u)|µ−2(G′k(u))2 exp(λ|Gk(u)|)g2dx

=
∫
{k≤|u|<k(1+ε1/2k−1/(t−2))}

µ2|Gk(u)|µ−2(G′k(u))2 exp(λ|Gk(u)|)g2dx

+
∫
{|u|≥k(1+ε1/2k−1/(t−2))}

µ2|Gk(u)|µ−2(G′k(u))2 exp(λ|Gk(u)|)g2dx.

(5.50)

Using assertion (A8), the Hölder inequality and (5.28), we obtain∫
{k≤|u|<k(1+ε1/2k−1/(t−2))}

µ2|Gk(u)|µ−2(G′k(u))2 exp(λ|Gk(u)|)g2dx

≤ (λt)2eλεµ(t−2)/2

∫
{|u|≥k}

g2dx

≤ (λt)2eλεµ(t−2)/2‖g2‖r[ϕ(k)]1/r
′
≤ c18[ϕ(k)]µ/2+1/r′ .

(5.51)
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For estimating the second integral in the right-hand side of equality (5.50), at
first we observe that the following assertion holds:

(A10) if ε ∈ (0, 1), s ∈ R and |s| ≥ k(1 + ε1/2k−1/(t−2)), then

µ2|Gk(s)|µ−2(G′k(s))2 exp(λ|Gk(s)|) ≤ (λt)2(t+ 1)2k2/(t−2)

4ε
|Ψ(Gk(s))|.

Indeed, let ε ∈ (0, 1), s ∈ R and k(1 + ε1/2k−1/(t−2)) ≤ |s| ≤ 2k. Then, setting
y = (|s| − k)/k and using (5.16), (5.17), (5.20) and the inequality ε1/2/k1/(t−2) ≤
y ≤ 1, we obtain

µ2|Gk(s)|µ−2(G′k(s))2 = λ2kµytµ
(

1− t− 1
t+ 1

y
)µ (t− (t− 1)y)2

y2(1− t−1
t+1y)2

≤ λ2|Gk(s)|µ t2k2/(t−2)

ε(2/(t+ 1))2

=
(λt)2(t+ 1)2k2/(t−2)

4ε
|Gk(s)|µ.

From this and (5.21) it follows that assertion (A10) is valid.
Now, let s ∈ R and |s| ≥ 2k. Then, by (5.20), (5.21), (5.45), the equality

G′k(s) = 1 and the inequalities t > 2, k > 1 and (5.29), we have

µ2|Gk(s)|µ−2(G′k(s))2 exp(λ|Gk(s)|) = λ2k2|Gk(s)|µ−2 exp(λ|Gk(s)|)

≤ λ2(t+ 1)2

4
|Gk(s)|µ exp(λ|Gk(s)|)

=
(λt)2(t+ 1)2k2/(t−2)

4ε
|Ψ(Gk(s))|.

Thus, assertion (A10) holds.
From assertion (A10) it follows that∫

{|u|≥k(1+ε1/2k−1/(t−2))}
µ2|Gk(u)|µ−2(G′k(u))2 exp(λ|Gk(u)|)g2dx

≤ (λt)2(t+ 1)2k2/(t−2)

4ε

∫
Ω

g2|Ψ(Gk(u))|dx.
(5.52)

Using (5.50)–(5.52), we obtain∫
Ω

µ2|Gk(u)|µ−2(G′k(u))2 exp(λ|Gk(u)|)g2dx

≤ c18[ϕ(k)]µ/2+1/r′ +
(λt)2(t+ 1)2k2/(t−2)

4ε

∫
Ω

g2|Ψ(Gk(u))|dx.
(5.53)

Before estimating the second integral in the right-hand side of inequality (5.49),
we note that for every s ∈ R the following inequality holds:

µ|Gk(s)|µ−1(G′k(s))2 exp(λ|Gk(s)|) ≤ λt2(t+ 1)
2

|Ψ(Gk(s))|. (5.54)

Indeed, if s ∈ R and |s| ≤ k, then both sides of inequality (5.54) are equal zero and
therefore, this inequality is true.
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Now, let k < |s| < 2k and y = (|s| − k)/k. Using (5.16), (5.17), (5.20) and the
inequalities 0 < y < 1 and t > 2, we obtain

µ|Gk(s)|µ−1(G′k(s))2 = λkµytµ+t−2
(

1− t− 1
t+ 1

y
)µ (t− (t− 1)y)2

(1− t−1
t+1y)

< λkµytµ
(

1− t− 1
t+ 1

y
)µ t2(t+ 1)

2

=
λt2(t+ 1)

2
|Gk(s)|µ.

These relations and (5.21) imply that inequality (5.54) holds.
Finally, let |s| ≥ 2k. Then, by (5.20), (5.21), (5.45), the equality G′k(s) = 1 and

the inequality t > 2, we obtain

µ|Gk(s)|µ−1(G′k(s))2 exp(λ|Gk(s)|) = λk|Gk(s)|µ−1 exp(λ|Gk(s)|)

≤ λ(t+ 1)
2

|Gk(s)|µ exp(λ|Gk(s)|)

=
λt2(t+ 1)

2
|Ψ(Gk(s))|.

Therefore, inequality (5.54) holds. Thus, inequality (5.54) holds for every s ∈ R.
From (5.54) it follows that∫

Ω

µ|Gk(u)|µ−1(G′k(u))2 exp(λ|Gk(u)|)g2dx ≤
λt2(t+ 1)

2

∫
Ω

g2|Ψ(Gk(u))|dx.

(5.55)
In turn, using (5.49), (5.53), (5.55), (5.18), (5.10) and (5.29) along with the in-
equalities t > 2 and k > 1, we deduce that∫

Ω

g2|Ψ′′(Gk(u))|(G′k(u))2dx

≤ c18[ϕ(k)]µ/2+1/r′ +
3(λt)2(t+ 1)2k2/(t−2)

4ε

∫
Ω

g2|Ψ(Gk(u))|dx.
(5.56)

Similar to (5.56) we have∫
Ω

|Ψ′′(Gk(u))|(G′k(u))2dx

≤ c19[ϕ(k)]1+µ/2 +
3(λt)2(t+ 1)2k2/(t−2)

4ε

∫
Ω

|Ψ(Gk(u))|dx.
(5.57)

Now, using (5.42), (5.48), (5.56) and (5.57) and taking into account (5.5), (5.8),
(5.12), (5.28) and (5.29), we obtain (5.41).

Step 5. Let us prove that for the third integral in the right-hand side of inequality
(5.27) the following inequality holds:∫

Ω

g3Ψ′(Gk(u))G′k(u)dx ≤ c20ϕ(k) +
λt(t+ 1)k1/(t−1)

ε

∫
Ω

g3|Ψ(Gk(u))|dx. (5.58)

In fact, by (5.18) and (5.23), we have∫
Ω

g3Ψ′(Gk(u))G′k(u)dx

≤
∫

Ω

µ|Gk(u)|µ−1G′k(u) exp(λ|Gk(u)|)g3dx+ λ

∫
Ω

g3|Ψ(Gk(u))|dx.
(5.59)
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It is clear that∫
Ω

µ|Gk(u)|µ−1G′k(u) exp(λ|Gk(u)|)g3dx

=
∫
{k≤|u|<k(1+εk−1/(t−1))}

µ|Gk(u)|µ−1G′k(u) exp(λ|Gk(u)|)g3dx

+
∫
{|u|≥k(1+εk−1/(t−1))}

µ|Gk(u)|µ−1G′k(u) exp(λ|Gk(u)|)g3dx.

(5.60)

Similar to assertions (A8) and (A10) we establish that the following assertions hold:

(A11) if ε ∈ (0, 1), s ∈ R and k ≤ |s| ≤ k(1 + ε/k1/(t−1)), then

µ|Gk(s)|µ−1G′k(s) exp(λ|Gk(s)|) ≤ λeλtεµ(t−1);

(A12) if ε ∈ (0, 1), s ∈ R and |s| ≥ k(1 + ε/k1/(t−1)), then

µ|Gk(s)|µ−1G′k(s) exp(λ|Gk(s)|) ≤ λt(t+ 1)k1/(t−1)

2ε
|Ψ(Gk(s))|.

Taking into account (5.28) and (5.29) and the inequalities t > 1, k > 1 and µ > 1,
from (5.59), (5.60) and assertions (A11) and (A12) we deduce (5.58).

Step 6. Using (5.3), (5.12), (5.27)–(5.30), (5.41) and (5.58), and taking into
account that k ≥ k∗ and t > 2, we obtain that

c3
3

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx ≤ ε−2qp/(q−2p)

∫
Ω

F̃ |Ψ(Gk(u))|dx+ c21[ϕ(k)]1/r
′
.

(5.61)
For the integral in the right-hand side of this inequality we shall establish the

estimate∫
Ω

F̃ |Ψ(Gk(u))|dx

≤ c22k
(1−θ)µeλk[ϕ(k)]1/r

′

+
cq(λ(t+ 1))q−1

qq
‖F̃‖rkθ(q−1)[ϕ(k)]q/n−1/r

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx.

(5.62)

Using Hölder’s inequality and the definition of the function Ψ, we obtain∫
Ω

F̃ |Ψ(Gk(u))|dx

=
∫
{|Gk(u)|<k1−θ}

F̃ |Ψ(Gk(u))|dx+
∫
{|Gk(u)|≥k1−θ}

F̃ |Ψ(Gk(u))|dx

≤ ‖F̃‖r · k(1−θ)µeλk
1−θ

[ϕ(k)]1/r
′
+
∫
{|Gk(u)|≥k1−θ}

F̃ |Ψ(Gk(u))|dx.

(5.63)

To estimate the integral in the right-hand side of inequality (5.63), we define the
function w : R→ R by

w(s) =

{
(|s|µ/qeλ|s|/q − k(1−θ)µ/qeλk

1−θ/q) sign s if |s| > k1−θ,

0 if |s| ≤ k1−θ.
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Using the definitions of the functions Ψ and w and Hölder’s inequality, we establish
that ∫

{|Gk(u)|≥k1−θ}
F̃ |Ψ(Gk(u))|dx

≤ 2q−1‖F̃‖rk(1−θ)µeλk
1−θ

[ϕ(k)]1/r
′
+
∫

Ω

F̃ |w(Gk(u))|qdx.
(5.64)

Taking into account (5.2), (2.2) and (5.18) and using Hölder’s inequality, we obtain∫
Ω

F̃ |w(Gk(u))|qdx

≤ ‖F̃‖r‖w(Gk(u))‖qqr′
≤ ‖F̃‖r‖w(Gk(u))‖qq∗ [ϕ(k)]q/n−1/r

≤ cq2q−1

qq
‖F̃‖r[ϕ(k)]q/n−1/r

×
∫
{|Gk(u)|≥k1−θ}

(µq|Gk(u)|µ−q + λq|Gk(u)|µ) exp(λ|Gk(u)|)G′k(u)Φdx.

(5.65)

To proceed estimating the integral in the left-hand side of (5.65), we observe that
the following assertion holds:

If s ∈ R and |Gk(s)| ≥ k1−θ, then

µq|Gk(s)|µ−q ≤ (λ(t+ 1)/2)q−1kθ(q−1)µ|Gk(s)|µ−1. (5.66)

Indeed, let s ∈ R, |Gk(s)| ≥ k1−θ and k < |s| < 2k. Then, setting y = (|s|−k)/k
and taking into account the inequality 0 < y < 1, from the inequality |Gk(s)| ≥ k1−θ

and assertion (5.16) we deduce that yt > k−θ. Using this inequality and assertion
(5.16), we obtain

µq|Gk(s)|µ−q =
λq−1µ|Gk(s)|µ−1

yt(q−1)(1− t−1
t+1y)q−1

≤ (λ(t+ 1)/2)q−1kθ(q−1)µ|Gk(s)|µ−1.

Now, let |s| ≥ 2k. Then, by (5.20), (5.45) and the inequality kθ(q−1) ≥ 1, we have

µq|Gk(s)|µ−q = λq−1µkq−1|Gk(s)|µ−q ≤ (λ(t+ 1)/2)q−1kθ(q−1)µ|Gk(s)|µ−1.

Thus, assertion (5.66) holds.
From (5.65) and assertion (5.66), taking into account the definition of the func-

tion Ψ and the inequalities t > 1 and k ≥ 1, we deduce that∫
Ω

F̃ |w(Gk(u))|qdx

≤ cq(λ(t+ 1))q−1

qq
‖F̃‖rkθ(q−1)[ϕ(k)]q/n−1/r

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx.
(5.67)

In turn, using (5.63), (5.64) and (5.67) along with the inequalities k > 1 and θ > 0,
we obtain (5.62).

Inequalities (5.61) and (5.62) along with the inequalities 0 < ϕ(k) < 1, k > 1,
θ < 1, (5.6), (5.8), (5.13) and (5.28) imply that

c3
6

∫
Ω

ΦΨ′(Gk(u))G′k(u)dx ≤ (c21 + c22)k(1−θ)µeλk[ϕ(k)]ϑ+q/q∗ . (5.68)
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Step 7. Let us estimate from below the integral in the left-hand side of inequality
(5.68). This will allow us to apply Lemma 3.3 and to obtain the conclusion of the
theorem.

We fix l ∈ (k, 2k]. Using (2.2), (5.10), (5.18), (5.20) and (5.23) and the inequality
µ ≥ q, we obtain∫

Ω

ΦΨ′(Gk(u))G′k(u)dx

≥ (q/2λ)q

kq

∑
|α|=1

∫
Ω

|Dα(|Gk(u)|µ/q+1 signGk(u))|qdx

≥ (q/2λc)q

kq

(∫
{|u|≥l}

|Gk(u)|(µ/q+1)q∗dx
)q/q∗

.

(5.69)

From assertion (A3) it follows that∫
{|u|≥l}

|Gk(u)|(µ/q+1)q∗dx ≥
( 2
t+ 1

)(µ/q+1)q∗ (l − k)t(µ/q+1)q∗

k(t−1)(µ/q+1)q∗
ϕ(l). (5.70)

From (5.68)–(5.70), taking into account the equality µ = λk, we deduce that

ϕ(l) ≤ c23

[e(t+ 1)
2

]λq∗k/q kλq∗(t−θ)k/q+tq∗
(l − k)λq∗tk/q+tq∗

[ϕ(k)]1+ϑq∗/q.

This and the inequality (e(t+ 1)k−θ/2/2)λq
∗k/q ≤ c24 allow us to conclude that the

following assertion holds:
If k0 ≤ k < l ≤ 2k, then

ϕ(l) ≤ c25k
λq∗(t−θ/2)k/q+tq∗

(l − k)λq∗tk/q+tq∗
[ϕ(k)]1+ϑq∗/q.

Using this assertion and Lemma 3.3, we establish inequality (2.16). The theorem
is proved.

6. Proof of Theorem 2.2

Let r > n/q, let the functions g2, g3, g4 and f belong to Lr(Ω). Let for every
i ∈ N, Ti : R→ R be the function such that

Ti(s) =

{
s if |s| ≤ i,
i sign s if |s| > i.

Now, for every i ∈ N we define the function Bi : Ω× R× Rn,2 → R by

Bi(x, s, ξ) = Ti(B(x, s, ξ)), (x, s, ξ) ∈ Ω× R× Rn,2.

Obviously, for every i ∈ N and for every (x, s, ξ) ∈ Ω× R× Rn,2,

|Bi(x, s, ξ)| ≤ i, (6.1)

|Bi(x, s, ξ)| ≤ c4
{ ∑
|α|=1

|ξα|q +
∑
|α|=2

|ξα|p
}

+ g4(x). (6.2)

From (2.2)–(2.5), (2.8), (2.9), (2.13) and (6.1) and the results of [9] on solvability of
equations with pseudomonotone operators it follows that if i ∈ N, then there exists
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a function ui ∈ W̊ 1,q
2,p (Ω) such that for every function v ∈ W̊ 1,q

2,p (Ω),∫
Ω

{∑
α∈Λ

Aα(x,∇2ui)Dαv +A0(x, ui)v +Bi(x, ui,∇2ui)v
}
dx =

∫
Ω

fvdx. (6.3)

Hence, on the basis of the inclusions g2, g3, f ∈ Lr(Ω) and Bi(x, ui,∇2ui) ∈
L∞(Ω) and a slight modification (due to the presence in (6.3) of the term A0

satisfying conditions (2.7) and (2.8)) of the proof of assertion (iii) of [8, Theorem
1] we establish that for every i ∈ N,

ui ∈ L∞(Ω).

Using this inclusion, inequality (6.2) and Theorems 2.4 and 2.5, we obtain that
for every i ∈ N, ∫

Ω

( ∑
|α|=1

|Dαui|q +
∑
|α|=2

|Dαui|p
)
dx ≤ C2, (6.4)

‖ui‖∞ ≤ C1. (6.5)

By (6.4), (2.2) and in view of the compactness of the embedding W̊ 1,q(Ω) into
Lλ(Ω) with λ < q∗, there exist an increasing sequence {ij} ⊂ N and a function
u0 ∈ W̊ 1,q

2,p (Ω) such that

uij → u0 weakly in W̊ 1,q
2,p (Ω),

uij → u0 a. e. in Ω.
(6.6)

From (6.5) and (6.6) we deduce estimate (2.14).
Using (2.8), (6.5) and (6.6) along with Dominated Convergence Theorem, we

establish the following assertion:
For every function v ∈ W̊ 1,q

2,p (Ω),

lim
j→∞

∫
Ω

A0(x, uij )vdx =
∫

Ω

A0(x, u0)vdx. (6.7)

Moreover, using arguments analogous to those contained in the proof of [15,
Theorem 2.1], we establish the following assertions:

uij → u0 strongly in W̊ 1,q
2,p (Ω);

for every function v ∈ W̊ 1,q
2,p (Ω),

lim
j→∞

∫
Ω

{∑
α∈Λ

Aα(x,∇2uij )D
αv
}
dx =

∫
Ω

{∑
α∈Λ

Aα(x,∇2u0)Dαv
}
dx; (6.8)

for every function v ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω),

lim
j→∞

∫
Ω

Bij (x, uij ,∇2uij )v dx =
∫

Ω

B(x, u0,∇2u0)v dx. (6.9)

From (6.3) and assertions (6.7)–(6.9) it follows that for every function v ∈
W̊ 1,q

2,p (Ω) ∩ L∞(Ω),∫
Ω

{∑
α∈Λ

Aα(x,∇2u0)Dαv +A0(x, u0)v +B(x, u0,∇2u0)v
}
dx =

∫
Ω

fvdx.

The obtained properties of the function u0 allow us to conclude that u0 is a gener-
alized solution of problem (2.10), (2.11). This completes the proof of the theorem.
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Dunod, Gauthier-Villars, Paris, 1969.
[10] J. Moser; A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic

differential equations, Comm. Pure Appl. Math. 13(1960), 457–468.
[11] I. V. Skrypnik; Higher order quasilinear elliptic equations with continouos generalized solu-

tions, Differential Equations, 14(1978), No 6, 786–795.

[12] G. Stampacchia; Régularisation des solutions de problèmes aux limites elliptiques à données
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