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EXISTENCE OF SOLUTIONS TO BOUNDARY VALUE
PROBLEMS ARISING FROM THE FRACTIONAL

ADVECTION DISPERSION EQUATION

LINGJU KONG

Abstract. We study the existence of multiple solutions to the boundary value
problem

d

dt

“ 1

2
0D
−β
t (u′(t)) +

1

2
tD
−β
T (u′(t))

”
+ λ∇F (t, u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0,

where T > 0, λ > 0 is a parameter, 0 ≤ β < 1, 0D
−β
t and tD

−β
T are,

respectively, the left and right Riemann-Liouville fractional integrals of order

β, F : [0, T ] × RN → R is a given function. Our interest in the above system

arises from studying the steady fractional advection dispersion equation. By
applying variational methods, we obtain sufficient conditions under which the

above equation has at least three solutions. Our results are new even for the

special case when β = 0. Examples are provided to illustrate the applicability
of our results.

1. Introduction

In recent years, the subject of fractional calculus has gained considerable popu-
larity and importance due mainly to its applications in numerous seemingly diverse
and widespread fields of science and engineering. The monographs [15, 16, 17] are
excellent sources for the theory and applications of fractional calculus. In this arti-
cle, we study the existence of three solutions to fractional boundary value problems
(BVPs) of the form

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 t
D−βT (u′(t))

)
+ λ∇F (t, u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where T > 0, λ > 0 is a parameter, 0 ≤ β < 1, 0D
−β
t and tD

−β
T are the left and

right Riemann-Liouville fractional integrals of order β, respectively, N ≥ 1 is an
integer, F : [0, T ] × RN → R is a given function such that F (t,x) is measurable
in t for each x = (x1, . . . , xN ) ∈ RN and continuously differentiable in x for a.e.
t ∈ [0, T ], F (t, 0, . . . , 0) ≡ 0 on [0, T ], and ∇F (t,x) = (∂F/∂x1, . . . , ∂F/∂xN ) is
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the gradient of F at x. By a solution of (1.1), we mean an absolutely continuous
function u : [0, T ] → RN such that u(t) satisfies both equation for a.e. t ∈ [0, T ]
and the boundary conditions in (1.1). We notice that when β = 0, problem (1.1)
has the form

u′′(t) + λ∇F (t, u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.2)

which has been extensively studied.
The equation in (1.1) is motivated by the steady fractional advection dispersion

equation studied in [10],

−Da (p 0D
−β
t + q tD

−β
T )Du+ b(t)Du+ c(t)u = f, (1.3)

where D represents a single spatial derivative, 0 ≤ p, q ≤ 1 satisfying p + q = 1,
a > 0 is a constant, and b, c, f are functions satisfying some suitable conditions.
The interest in (1.3) arises from its application as a model for physical phenomena
exhibiting anomalous diffusion; i.e., diffusion not accurately modeled by the usual
advection dispersion equation. Anomalous diffusion has been used in modeling
turbulent flow [8, 20], and chaotic dynamics of classical conservative systems [21].
The reader may find more background information and applications on (1.3) in
[4, 10].

Remark 1.1. When N = 1, problem (1.1) reduces to the scalar BVP
d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 t
D−βT (u′(t))

)
+ λf(t, u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.4)

where f : [0, T ]× R→ R is such that f(t, x) is measurable in t for each x ∈ R and
continuous in x for a.e. t ∈ [0, T ].

It is clear that the equation in (1.4) is of the form of (1.3) with D = d/dt, a = 1,
p = q = 1/2, b(t) = c(t) = 0, and f = λf(t, u).

We also notice that since (1.3) is the steady fractional advection dispersion equa-
tion, it has no dependence on the time variable and it just depends on the space
variable t (here, the notation t stands for the space variable in (1.3)). Since the
space we studied is one dimensional and has the form of an interval, say [0, T ],
the boundary conditions in the space reduce to the conditions at the two endpoints
t = 0 and t = T of the interval. In our system, we study the Dirichlet type boundary
conditions.

In recent years, the existence of solutions of various BVPs of fractional differential
equations is under strong research. For a small sample of the work on this subject,
we refer the reader to [1, 3, 9, 11, 12, 13, 14, 22]. We remark that most existing
results on fractional BVPs were obtained by using various fixed point theorems and
that few results were established by using variational methods. This is because that
it is often very difficult to establish a suitable space and variational functional for
fractional BVPs. As pointed out in [10, 14], these difficulties are mainly caused by
the following properties of fractional differential operators: (i) fractional differential
operators are not local operators, and (ii) the adjoint of a fractional differential
operator is not the negative of itself.

Recently, in [10, 14] suitable fractional derivative spaces and variational struc-
tures for the system (1.1) were developed. Moreover, the existence of at least one
solution for the system (1.1) was established in [14] by using the minimax methods
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in critical point theory. Our goal in this paper is to obtain some sufficient condi-
tions to guarantee that the system (1.1) has at least three solutions. Our analysis
is mainly based on a recent three critical points theorem appeared in [2, 7], see
Lemma 4.1 below. This lemma and its various variations have been frequently used
to obtain multiplicity theorems for nonlinear problems of variational nature. See,
for example, [2, 5, 6, 7, 18, 19] and the references therein.

The rest of this article is organized as follows. Section 2 contains some pre-
liminaries on fractional calculus, Section 3 contains the main results of this paper
and two illustrative examples, and the proofs of the main results are presented in
Section 4.

2. Preliminaries on fractional calculus

To make this paper self-contained, in this section, we recall some basic defini-
tions and properties of the fractional calculus. The presentation here and more
information on fractional calculus can be found in, for example, [15, 17].

Definition 2.1. Let f be a function defined on [a, b] and γ > 0. The left and
right Riemann-Liouville fractional integrals of order γ for the function f , denoted
respectively by aD

−γ
t and tD

−γ
b , are defined by

aD
−γ
t f(t) =

1
Γ(γ)

∫ t

a

(t− s)γ−1f(s)ds, t ∈ [a, b],

tD
−γ
b f(t) =

1
Γ(γ)

∫ b

t

(s− t)γ−1f(s)ds, t ∈ [a, b],

provided the right-hand sides are pointwise defined on [a, b], where Γ > 0 is the
gamma function.

Remark 2.2. When γ = n ∈ N, aD
−γ
t f(t) and tD

−γ
b f(t) coincide with the nth

integrals of the form

aD
−n
t f(t) =

1
(n− 1)!

∫ t

a

(t− s)n−1f(s)ds, t ∈ [a, b],

tD
−n
b f(t) =

1
(n− 1)!

∫ b

t

(s− t)n−1f(s)ds, t ∈ [a, b].

Definition 2.3. Let f be a function defined on [a, b] and γ > 0. The left and
right Riemann-Liouville fractional derivatives of order γ for the function f , denoted
respectively by aD

γ
t and tD

γ
b , are defined by

aD
γ
t f(t) =

dn

dtn
aD

γ−n
t f(t) =

1
Γ(n− γ)

dn

dtn

(∫ t

a

(t− s)n−γ−1f(s)ds
)
,

and

tD
γ
b f(t) = (−1)n

dn

dtn
tD

γ−n
b f(t) =

1
Γ(n− γ)

(−1)n
dn

dtn

(∫ b

t

(s− t)n−γ−1f(s)ds
)
,

where t ∈ [a, b], n− 1 ≤ γ < n, and n ∈ N.

Remark 2.4. If γ = n− 1 for some n ∈ N, then

aD
γ
t f(t) = f (n−1)(t) and tD

γ
b f(t) = (−1)n−1f (n−1)(t), t ∈ [a, b],

where f (n−1)(t) is the usual derivative of order n− 1.
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Remark 2.5. Let AC([a, b],R) be the space of real-valued functions f(x) which are
absolutely continuous on [a, b], and for n ∈ N, let ACn([a, b],R) be the space of real-
valued functions f(x) which have continuous derivatives up to order n− 1 on [a, b]
such that f (n−1)(x) ∈ AC([a, b],R). By [15, Lemma 2.2], the Riemann-Liouville
fractional derivatives aD

γ
t f(t) and tD

γ
b f(t) exist a.e. on [a, b] if f ∈ ACn([a, b],R),

where n− 1 ≤ γ < n.

Definition 2.6. Let γ ≥ 0 and n ∈ N.
(a) If γ ∈ (n − 1, n) and f ∈ ACn([a, b],R), then the left and right Caputo

fractional derivatives of order γ for the function f , denoted respectively by
c
aD

γ
t and c

tD
γ
b , and are defined by

c
aD

γ
t f(t) = aD

γ−n
t f (n)(t) =

1
Γ(n− γ)

∫ t

a

(t− s)n−γ−1f (n)(s)ds

and

c
tD

γ
b f(t) = (−1)ntD

γ−n
b f (n)(t) =

(−1)n

Γ(n− γ)

∫ b

t

(s− t)n−γ−1f (n)(s)ds,

for a.e. t ∈ [a, b].
(b) If γ = n− 1 and f ∈ ACn−1([a, b],R), then
c
aD

n−1
t f(t) = f (n−1)(t) and c

tD
n−1
b f(t) = (−1)nf (n−1)(t), t ∈ [0, T ].

In particular, caD
0
t f(t) = c

tD
0
bf(t) = f(t), t ∈ [a, b].

3. Main results

For 0 ≤ β < 1 given in (1.1), let α = 1− β/2 ∈ (1/2, 1] and define

ρα =
16N

T 2Γ2(2− α)

( 1
3− 2α

(T
4
)3−2α +

∫ 3T/4

T/4

g2(t)dt+
∫ T

3T/4

h2(t)dt
)
, (3.1)

where

g(t) = t1−α − (t− T/4)1−α, (3.2)

h(t) = t1−α − (t− T/4)1−α − (t− 3T/4)1−α. (3.3)

In the remainder of this article, for some c, d, l,m, p ∈ R, let the bold letters c,
d, l, m, and p be the constant vectors in RN defined by

c = (c, . . . , c), d = (d, . . . , d), l = (l, . . . , l), m = (m, . . . ,m), p = (p, . . . , p),

and any other bold letter, such as x, is used to denote an arbitrary vector in RN .
We now state the results of this paper.

Theorem 3.1. Assume that there exist four positive constants c, d, l, and m, with

d < m and c <
Tα−1/2ρ

1/2
α d

Γ(α)(2α− 1)1/2
< | cos(πα)|l < | cos(πα)|m, (3.4)

such that

F (t,x) ≥ 0 for (t,x) ∈ [0, T ]× [−m,m]N , (3.5)

max
|x|≤c

F (t,x) ≤ F (t, c), max
|x|≤l

F (t,x) ≤ F (t, l), max
|x|≤m

F (t,x) ≤ F (t,m), (3.6)∫ T
0
F (t, c)dt
c2

<
Γ2(α) cos2(πα)(2α− 1)

T 2α−1ραd2

(∫ 3T/4

T/4

F (t,d)dt−
∫ T

0

F (t, c)dt
)
, (3.7)
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0
F (t, l)dt
l2

<
Γ2(α) cos2(πα)(2α− 1)

T 2α−1ραd2

(∫ 3T/4

T/4

F (t,d)dt−
∫ T

0

F (t, c)dt
)
, (3.8)∫ T

0
F (t,m)dt
m2 − l2

<
Γ2(α) cos2(πα)(2α− 1)

T 2α−1ραd2

(∫ 3T/4

T/4

F (t,d)dt−
∫ T

0

F (t, c)dt
)
. (3.9)

Then, for each λ ∈ (λ, λ), the system (1.1) has at least three solutions u1, u2, and u3

such that maxt∈[0,T ] |u1(t)| < c, maxt∈[0,T ] |u2(t)| < l, and maxt∈[0,T ] |u3(t)| < m,
where

λ =
ραd

2

2| cos(πα)|
( ∫ 3T/4

T/4
F (t,d)dt−

∫ T
0
F (t, c)dt

) (3.10)

and

λ = min
{Γ2(α)(2α− 1)| cos(πα)|c2

2T 2α−1
∫ T

0
F (t, c)dt

,
Γ2(α)(2α− 1)| cos(πα)|l2

2T 2α−1
∫ T

0
F (t, l)dt

,

Γ2(α)(2α− 1)| cos(πα)|(m2 − l2)

2T 2α−1
∫ T

0
F (t,m)dt

}
.

(3.11)

The following results are consequences of Theorem 3.1. In particular, Corollaries
3.2 and 3.4 give some conditions for the system (1.2) to have at least three solutions,
and Corollary 3.3 provide some relatively simpler existence criteria for the system
(1.1).

Corollary 3.2. Assume that there exist four positive constants c, d, l, and m, with

c < (8N)1/2d < l < m,

such that (3.5) and (3.6) hold, and∫ T
0
F (t, c)dt
c2

<
1

8Nd2

(∫ 3T/4

T/4

F (t,d)dt−
∫ T

0

F (t, c)dt
)
,∫ T

0
F (t, l)dt
l2

<
1

8Nd2

(∫ 3T/4

T/4

F (t,d)dt−
∫ T

0

F (t, c)dt
)
,∫ T

0
F (t,m)dt
m2 − l2

<
1

8Nd2

(∫ 3T/4

T/4

F (t,d)dt−
∫ T

0

F (t, c)dt
)
.

Then, for each λ ∈ (λ1, λ1), system (1.2) has at least three solutions u1, u2, and u3

such that maxt∈[0,T ] |u1(t)| < c, maxt∈[0,T ] |u2(t)| < l, and maxt∈[0,T ] |u3(t)| < m,
where

λ1 =
4Nd2

T
( ∫ 3T/4

T/4
F (t,d)dt−

∫ T
0
F (t, c)dt

) ,
λ1 = min

{ c2

2T
∫ T

0
F (t, c)dt

,
l2

2T
∫ T

0
F (t, l)dt

,
m2 − l2

2T
∫ T

0
F (t,m)dt

}
.

Corollary 3.3. Assume that there exist three positive constants c, d, and p, with

d < p and c <
Tα−1/2ρ

1/2
α d

Γ(α)(2α− 1)1/2
<
| cos(πα)|p√

2
, (3.12)
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such that

F (t,x) ≥ 0 for (t,x) ∈ [0, T ]× [−p, p]N , (3.13)

max
|x|≤c

F (t,x) ≤ F (t, c), max
|x|≤p/

√
2
F (t,x) ≤ F (t,p/

√
2), max

|x|≤p
F (t,x) ≤ F (t,p),

(3.14)∫ T
0
F (t, c)dt
c2

<
Γ2(α) cos2(πα)(2α− 1)
T 2α−1ραd2(1 + cos2(πα))

∫ 3T/4

T/4

F (t,d)dt, (3.15)∫ T
0
F (t,p)dt
p2

<
Γ2(α) cos2(πα)(2α− 1)

2T 2α−1ραd2(1 + cos2(πα))

∫ 3T/4

T/4

F (t,d)dt. (3.16)

Then, for each λ ∈ (λ2, λ2), system (1.1) has at least three solutions u1, u2, and u3

such that maxt∈[0,T ] |u1(t)| < c, maxt∈[0,T ] |u2(t)| < p/
√

2, and maxt∈[0,T ] |u3(t)| <
p, where

λ2 =
ραd

2(1 + cos2(πα))

2| cos(πα)|
∫ 3T/4

T/4
F (t,d)dt

, (3.17)

λ2 = min
{Γ2(α)(2α− 1)| cos(πα)|c2

2T 2α−1
∫ T

0
F (t, c)dt

,
Γ2(α)(2α− 1)| cos(πα)|p2

4T 2α−1
∫ T

0
F (t,p)dt

}
. (3.18)

Corollary 3.4. Assume that there exist three positive constants c, d, and p, with

c < (8N)1/2d <
p√
2
, (3.19)

such that (3.13) and (3.14) hold, and∫ T
0
F (t, c)dt
c2

<
1

16Nd2

∫ 3T/4

T/4

F (t,d)dt, (3.20)

and ∫ T
0
F (t,p)dt
p2

<
1

32Nd2

∫ 3T/4

T/4

F (t,d)dt. (3.21)

Then, for each λ ∈ (λ3, λ3), system (1.2) has at least three solutions u1, u2, and u3

such that maxt∈[0,T ] |u1(t)| < c, maxt∈[0,T ] |u2(t)| < p/
√

2, and maxt∈[0,T ] |u3(t)| <
p, where

λ3 =
8Nd2

T
∫ 3T/4

T/4
F (t,d)dt

,

λ3 = min
{ c2

2T
∫ T

0
F (t, c)dt

,
p2

4T
∫ T

0
F (t,p)dt

}
.

Remark 3.5. We want to point out that when F does not depend on t, (3.20) and
(3.21) reduce to

F (c)
c2

<
F (d)

32Nd2
and

F (p)
p2

<
F (d)

64Nd2
, (3.22)

and λ3 and λ3 become

λ3 =
16Nd2

T 2F (d)
and λ3 = min

{
c2

2T 2F (c)
,

p2

4T 2F (p)

}
. (3.23)
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Remark 3.6. We observe that, in our results, no asymptotic condition on F is
needed and only local conditions on F are imposed to guarantee the existence
of solutions. Moreover, in the conclusions of the above results, one of the three
solutions may be trivial since ∇F (t, 0, . . . , 0) may be zero.

In the remainder of this section, we give two examples to illustrate the applica-
bility of our results.

Example 3.7. Let T > 0. For (t, x, y) ∈ [0, T ] × R2, let F (t, x, y) = tG(x, y),
where G : R2 → R satisfies that G(−x,−y) = G(x, y), and that for x ∈ [0,∞) and
y ∈ R,

G(x, y) =


x3 + |y|3, 0 ≤ x ≤ 1, 0 ≤ |y| ≤ 1,
x3 + 2|y|3/2 − 1, 0 ≤ x ≤ 1, |y| > 1,
2x3/2 + |y|3 − 1, x > 1, 0 ≤ |y| ≤ 1,
2x3/2 + 2|y|3/2 − 2, x > 1, |y| > 1.

(3.24)

It is easy to verify that F : [0, T ] × R2 → R is measurable in t for (x, y) ∈ R2 and
continuously differentiable in x and y for t ∈ [0, T ], and F (t, 0, 0) ≡ 0 on [0, T ].

Let 0 ≤ β < 1, α = 1 − β/2 ∈ (1/2, 1], ρα be defined by (3.1), and u(t) =
(u1(t), u2(t)). We claim that for each

λ ∈
(ρα(1 + cos2(πα))

T 2| cos(πα)|
,∞
)
,

the system

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 t
D−βT (u′(t))

)
+ λ∇F (t, u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0,
(3.25)

has at least three solutions.
In fact, system (3.25) is a special case of system (1.1) with N = 2. For 0 < c < 1

and p > 1, in view of (3.24), we have∫ T
0
F (t, c, c)dt
c2

=
2c3
∫ T

0
tdt

c2
= T 2c, (3.26)∫ T

0
F (t, p, p)dt
p2

=
(4p3/2 − 2)

∫ T
0
tdt

p2
=
T 2(2p3/2 − 1)

p2
. (3.27)

Choose d = 1. Then, ∫ 3T/4

T/4

F (t, d, d)dt = 2
∫ 3T/4

T/4

tdt =
1
2
T 2. (3.28)

By (3.26)–(3.28), we see that there exist 0 < c∗ < 1 and p∗ > 1 such that (3.12),
(3.15), and (3.16) hold for any 0 < c < c∗ and p > p∗. Moreover, (3.13) and (3.14)
hold for any c, p > 0. Finally, note from (3.17) and (3.18) that

λ2 =
ρα(1 + cos2(πα))
T 2| cos(πα)|

,

λ2 →∞ as c→ 0+ and p→∞.

Then, the claim follows from Corollary 3.3.
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Example 3.8. Let F : R2 → R satisfies that F (−x,−y) = F (x, y), and that for
x ∈ [0,∞) and y ∈ R,

F (x, y) =


x3, 0 ≤ x ≤ 1, 0 ≤ |y| ≤ 1,
x3 + 2|y|3/2 − 3|y|+ 1, 0 ≤ x ≤ 1, |y| > 1,
2x3/2 − 1, x > 1, 0 ≤ |y| ≤ 1,
2x3/2 + 2|y|3/2 − 3|y|, x > 1, |y| > 1.

(3.29)

It is easy to verify that F : R2 → R is continuously differentiable in x and y and
F (0, 0) = 0.

Let T > 0 and u(t) = (u1(t), u2(t)). We claim that for each λ ∈ (32/T 2,∞), the
system

u′′(t) + λ∇F (u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0
(3.30)

has at least three solutions. In fact, the system (3.30) is a special case of the system
(1.2) with N = 2. For 0 < c < 1 and p > 1, from (3.29), we have

F (c, c)
c2

=
c3

c2
= c, (3.31)

F (p, p)
p2

=
4p3/2 − 3p

p2
=

4p1/2 − 3
p

. (3.32)

Choose d = 1. Then
F (d, d)
32Nd2

=
1
64

and
F (d, d)
64Nd2

=
1

128
. (3.33)

By (3.31)–(3.33), we see that there exist 0 < c∗ < 1 and p∗ > 1 such that (3.19)
and (3.22) hold for any 0 < c < c∗ and p > p∗. Moreover, (3.13) and (3.14) hold
for any c, p > 0. Finally, note from (3.23) that

λ3 =
32
T 2

and λ3 →∞ as c→ 0+ and p→∞

Then, the claim follows from Corollary 3.4 and Remark 3.5.

Remark 3.9. As noted in Remark 3.6, one of the three solutions in the conclusions
of the above examples may be trivial.

4. Proofs of the main results

Let X be nonempty set and Φ, Ψ̃ : X → R be two functionals. For r, r1, r2, r3 ∈ R
with r1 < supX Φ, r2 > infX Φ, r2 > r1, and r3 > 0, we define

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supu∈Φ−1(−∞,r) Ψ̃(u)

)
− Ψ̃(u)

r − Φ(u)
, (4.1)

β(r1, r2) := inf
u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ̃(v)− Ψ̃(u)
Φ(v)− Φ(u)

, (4.2)

γ(r2, r3) :=
supu∈Φ−1(−∞,r2+r3) Ψ̃(u)

r3
, (4.3)

α(r1, r2, r3) := max {ϕ(r1), ϕ(r2), γ(r2, r3)} . (4.4)

The following lemma is fundamental in our proofs. The reader may refer to [2,
Theorem 5.2] or [7, Theorem 3.3] for its proof.
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Lemma 4.1. Let X be a reflexive real Banach space, Φ : X → R be a convex,
coercive, and continuously Gâteaux differentiable functional whose Gâteaux deriv-
ative admits a continuous inverse on X∗, Ψ̃ : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact, such that

(a) infX Φ = Φ(0) = Ψ̃(0) = 0,
(b) for every u1, u2 satisfying Ψ̃(u1) ≥ 0 and Ψ̃(u2) ≥ 0, one has

inf
t∈[0,1]

Ψ̃ (tu1 + (1− t)u2) ≥ 0.

Assume further that there exist three positive constants r1, r2, and r3, with r1 < r2,
such that

(c) α(r1, r2, r3)) < β(r1, r2).

Then, for each λ ∈
(
1/β(r1, r2), 1/α(r1, r2, r3)

)
, the functional Φ − λΨ̃ has three

distinct critical points u1, u2, and u3 such that u1 ∈ Φ−1(−∞, r1), u2 ∈ Φ−1[r1, r2),
and u3 ∈ Φ−1(−∞, r2 + r3).

Let Eα be the space of functions u ∈ L2([0, T ],RN ) having an α-order Caputo
fractional derivatives c

0D
α
t u ∈ L2([0, T ],RN ) and u(0) = u(T ) = 0. Then, by [14,

Remark 3.1 (i) and Proposition 3.1], Eα is a reflexive and separable Banach space
with the norm

‖u‖ =
(∫ T

0

|u(t)|2dt+
∫ T

0

|c0Dα
t u(t)|2dt

)1/2

for any u ∈ Eα. (4.5)

We recall the norms

‖u‖L2 =
(∫ T

0

|u(t)|2dt
)1/2

and ‖u‖∞ = max
t∈[0,T ]

|u(t)|.

Lemmas 4.2 and 4.4 are special cases of [14, Propositions 3.2 and 3.3] with p = 2,
respectively, and Lemma 4.5 corresponds to [14, Proposition 4.1].

Lemma 4.2. For u ∈ Eα, we have

‖u‖L2 ≤ Tα

Γ(α+ 1)
‖c0Dα

t u‖L2 , (4.6)

‖u‖∞ ≤
Tα−1/2

Γ(α)(2α− 1)1/2
‖c0Dα

t u‖L2 . (4.7)

Remark 4.3. From (4.6), we see that the norm ‖ · ‖ in (4.5) is equivalent to the
norm ‖ · ‖α defined by

‖u‖α =
(∫ T

0

|c0Dα
t u(t)|2dt

)1/2

for any u ∈ Eα. (4.8)

Lemma 4.4. Assume that a sequence {un} converges weakly to u in Eα (un ⇀ u).
Then, un → u in C([0, T ],RN ); i.e., ‖un − u‖∞ → 0.

Lemma 4.5. For any u ∈ Eα, we have

| cos(πα)| ‖u‖2α ≤ −
∫ T

0

(c
0
Dα
t u(t), ctD

α
Tu(t)

)
dt ≤ 1

cos(πα)
‖u‖2α.
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For u ∈ Eα, let the functionals Φ and Ψ be defined as follows

Φ(u) = −1
2

∫ T

0

(c
0
Dα
t u(t), ctD

α
Tu(t)

)
dt, (4.9)

Ψ(u) =
∫ T

0

F (t, u(t))dt. (4.10)

Then, by [14, Theorem 4.1], we see that Φ and Ψ are continuously differentiable,
and for any u, v ∈ Eα, we have

〈Φ′(u), v〉 = −1
2

∫ T

0

[(c
0
Dα
t u(t), ctD

α
T v(t)

)
+
(c
t
Dα
Tu(t), c0D

α
t v(t)

)]
dt, (4.11)

〈Ψ′(u), v〉 =
∫ T

0

(
∇F (t, u(t)), v(t)

)
dt. (4.12)

Parts (a) and (b) of Lemma 4.6 below are taken from [14, Lemma 5.1 and
Theorem 4.2], respectively.

Lemma 4.6. We have that
(a) The functional Φ is convex and continuous on Eα.
(b) If u ∈ Eα is a critical point of the functional Φ− λΨ, then u is a solution

of BVP (1.1).

We are now in a position to prove our results.

Proof of Theorem 3.1. For any x ∈ R, let p(x) = max{−m, min{x,m}}. For any
x = (x1, . . . , xN ) ∈ Eα, let F̃ (t,x) = F (t, x̃), where x̃ = (p(x1), . . . , p(xN )). Then,
F̃ (t,x) is measurable in t for each x ∈ RN and continuously differentiable in x for
a.e. t ∈ [0, T ], and F̃ (t, 0, . . . , 0) = 0 on [0, T ]. Note that −m ≤ p(ui) ≤ m for any
u = (u1, . . . , uN ) ∈ Eα and i = 1, . . . , N . Then, (3.5) implies that

F̃ (t, u) ≥ 0 for (t, u) ∈ [0, T ]× Eα. (4.13)

Note that d < m and c < l < m by (3.4). Then, we have

F̃ (t,x) = F (t,x) for (t,x) ∈ [0, T ]× RN with |x| < m,

F̃ (t, c) = F (t, c), F̃ (t,d) = F (t,d), F̃ (t, l) = F (t, l), F̃ (t,m) = F (t,m).
(4.14)

Let the continuously differentiable functional Φ be given by (4.9) and the functional
Ψ̃ be defined by

Ψ̃(u) =
∫ T

0

F̃ (t, u(t))dt for u ∈ Eα. (4.15)

Then, by Lemma 4.5 and (4.9), we have
1
2
| cos(πα)| ‖u‖2α ≤ Φ(u) ≤ 1

2| cos(πα)|
‖u‖2α for u ∈ Eα. (4.16)

Moreover, Ψ̃ is continuously differentiable, and for any u, v ∈ Eα, in view of (4.13),
we have

Ψ̃(u) ≥ 0 and 〈Ψ̃′(u), v〉 =
∫ T

0

(
∇F̃ (t, u(t)), v(t)

)
dt. (4.17)

In the following, we will apply Lemma 4.1 with X = Eα to the functionals Φ and
Ψ̃.
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We first show that some basic assumptions of Lemma 4.1 are satisfied. The
convexity and coercivity of Φ follow from Lemma 4.6 (a) and (4.16), respectively.
For any u, v ∈ Eα, from Lemma 4.5 and (4.11),

〈Φ′(u)− Φ′(v), u− v〉

= −1
2

∫ T

0

[(c
0
Dα
t u(t), ctD

α
T (u(t)− v(t))

)
+
(c
t
Dα
Tu(t), c0D

α
t (u(t)− v(t))

)]
dt

+
1
2

∫ T

0

[(c
0
Dα
t v(t), ctD

α
T (u(t)− v(t))

)
+
(c
t
Dα
T v(t), c0D

α
t (u(t)− v(t))

)]
dt

= −
∫ T

0

[(c
0
Dα
t (u(t)− v(t)), ctD

α
T (u(t)− v(t))

)
dt

≥ | cos(πα)| ‖u− v‖2α.

Thus, Φ′ is uniformly monotone. Hence, by [23, Theorem 26.A (d)], (Φ′)−1 :
(Eα)∗ → Eα exists and is continuous. Suppose that un ⇀ u ∈ Eα. Then, by
Lemma 4.4, un → u in C([0, T ],RN ). Since F̃ (t,x) is continuously differentiable
in x for a.e. t ∈ [0, 1], from the derivative formula in (4.17), we have Ψ̃′(un) →
Ψ̃′(u), i.e., Ψ̃′ is strongly continuous. Therefore, Ψ̃′ is a compact operator by [23,
Proposition 26.2].

Next, note that the facts that F̃ (t, 0, . . . , 0) = 0 on [0, T ] and the inequality in
(4.17), from Lemma 4.5, (4.9), and (4.15), we see that conditions (a) and (b) of
Lemma 4.1 are satisfied.

Now, we show that condition (c) of Lemma 4.1 holds. For i = 1, . . . , N , let

wi(t) =


4d
T t, t ∈ [0, T/4),
d, t ∈ [T/4, 3T/4],
4d
T (T − t), t ∈ (3T/4, T ],

and w(t) = (w1(t), . . . , wN (t)). Then, w ∈ Eα and

c
0D

α
t wi(t) =

4d
TΓ(2− α)


t1−α, t ∈ [0, T/4),
g(t), t ∈ [T/4, 3T/4],
h(t), t ∈ (3T/4, T ],

(4.18)

where g(t) and h(t) are defined by (3.2) and (3.3). From (3.1) and (4.18),∫ T

0

|c0Dα
t w(t)|2dt

= N
(∫ T

0

|c0Dα
t w1(t)|2dt+

∫ 3T/4

T/4

|c0Dα
t w1(t)|2dt+

∫ T

3T/4

|c0Dα
t w1(t)|2dt

)
=

16Nd2

T 2Γ2(2− α)

(∫ T/4

0

t2−2αdt+
∫ 3T/4

T/4

g2(t)dt+
∫ T

3T/4

|h(t)|2dt
)

=
16Nd2

T 2Γ2(2− α)

( 1
3− 2α

(T
4
)3−2α +

∫ 3T/4

T/4

g2(t)dt+
∫ T

3T/4

h2(t)dt
)

= ραd
2.
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Then, ‖w‖2α = ραd
2. Thus, from (4.16) with u = w,
1
2
| cos(πα)|ραd2 ≤ Φ(w) ≤ 1

2| cos(πα)|
ραd

2. (4.19)

Let

r1 =
Γ2(α)(2α− 1)| cos(πα)|

2T 2α−1
c2, r2 =

Γ2(α)(2α− 1)| cos(πα)|
2T 2α−1

l2, (4.20)

r3 =
Γ2(α)(2α− 1)| cos(πα)|

2T 2α−1
(m2 − l2). (4.21)

Then, from (3.4) and (4.19), we have r1 < Φ(w) < r2 and r3 > 0. For any u ∈ Eα,
from the first inequality in (4.16), we see that ‖u‖2α ≤ 2Φ(u)/| cos(πα)|. Then, by
(4.7) and (4.8), we have

‖u‖2∞ ≤
T 2α−1

Γ2(α)(2α− 1)
‖u‖2α ≤

2T 2α−1Φ(u)
Γ2(α)(2α− 1)| cos(πα)|

.

Thus, by (4.20) and (4.21), we have the following implications

Φ(u) < r1 ⇒ ‖u‖∞ < c,

Φ(u) < r2 ⇒ ‖u‖∞ < l,

Φ(u) < r2 + r3 ⇒ ‖u‖∞ < m.

(4.22)

This, together with (3.6) and (4.14), implies

sup
u∈Φ−1(−∞,r1)

∫ T

0

F̃ (t, u(t))dt ≤
∫ T

0

max
|x|≤c

F (t,x)dt ≤
∫ T

0

F (t, c)dt, (4.23)

sup
u∈Φ−1(−∞,r2)

∫ T

0

F̃ (t, u(t))dt ≤
∫ T

0

max
|x|≤l

F (t,x)dt ≤
∫ T

0

F (t, l)dt,

sup
u∈Φ−1(−∞,r2+r3)

∫ T

0

F̃ (t, u(t))dt ≤
∫ T

0

max
|x|≤m

F (t,x)dt ≤
∫ T

0

F (t,m)dt.

Then, taking into account the fact that 0 ∈ Φ−1(−∞, ri), i = 1, 2, from (4.1), (4.3),
(4.15), (4.20), and (4.21), it follows that

ϕ(r1) ≤
supu∈Φ−1(−∞,r1) Ψ̃(u)

r1
≤

2T 2α−1
∫ T

0
F (t, c)dt

Γ2(α)(2α− 1)| cos(πα)|c2
, (4.24)

ϕ(r2) ≤
supu∈Φ−1(−∞,r2) Ψ̃(u)

r2
≤

2T 2α−1
∫ T

0
F (t, l)dt

Γ2(α)(2α− 1)| cos(πα)|l2
, (4.25)

γ(r2, r3) =
supu∈Φ−1(−∞,r2+r3) Ψ̃(u)

r3
≤

2T 2α−1
∫ T

0
F (t,m)dt

Γ2(α)(2α− 1)| cos(πα)|(m2 − l2)
. (4.26)

On the other hand, in view of the fact that w(t) = d < m on [T/4, 3T/4] and from
(4.13) and (4.14),∫ T

0

F̃ (t, w(t))dt ≥
∫ 3T/4

T/4

F̃ (t, w(t))dt =
∫ 3T/4

T/4

F̃ (t,d)dt.

Note that w ∈ Φ−1[r1, r2), from (4.2) and (4.23), we obtain

β(r1, r2) ≥ inf
u∈Φ−1(−∞,r1)

Ψ̃(w)− Ψ̃(u)
Φ(w)− Φ(u)

≥ inf
u∈Φ−1(−∞,r1)

Ψ̃(w)− Ψ̃(u)
Φ(w)
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≥

∫ 3T/4

T/4
F̃ (t,d)dt−

∫ T
0
F̃ (t, c)dt

Φ(w)
.

By (4.19), 1/Φ(w) ≥ 2| cos(πα)|/(ραd2). Then

β(r1, r2) ≥ 2| cos(πα)|
ραd2

(∫ 3T/4

T/4

F̃ (t,d)dt−
∫ T

0

F̃ (t, c)dt
)
. (4.27)

For λ and λ defined by (3.10) and (3.11), from (3.7)–(3.9) and (4.24)–(4.27), we
have

ϕ(r1) <
1
λ
<

1
λ
< β(r1, r2), ϕ(r2) <

1
λ
<

1
λ
< β(r1, r2),

γ(r2, r3) <
1
λ
<

1
λ
< β(r1, r2).

In view of (4.4), α(r1, r2, r3) < 1/λ < 1/λ < β(r1, r2); i.e., condition (c) of Lemma
4.1 holds. Hence, all the assumptions of Lemma 4.1 are satisfied. Then, by Lemma
4.1, for each λ ∈

(
λ, λ

)
, the functional Φ− λΨ̃ has three distinct critical points u1,

u2. and u3 such that u1 ∈ Φ−1(−∞, r1), u2 ∈ Φ−1[r1, r2), and u3 ∈ Φ−1(−∞, r2 +
r3). From (4.22), we have

‖u1‖∞ < c, ‖u2‖∞ < l, ‖u3‖∞ < m.

Then, in view of (4.10), (4.14), and (4.15), we have Ψ̃(u) = Ψ(u). Therefore, u1,
u2, and u3 are three distinct critical points of the functional Φ − λΨ. Thus, by
Lemma 4.5 (b), u1, u2, and u3 are three distinct solutions of (1.1). This completes
the proof of the theorem. �

Proof of Corollary 3.2. When α = 1, from (3.1), we have ρα = 8N/T . Then, under
the assumptions of Corollary 3.1, it is easy to see that all the conditions of Theorem
3.1 hold for α = 1. Note that the system (1.2) is a special case of the system (1.1)
with α = 1. The conclusion then follows directly from Theorem 3.1. �

Proof of Corollary 3.3. Let l = p/
√

2 and m = p. Then, from (3.12)–(3.14), we see
that (3.4)–(3.6) hold. By (3.14) and (3.16), we have∫ T

0
F (t, l)dt
l2

=
2
∫ T

0
F (t,p/

√
2)dt

p2
≤

2
∫ T

0
F (t,p)dt
p2

<
Γ2(α) cos2(πα)(2α− 1)
T 2α−1ραd2(1 + cos2(πα))

∫ 3T/4

T/4

F (t,d)dt,

(4.28)

and∫ T
0
F (t,m)dt
m2 − l2

=
2
∫ T

0
F (t,p)dt
p2

<
Γ2(α) cos2(πα)(2α− 1)
T 2α−1ραd2(1 + cos2(πα))

∫ 3T/4

T/4

F (t,d)dt.

(4.29)
Note from (3.12) it follows that

Γ2(α)(2α− 1)
T 2α−1ραd2

<
1
c2
.
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Combing this inequality with (3.15), we obtain

Γ2(α) cos2(πα)(2α− 1)
T 2α−1ραd2

(∫ 3T/4

T/4

F (t,d)dt−
∫ T

0

F (t, c)dt
)

>
Γ2(α) cos2(πα)(2α− 1)

T 2α−1ραd2

∫ 3T/4

T/4

F (t,d)dt− cos2(πα)
c2

∫ T

0

F (t, c)dt

>
Γ2(α) cos2(πα)(2α− 1)

T 2α−1ραd2

∫ 3T/4

T/4

F (t,d)dt

− Γ2(α) cos4(πα)(2α− 1)
T 2α−1ραd2(1 + cos2(πα))

∫ 3T/4

T/4

F (t, c)dt

=
Γ2(α) cos2(πα)(2α− 1)
T 2α−1ραd2(1 + cos2(πα))

∫ 3T/4

T/4

F (t,d)dt.

(4.30)

By (3.15) and (4.28)–(4.30), we see that (3.7)–(3.8) hold. From (3.10), (3.11),
(3.17), (3.18), and (4.30), we have λ < λ2 and λ = λ2. Therefore, the conclusion
now follows from Theorem 3.1. �

Proof of Corollary 3.4. When α = 1, from (3.1), we have ρα = 8N/T . Under the
assumptions of Corollary 3.4, it is easy to see that all the conditions of Corollary
3.3 hold for α = 1. Note that system (1.2) is a special case of system (1.1) with
α = 1. The conclusion then follows directly from Corollary 3.3. �
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