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EXISTENCE OF SOLUTIONS FOR CRITICAL ELLIPTIC
SYSTEMS WITH BOUNDARY SINGULARITIES

JIANFU YANG, LINLI WU

Abstract. This article concerns the existence of positive solutions to the

nonlinear elliptic system involving critical Hardy-Sobolev exponent

−∆u =
2λα

α+ β

uα−1vβ

|π(x)|s
− up, in Ω,

−∆v =
2λβ

α+ β

uαvβ−1

|π(x)|s
− vp, in Ω,

u > 0, v > 0, in Ω,

u = v = 0, on ∂Ω,

where N ≥ 4 and Ω is a C1 bounded domain in RN , 0 < s < 2, α + β =

2∗(s) =
2(N−s)
N−2

, α, β > 1, λ > 0 and 1 ≤ p < N
N−2

.

Let P be a linear subspace of RN such that k = dimR P ≥ 2, and π be
the orthogonal projection on P with respect to the Euclidean structure. We

consider mainly the case when P⊥ ∩ Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅. We show that

there exists λ∗ > 0 such that the system above possesses at least one positive
solution for 0 < λ < λ∗ provided that at each point x ∈ P⊥∩∂Ω the principal

curvatures of ∂Ω at x are non-positive, but not all vanish.

1. Introduction

Let P be a linear subspace of RN such that k = dimR P ≥ 2, and π be the
orthogonal projection on P with respect to the Euclidean structure. In this paper,
we are concerned with the existence of positive solutions of the following nonlinear
elliptic system involving critical Hardy-Sobolev exponent

−∆u =
2λα
α+ β

uα−1vβ

|π(x)|s
− up, in Ω,

−∆v =
2λβ
α+ β

uαvβ−1

|π(x)|s
− vp, in Ω,

u > 0, v > 0, in Ω,
u = v = 0, on ∂Ω,

(1.1)
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where N ≥ 4 and Ω is a C1 bounded domain in RN . We assume in this paper that
0 < s < 2, α+ β = 2∗(s) = 2(N−s)

N−2 , α, β > 1, λ > 0 and 1 < p < N
N−2 .

For the one equation case, if k = N , the problem is related to the Caffarelli-
Kohn-Nirenberg inequalities. It was discussed in [5] the existence of minimizer of
the best constant of the Caffarelli-Kohn-Nirenberg inequalities and related subjects.
In particular, it shows that if 0 ∈ Ω, the best Hardy-Sobolev constant

µ2∗(s),s(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx( ∫

Ω
u2∗(s)

|x|s dx
)2/2∗(s) (1.2)

is never attained unless Ω = RN and µ2∗(s),s(Ω) = µ2∗(s),s(RN ). If s = 0, the
quantity µ2∗(s),s(Ω) is the best Sobolev constant

S = S(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx( ∫

Ω
|u|2∗ dx

)2/2∗ ,
where 2∗ = 2N

N−2 is the critical Sobolev exponent and S is achieved if and only if
Ω = RN , see [19]. Related results can also be found in [8] and [18].

In contrast with the case 0 ∈ Ω, if 0 ∈ ∂Ω, the problem is closely related to the
properties of the curvature of ∂Ω at 0. Ghoussoub and Kang showed in [9] that
there exists a solution of the problem

−∆u =
u2∗(s)−1

|x|s
+ λup, u > 0 in Ω; u = 0, on ∂Ω,

where λ > 0, 1 < p < N+2
N−2 , 0 ∈ ∂Ω and the mean curvature of ∂Ω at 0 is negative.

Such a result was proved by the global compactness method. Moreover, Ghoussoub
and Robert in [10] have proved that µ2∗(s),s(Ω) is achieved if 0 ∈ ∂Ω and the
mean curvature of ∂Ω at 0 is negative. For the elliptic equation with two critical
exponents

−∆u =
u2∗(s)−1

|x|s
+ λu

N+2
N−2 , u > 0 in Ω; u = 0, on ∂Ω, (1.3)

using the blow-up method, Hsai et al [13] prove that problem (1.3) possesses at
least one positive solution.

In [17], the Hardy-Sobolev inequality

µ2∗(s),P

(∫
RN

|u|2∗(s)

|π(x)|s
dx
) 2∗(s)

2 ≤
∫

RN
|∇u|2 dx, ∀u ∈ D1,2(RN ) (1.4)

was established for all u ∈ D1,2(RN ). Then, it was shown in [7] that µ2∗(s),P(Ω) ≥
µ2∗(s),P(RN ) > 0 for all smooth domain Ω ⊂ RN . The attainability of µ2∗(s),P(Ω)
depends on the position between P and Ω, this was discussed in [12].

In this article, we study the existence of positive solutions of (1.1). In [14],
positive solutions of problem (1.1) were found in non-contractible domains if λ =
0, k = N and s = 0. In [20], the existence of sign-changing solutions was obtained
for (1.1) with k = N and s = 0. For further results for the system we refer the
references in [14] and [20].

Equation (1.1) involves the Hardy type potential, that is s 6= 0 and possibly,
k ≤ N , and the lower order terms are negative, which will push the energy up.
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We will prove that (1.1) possesses at least one positive solution by the blow up
argument. The limiting problem after blowing up is as follows.

−∆u =
2α

α+ β

uα−1vβ

|π(x)|s
, in RN+ ,

−∆v =
2β

α+ β

uαvβ−1

|π(x)|s
, in RN+ ,

u > 0, v > 0, in RN+ ,

u = v = 0, on ∂RN+ .

(1.5)

Denote

µα,β,P(Ω) = inf
(u,v)∈(H1

0 (Ω))2\{0}

∫
Ω

(|∇u|2 + |∇v|2)dx( ∫
Ω

uαvβ

|π(x)|s dx
) 2

2∗(s)
(1.6)

for a domain Ω ⊂ RN . The solution of (1.4) will be obtained by showing that
µα,β,P(RN+ ) is achieved. The minimizer of µα,β,P(RN+ ) is the least energy solution
of (1.4) up to a multiplicative constant. It was observed in [2] that µα,β,P(Ω) and
µα+β,P(Ω) are closely related. Precisely, we have

µα,β,P(Ω) =
[
(
α

β
)

β
α+β + (

α

β
)
−α
α+β
]
µα+β,P(Ω) (1.7)

for α + β ≤ 2∗. Moreover, if w0 realizes µα+β,s(Ω), then u0 = Aw0 and v0 = Bw0

realizes µα,β,P(Ω) for any real constants A and B such that A
B =

√
α
β .

In the case Ω = RN+ , it was proved in [12] that µ2∗(s),P(RN+ ) is achieved by a
function u ∈ H1

0 (RN+ ) provided that P⊥ ⊂ ∂RN+ . This implies that µα,β,P(RN+ ) is
achieved if α+ β = 2∗(s) and P⊥ ⊂ ∂RN+ . Hence, there exists a least energy entire
solution of (1.4) in this case.

To deal with (1.1), we consider a related subcritical problem, and obtain a se-
quence of solutions of the subcritical problems. Then, we analyse the blow up
behavior of the approximating sequence. Since the coefficient of lower order terms
are negative, the energy of the corresponding functional becomes larger, it makes
difficult to find the upper compact bound. Our main result is as follows.

Theorem 1.1. Let Ω be a smooth bounded domain of RN , N ≥ 3, and let P be a
linear subspace of RN such that k = dimR P ≥ 2. Suppose s ∈ (0, 2), then we have

(i) If P⊥∩Ω 6= ∅, problem (1.1) possesses at least one positive solution provided
that s = 1.

(ii) If P⊥ ∩ Ω̄ = ∅, problem (1.1) possesses at least one positive solution.
(iii) If P⊥∩Ω = ∅ and P⊥∩∂Ω 6= ∅, there exists λ∗ > 0 such that for 0 < λ < λ∗

problem (1.1) possesses at least one positive solution provided that at each
point x ∈ P⊥∩∂Ω the principle curvatures of ∂Ω at x are non-positive, but
not all vanish.

In section 2, we find a suitable upper bound for the mountain pass level and prove
(i) and (ii) of Theorem 1.1, then using this bound and the blow-up argument, we
prove (iii) of Theorem 1.1 in section 3.
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2. Preliminaries

We recall that

µ2∗(s),P(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx( ∫

Ω
u2∗(s)

|π(x)|s dx
) 2

2∗(s)
, (2.1)

where 2∗(s) = 2(N−2)
N−2 , s ∈ (0, 2) and π is the orthogonal projection on P with

respect to the Euclidean structure. The attainability of µ2∗(s),P(Ω) depends on the
position between Ω and P. Actually, it was proved in [12] that if P⊥ ∩ Ω 6= ∅,
µ2∗(s),P(Ω) = µ2∗(s),P(RN ). Therefore, µ2∗(s),P(Ω) is not achieved. If P⊥ ∩ Ω̄ = ∅,
the problem becomes subcritical without singularities, thus µ2∗(s),P(Ω) is attained.
Finally, if P⊥ ∩Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅, µ2∗(s),P(Ω) is achieved provided that the
principle curvatures of ∂Ω at x ∈ P⊥ ∩ ∂Ω are non-positive, and do not all vanish.
Furthermore, the following lemma was also shown in [12].

Lemma 2.1. There exists a minimizer u ∈ C1(R̄N+ ) ∩ H1
0 (RN+ ) of µ2∗(s),P(RN+ )

such that

−∆u =
u2∗(s)−1

|π(x)|s
in RN+ ,

u > 0 in RN+ , u = 0 on ∂RN+

(2.2)

in D′(RN+ ) satisfying
∫

RN+
|∇u|2 dx = µ2∗(s),P(RN+ )

2∗(s)
2∗(s)−2 , provided that 2 ≤ k ≤

N − 1 and P⊥ ⊂ ∂RN+ .

Let u ∈ C1(R̄N+ ) ∩ H1
0 (RN+ ) be the minimizer of µ2∗(s),P(RN+ ). We have the

following estimates.

Lemma 2.2. There exists C > 0 such that

|u(x)| ≤ C(1 + |x|)1−N , |∇u(x)| ≤ C(1 + |x|)−N (2.3)

for x ∈ RN+ .

Proof. Let

u∗(x) = |x|−(N−2)u(
x

|x|2
), x ∈ RN+ ,

be the Kelvin transformation of u. Since u ∈ D1,2
0 (RN+ ), we may verify that the u∗

also satisfies equation (2.2), and both
∫

RN+
|∇u∗|2 dx and

∫
RN+
|u∗|2

∗(s)

|π(x)|s dx are finite.

Next, by a regularity result in [12], u∗ ∈ C1(R̄N+ ). It implies in a standard way
that (2.3) holds. The proof is complete. �

By (1.7), we see that µα,β,P(Ω) and µ2∗(s),P(Ω) are closely related if α + β =
2∗(s), which and Lemma 2.2 allow us to state the following result.

Proposition 2.3. Suppose α+ β = 2∗(s). Then
(i) µα,β,P(Ω) = µα,β,P(RN ) if P⊥ ∩ Ω 6= ∅, and µα,β,P(Ω) is not achieved.
(ii) If P⊥ ∩ Ω̄ = ∅, µα,β,P(Ω) is attained.

(iii) If P⊥ ∩ Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅, µα,β,P(Ω) is achieved provided that the
principle curvatures of ∂Ω at x ∈ P⊥ ∩ ∂Ω are non-positive, and do not all
vanish.
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Moreover, all components of the minimizer of µα,β,P(RN+ ) satisfy the decaying law
in (2.3).

Proof of (i) and (ii) of Theorem 1.1. In the case (i), problem (1.1) is a critical
problem with singularities in Ω. The existence of positive solution of the prob-
lem can be proved by the mountain pass theorem as [1], [4]. In the case (ii),
problem (1.1) is a subcritical problem without singularities, the result is readily
obtained. �

In the rest of the paper, we only consider the case (iii); that is, we assume that
P⊥ ∩ Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅.

In the following, we establish the upper bound for the mountain pass level. We
recall that by [10], µ2∗(s),P(RN+ ) is achieved by a function u ∈ H1

0 (RN+ ) if P⊥ ⊂ ∂RN+ .
This implies that µα,β,P(RN+ ) is achieved if α + β = 2∗(s). Hence, there exists a
least energy entire solution of system (1.4).

The energy functional for (1.1) is

Iλ(u, v) =
∫

Ω

(
1
2
|∇u|2 +

1
2
|∇v|2 − 2λ

2∗(s)
uαvβ

|π(x)|s
+

1
p+ 1

up+1 +
1

p+ 1
vp+1) dx ,

which is well defined on H1
0 (Ω). It is well known that to find positive solutions

of problem (1.1) is equivalent to find nonzero critical points of functional Iλ in
H1

0 (Ω)×H1
0 (Ω). Now, we bound the mountain pass level for the functional Iλ.

Lemma 2.4. Suppose that Ω is a C1 bounded domain in RN with P⊥ ∩ Ω = ∅
and P⊥ ∩ ∂Ω 6= ∅. There exist λ∗ > 0 and nonnegative functions u0 and v0 in
H1

0 (Ω) \ {0} such that for 0 < λ < λ∗ and 1 ≤ p < N
N−2 , we have Iλ(u0, v0) < 0

and
max

0≤t≤1
Iλ(tu0, tv0) < (2λ)

−2
2∗(s)−2 (

1
2
− 1

2∗(s)
)µα,β,P(RN+ )

2∗(s)
2∗(s)−2 .

provided that the principle curvatures of ∂Ω at x ∈ P⊥ ∩ ∂Ω are non-positive, and
do not all vanish.

Proof. Let (u, v) be the minimizer of µα,β,P(RN+ ), such that∫
RN+
|∇u|2 dx+

∫
RN+
|∇v|2 dx = µα,β,P(RN+ ),

∫
RN+

uαvβ

|π(x)|s
dx = 1.

Then, there exist A, B ∈ R such that u = Aw, v = Bw with A
B =

√
α
β , where w is

a minimizer of µ2∗(s),P(RN+ ). Since

|w(x)| ≤ C(1 + |x|)1−N , |∇w(x)| ≤ C(1 + |x|)−N ,
we obtain

|u(x)| ≤ C(1 + |x|)1−N , |∇u(x)| ≤ C(1 + |x|)−N , (2.4)

|v(x)| ≤ C(1 + |x|)1−N , |∇v(x)| ≤ C(1 + |x|)−N . (2.5)

Moreover, (u, v) satisfies

−∆u =
α

α+ β
µα,β,P(RN+ )

uα−1vβ

|π(x)|s
, −∆v =

β

α+ β
µα,β,P(RN+ )

uαvβ−1

|π(x)|s
, in RN+ .

(2.6)
Let x0 ∈ P⊥ ∩ ∂Ω. Since P⊥ ∩ Ω = ∅, we have P⊥ ⊂ Tx0∂Ω, where Tx0∂Ω

is the tangent space of the smooth manifold ∂Ω at x0. Thus, (Tx0∂Ω)⊥ ⊂ P.
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Denote k = dimR P, we choose a direct orthonormal basis (e1, . . . , eN ) of RN such
that e1 = nx0 is the outward normal of ∂Ω at x0, span{e1, . . . , ek} = P and
span{ek+1, . . . , eN} = P⊥. For any x ∈ RN , we denote x = (x1, y, z), where
x1 ∈ R, y ∈ span{e2, . . . , ek} and z ∈ P⊥.

Since ∂Ω is smooth, there exist open sets U, V of RN such that 0 ∈ U and
x0 ∈ V , and there exist ϕ ∈ C∞(U, V ) and ϕ0 ∈ C∞(U ′) with U ′ = {(y, z) :
there exists x1 ∈ R such that (x1, y, z) ∈ U} such that

(i) ϕ : U → V is a C∞ diffeomorphism, ϕ(0) = x0;
(ii) ϕ(U ∩ {x1 > 0}) = ϕ(U) ∩ Ω and ϕ(U ∩ {x1 = 0}) = ϕ(U) ∩ ∂Ω;
(iii) ϕ0(0) = 0 and ∇ϕ0(0) = 0;
(iv) ϕ(x1, y, z) = (x1 − ϕ0(y, z), y, z) + x0 for all (x1, y, z) ∈ U .

Denote ψ = ϕ−1. We choose a small positive number r0 so that there exist neighbor-
hoods V and Ṽ of x0, such that ψ(V ) = Br0(0), ψ(V ∩Ω) = B+

r0(0), ψ(Ṽ ) = B r0
2

(0),
ψ(Ṽ ∩ Ω) = B+

r0
2

(0). For ε > 0, we define

ũε(x) = ε−
N−2

2 η(x)u
(ψ(x)

ε

)
:= η(x)uε, ṽε(x) = ε−

N−2
2 η(x)v

(ψ(x)
ε

)
:= η(x)vε,

where η ∈ C∞0 (V ) is a positive cut-off function with η ≡ 1 in Ṽ . In what follows,
we estimate each term in Iλ(tũε, tṽε). We have∫

Ω

|∇ũε|2 dx =
∫

Ω

(|∇η|2u2
ε + η2|∇uε|2 + 2∇η∇uεηuε) dx.

Since∫
Ω

ηuε∇η∇uε dx = −
∫

Ω

|∇η|2u2
ε dx−

∫
Ω

∇ηη∇uεuε dx−
∫

Ω

η(∆η)|uε|2 dx,

we obtain ∫
Ω

|∇ũε|2 dx =
∫

Ω∩U
η2|∇uε|2 dx−

∫
Ω∩U

η(∆η)|uε|2 dx.

By the change of the variable X = ψ(x)
ε ∈ B+

r0/ε
(0) and (2.4), we obtain∣∣ ∫

Ω∩U
η(∆η)u2

ε dx
∣∣ ≤ Cε2

∫
B+
r0/ε

(0)\B+
r0
2ε

(0)

η(ϕ(εX))
∣∣∆η(ϕ(εX))

∣∣u2(X) dX

= O(ε2)

and since ∇xuε(x) = ε−
N
2 ∇Xu(ψ(x)

ε )∇xψ(x), we deduce for X ′ = (X2, . . . , XN )
and ∇′ = (∂X2 , . . . , ∂XN ) that∫

Ω∩U
η2|∇uε|2 dx

≤
∫

RN+
|∇u|2 dX − 2

∫
B+
r0/ε

η2(ϕ(εX))∂1u(X)∇′u(X)(∇′ϕ0)(εX ′) dX

+
∫
B+
r0/ε

η2(ϕ(εX))|∇′u(X)|2|(∇′ϕ0)(εX ′)|2 dX = I1 + I2 + I3.

Using that

|∇′ϕ0(X ′)| = O(|X ′|), ϕ0(X ′) =
N∑
i=2

αiX
2
i + o(1)(|X ′|2)
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and (2.4), we have

I3 ≤ C
∫

RN
(1 + |X|)−2N |εX|2 dX = O(ε2).

Integrating by parts, we infer that

I2 =
4
ε

∫
B+
r0/ε

η(ϕ(εX))∇′η(ϕ(εX))∂1u(X)∇′u(X)ϕ0(εX ′) dX

+
2
ε

∫
B+
r0/ε

η2(ϕ(εX))∇′∂1u(X)∇′u(X)ϕ0(εX ′) dX

+
2
ε

∫
B+
r0/ε

η2(ϕ(εX))∂1u(X)
N∑
i=2

∂iiu(X)ϕ0(εX ′) dX = I21 + I22 + I23.

By (2.4),

|I21| ≤ Cε2

∫
B+
r0/ε

(0)\B r0
2ε

(0)

(1 + |X|)−2N |X|2 dX ≤ CεN .

In the same way, I22 = O(εN ). By equation (2.6),
N∑
i=2

∂iiu(X) = ∆u− ∂11u(X) = − αλ

α+ β
µα,β,s(RN+ )

uα−1vβ

|π(X)|s
− ∂11u(X).

Therefore,

I23 = −2
ε

∫
B+
r0/ε

η2(ϕ(εX))∂1u(X)
αλ

α+ β
µα,β,s(RN+ )

uα−1vβ

|π(X)|s
ϕ0(εX ′) dX (2.7)

− 2
ε

∫
B+
r0/ε

η2(ϕ(εX))∂1u(X)∂11u(X)ϕ0(εX ′) dX := F1 + F2. (2.8)

Since u = Aw,

F1 = −C0

ε

∫
B+
r0/ε

η2(ϕ(εX))
∂1w(X)2∗(s)

|π(X)|s
ϕ0(εX ′) dX,

where C0 = 2αλ
(2∗(s))2µα,β,s(R

N
+ )AαBβ . Integrating by parts, we obtain

F1 = C0

∫
B+
r0/ε

2η(ϕ(εX))∂1η(ϕ(εX))ϕ0(εX ′)
|π(X)|s

w2∗(s) dX

− C0s

ε

∫
B+
r0/ε

η2(ϕ(εX))ϕ0(εX ′)X1

|π(X)|s+2
w2∗(s) dX

= F11 + F12.

We may verify as above that F11 = O(ε
N2−N−Ns+2

N−2 ).
Now, we estimate F2. Integrating by parts, we deduce

F2 =
1
ε

∫
B+
r0/ε

∂1[η2(ϕ(εX))ϕ0(εX ′)](∂1u)2 dX

+
1
ε

∫
B+
r0/ε
∩{X1=0}

η2(ϕ(εX))ϕ0(εX ′)(∂1u)2νN dSX
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=
1
ε

∫
B+
r0/ε

2η(ϕ(εX))∂1[η(ϕ(εX))]ϕ0(εX ′)(∂1u)2 dX

+
1
ε

∫
B+
r0/ε
∩∂RN+

η2(ϕ(εX))ϕ0(εX ′)(∂1u)2 dSX

= F21 + F22.

It can be shown that F21 = O(εN−1). Hence,

I2 = F12 + F22 +O(εN−1).

Since η(ϕ(εX)) ≡ 1 in B+
r0
2ε

, we have

F12 = −C0s

ε

∫
B+
r0/ε
\B+

r0
2ε

η2(ϕ(εX))ϕ0(εX ′)X1

|π(X)|s+2
w2∗(s) dX

− C0s

ε

∫
B+
r0
2ε

ϕ0(εX ′)X1

|π(X)|s+2
w2∗(s) dX = J1 + J2.

We have

J1 ≤ Cε
∫
B+
r0/ε
\B+

r0
2ε

|π(X)|3(1 + |X|)(1−N)2∗(s)

|π(X)|s+2
dX

≤ Cε
(∫

(B+
r0/ε
\B+

r0
2ε

)∩RN−k

1

|x|
2∗(s)(N−1)

2

dx
)(∫

(B+
r0/ε
\B+

r0
2ε

)∩Rk

|x|1−s

|x|
2∗(s)(N−1)

2

dx
)

≤ Cε
N(N−s)
N−2 .

In the same way,

J2 = −C0s

ε

∫
RN+

ϕ0(εX ′)X1

|π(X)|s+2
w2∗(s) dX − C0s

ε

∫
RN+ \B

+
r0/ε

ϕ0(εX ′)X1

|π(X)|s+2
w(X)2∗(s) dX

= −C0s

ε

∫
RN+

ϕ0(εX ′)X1

|π(X)|s+2
w2∗(s) dX +O(ε

N(N−s)
N−2 )

= −εC0s

N∑
i=2

αi

∫
RN+

X2
iX1w(y)2∗(s)

|π(X)|s+2
dX(1 + o(1)) +O(ε

N(N−s)
N−2 )

= − sεc1
N − 1

∫
RN+

|X ′|2X1w(X)2∗(s)

|π(X)|s+2
dX

N∑
i=2

αi(1 + o(1)) +O(ε
N(N−s)
N−2 )

= −C0K1H(0)(1 + o(1))ε+O(ε
N(N−s)
N−2 ),

where

H(0) =
1

N − 1

N∑
i=2

αi, K1 = s

∫
RN+

|X ′|2X1w
2∗(s)

|π(X)|s+2
dX.

Similarly,

F22 =
1
ε

∫
(B+
r0/ε
\B+

r0
2ε

)∩{X1=0}
η2(ϕ(εX))ϕ0(εX ′)(∂1u(X))2 dSX
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+
1
ε

∫
B+
r0
2ε
∩{X1=0}

ϕ0(εX ′)(∂1u(X))2 dSX = L1 + L2.

Also

L1 ≤
C

ε

∫
{ r02 <|εX′|≤r0}

|(∂1u)(0, X ′)|2|ϕ0(εX ′)| dX ′

≤ Cε
∫
{ r02 <|εX′|≤r0}

|X ′|−2N+2 dX ′ = O(εN ).

Using that ∫
RN−1\(B+

r0
2ε
∩{X1=0})

ϕ0(εX ′)(∂Nu(X))2 dSX = O(εN ),

one finds

L2 =
1
ε

∫
RN−1

ϕ0(εX ′)(∂1u(X))2 dSX +O(εN−1)

= ε

N∑
i=2

αi

∫
RN−1

[(∂1u)(0, X ′)]2X2
i dX

′(1 + o(1)) +O(εN−1)

= K2H(0)(1 + o(1))ε+O(εN−1),

where K2 =
∫

RN−1 |(∂Nu)(0, X ′)|2|X ′|2 dX ′. Consequently,∫
Ω

|∇ũε|2 dx =
∫

RN+
|∇u|2 dX − (C0K1 −K2)H(0)(1 + o(1))ε+O(ε2),

and similarly,∫
Ω

|∇ṽε|2 dx =
∫

RN+
|∇v|2 dX − (C1K1 −K2)H(0)(1 + o(1))ε+O(ε2).

where C1 = 2βλ
(2∗(s))2µα,β,s(R

N
+ )AαBβ .

Next, let X = ψ(x)
ε . We estimate∫

Ω

ũαε ṽ
β
ε

|π(x)|s
dx ≥

∫
Ω∩Ṽ

ũαε ṽ
β
ε

|π(x)|s
dx =

∫
Ω∩Ṽ

uαε v
β
ε

|π(x)|s
dx =

∫
B+
r0
2ε

uα(X)vβ(X)

|π(ϕ(εX))
ε |s

dX

since η ≡ 1 in Ω∩ Ṽ . We recall that x0 ∈ P⊥ ∩∂Ω, then we may write π(ϕ(εX)) =
(εx1 + ϕ0(εy, εz), εy, 0) and

|π(ϕ(εX))|2 = ε2|π(X)|2
(

1 +
2X1ϕ0(εX ′)
ε|π(X)|2

+
ϕ2

0(εX ′)
ε2|π(X)|2

)
.

Therefore,

1

|ϕ(εX)
ε |s

=
1

|π(X)|s
(

1− sX1ϕ0(εX ′)
ε|π(X)|2

− sϕ2
0(εX ′)

2ε2|π(X)|2
)

+
1

|π(X)|s
O
(2X1ϕ0(εX ′)

ε|π(X)|2
+

ϕ2
0(εX ′)

ε2|π(X)|2
)
.
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This and ∫
RN+ \B

+
r0
2ε

uαvβ

|π(X)|s
dX = O(ε

N(N−s)
N−2 )

enable us to show that∫
Ω∩Ũ

ũαε ṽ
β
ε

|π(x)|s
dx =

∫
B+
r0
2ε

uαvβ

|π(X)|s
dX − s

ε

∫
B+
r0
2ε

X1ϕ(εX ′)uα(X)vβ(X)
|π(X)|s+2

dX +O(ε2)

=
∫

RN+

uαvβ

|π(X)|s
dX − s

ε

∫
B+
r0
2ε

X1ϕ(εX ′)uαvβ

|π(X)|s+2
dX +O(ε2).

Moreover,

− s

ε

∫
B+
r0
2ε

X1ϕ(εy′)uαvβ

|π(X)|s+2
dX

= −s
ε
AαBβ

∫
B+
r0
2ε

X1ϕ(εX ′)w2∗(s)

|π(X)|s+2
dX

= −sε
N∑
i=2

αiA
αBβ

∫
RN+

X1X
2
i w

2∗(s)

|π(X)|s+2
dX(1 + o(1)) +O(ε

N(N−s)
N−2 )

= − sε

N − 1
AαBβ

∫
RN+

X1|X ′|2w2∗(s)

|π(X)|s+2
dX

N∑
i=2

αi(1 + o(1)) +O(ε
N(N−s)
N−2 ).

Hence, ∫
Ω∩Ũ

ũαε ṽ
β
ε

|π(x)|s
dx =

∫
RN+

uαvβ

|π(X)|s
dX −K3H(0)(1 + o(1))ε+O(ε2),

where K3 = sAαBβ
∫

RN+
X1|X′|2w2∗(s)

|π(X)|s+2 dX = AαBβK1.

Finally, let X = ψ(x)
ε ∈ B+

r0/ε
(0). We estimate∫

Ω

ũp+1
ε dx = ε

(2−N)(p+1)
2

∫
Ω∩U

η2(x)[u(
ψ(x)
ε

)]p+1 dx

= ε
(2−N)(p+1)

2 +N

∫
B+
r0/ε

up+1 dX

= ε
N+2

2 −
(N−2)p

2

∫
RN+

up+1 dX +O(ε
N(p+1)

2 ).

Similarly, ∫
Ω

ṽp+1
ε dx = ε

N+2
2 −

(N−2)p
2

∫
RN+

vp+1 dX +O(ε
N(p+1)

2 ).

Since q < N
N−2 , N+2

2 − (N−2)p
2 > 1. For t ≥ 0, we have

Iλ(tũε, tṽε)

=
t2

2

(∫
RN+
|∇u|2 dX +

∫
RN+
|∇v|2 dX

)
− 2t2

∗(s)λ

2∗(s)

∫
RN+

uαvβ

|π(X)|s
dX
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+
H(0)

2
[(2K2 − C0K1 − C1K1)t2 +

4
2∗(s)

(λK3 + o(1))t2
∗(s)]ε+O(ε2)

= f1(t) +
H(0)

2
εf2(t) +O(ε2),

where

f1(t) =
t2

2
µα,β,s(RN+ )− 2λt2

∗(s)

2∗(s)
.

It can be verified that

max
0≤t≤1

f1(t) = f1(t0) = (2λ)
−2

2∗(s)−2 (
1
2
− 1

2∗(s)
)µα,β,s(RN+ )

2∗(s)
2∗(s)−2 ,

with t0 = ( 1
2λµα,β,s(R

N
+ ))

1
2∗(s)−2 . Since K1 > 0,

f2(t0) = (2K2 − C0K1 − C1K1)t20 +
4λ

2∗(s)
K3t

2∗(s)
0

= (2K2 −
2λ

2∗(s)
AαBβK1)t20 +

4λ
2∗(s)

AαBβK1t
2∗(s)
0

= 2K2t
2
0 +

2λ
2∗(s)

AαBβK1(
µα,β,s(RN+ )

λ
− 1)t20.

Hence, f2(t0) > 0 if λ > 0 and small.
Since H(0) < 0, by choosing T large enough, we have Iλ(T ũε, T ṽε) < 0 for t ≥ T

and ε ≥ 0 small. Let u0 = T ũε, v0 = T ṽε. We obtain

max
0≤t≤1

Iλ(tu0, tv0) < (2λ)
−2

2∗(s)−2 (
1
2
− 1

2∗(s)
)µα,β,s(RN+ )

2∗(s)
2∗(s)−2

and
Iλ(u0, v0) < 0.

This completes the proof of Lemma 2.1. �

3. Existence of positive solution in Ω

Now we will use the blow up argument to prove (iii) of Theorem 1.1. For any
ε > 0, by the mountain pass theorem, we have a positive solution pair (uε, vε) of
the subcritical system

−∆uε =
2αλ

α+ β − ε
uα−1
ε vβ−εε

|π(x)|s
− up−εε , in Ω,

−∆vε =
2βλ

α+ β − ε
uαε v

β−1−ε
ε

|π(x)|s
− vp−εε , in Ω,

uε > 0, vε > 0, in Ω,
uε = vε = 0, on ∂Ω.

(3.1)

Using Lemma 2.4, we see that the mountain pass level cε of (3.1) satisfies

cε = Iελ(uε, vε) < (2λ)
−2

2∗(s)−2 (
1
2
− 1

2∗(s)
)µα,β,s(RN+ )

2∗(s)
2∗(s)−2 (3.2)

if 0 < λ < λ∗, where

Iε(uε, vε) =
∫

Ω

(
1
2
|∇uε|2 +

1
2
|∇vε|2 −

2λ
2∗(s)− ε

uαε v
β−ε
ε

|π(x)|s
) dx
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+
∫

Ω

(
1

p+ 1− ε
up+1−ε
ε +

1
p+ 1− ε

vp+1−ε
ε ) dx.

It can be easily shown that both ‖uε‖H1
0 (Ω) and ‖vε‖H1

0 (Ω) are uniformly bounded
for ε > 0 small. Thus, there is a subsequence {(uj , vj)} of {(uε, vε)} such that

uj ⇀ u, vj ⇀ v, in H1
0 (Ω),

uj → u, vj → v, in Lp+1(Ω),

uj ⇀ u, vj ⇀ v, in L2∗(s)(Ω, |π(x)|−sdx),

(3.3)

with u, v ≥ 0 and (u, v) is a solution of system (1.1). If (u, v) is a nontrivial solution,
by the strong maximum principle, u, v > 0, then we are done.

Now, we prove (u, v) is nontrivial. This will be shown by the blowing up argu-
ment. Suppose on the contrary that u = v = 0 in Ω. By the regularity result, see
for instance [12, Proposition 3.2], uε, vε ∈ C1(Ω̄). Let xj , yj ∈ Ω be such that

Mj = uj(xj) = max
Ω̄

uj(x), Nj = vj(yj) = max
Ω̄

vj(x). (3.4)

Then, we have either mj → ∞ or nj → ∞ as j → ∞. Indeed, on the contrary
we would have mj ≤ C and nj ≤ C for a positive constant C. By the Sobolev
embedding, ∫

Ω

uαj v
β−εj
j

|π(x)|s
dx ≤ C

∫
Ω

uαj
|π(x)|s

dx→ 0

as j →∞. This implies∫
Ω

(|∇uj |2 + |∇vj |2) dx = 2
∫

Ω

uαj v
β−εj
j

|π(x)|s
dx−λ

∫
Ω

u
p+1−εj
j dx−λ

∫
Ω

v
p+1−εj
j dx→ 0;

that is, uj → 0, vj → 0 strongly in H1
0 (Ω). It yields

0 = lim
j→∞

1
2

∫
Ω

(|∇uj |2 + |∇vj |2) dx = c > 0

a contradiction.
Suppose Nj ≤Mj →∞. Denote

ũj(x) = M−1
j uj(kjx+ xj), ṽj(x) = M−1

j vj(kjx+ xj), for x ∈ Ωj ,

where kj = M
−

2∗(s)−2−εj
2−s

j and Ωj = {x ∈ RN | xj + kjx ∈ Ω}. Obviously, (ũj , ṽj)
satisfies

−∆ũj =
2αλ

α+ β − εj
( kj
|π(xj)|

)s ũα−1
j ṽ

β−εj
j

|π( xj
|π(xj)| + kj

|π(xj)|x)|s
− k2

jM
p−1−εj
j ũ

p−εj
j , in Ωj ,

−∆ṽj =
2(β − εj)λ
α+ β − εj

( kj
|π(xj)|

)s ũαj ṽ
β−1−εj
j

|π( xj
|π(xj)| + kj

|π(xj)|x)|s
− k2

jM
p−1−εj
j ṽ

p−εj
j , in Ωj ,

0 ≤ ũj , ṽj ≤ 1, in Ωj ,
ũj = ṽj = 0, on ∂Ωj .

(3.5)
Since Mj →∞, kj → 0 as j →∞. Furthermore, we have

k2
jM

p−1−εj
j = k

2−
(2−s)(p−εj−1)

2∗(s)−2−εj
j → 0 as j →∞
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as the facts that kj → 0 and 2− (2−s)(p−εj−1)
2∗(s)−2−εj > 0; i.e, p < N+2

N−2 .
We will show that Mj = O(1)Nj . First, we claim that |π(xj)| = O(kj) as j →∞.

Suppose on the contrary that lim supj→∞
|π(xj)|
kj

=∞.
Because (ũj , ṽj) is uniformly bounded in C1

loc, we may assume that ũj → u, ṽj →
v in C0

loc. Suppose now xj → x0 ∈ Ω̄. There are two cases:

(i) x0 ∈ Ω or x0 ∈ ∂Ω and dist(xj ,∂Ω)
kj

→∞; and

(ii) x0 ∈ ∂Ω and dist(xj ,∂Ω)
kj

→ σ ≥ 0.

In the case (i), we have Ωj → RN as j →∞ and (u, v) satisfies

∆u = 0, ∆v = 0 in RN ,
0 ≤ u, v ≤ 1, u(0) = 1.

Furthermore,∫
Ωj

ũ
2N
N−2
j dy = k

Nεj
2∗(s)−2−εj
j

∫
Ω

u
2N
N−2
j dx ≤ C, and

∫
Ωj

ṽ
2N
N−2
j dy ≤ C,

which yields ∫
RN

u
2N
N−2 dy <∞,

∫
RN

v
2N
N−2 dy <∞.

However, by the Liouville theorem, u ≡ v ≡ 1 for x ∈ RN . This is a contradiction.
In case (ii), after an orthogonal transformation, we have Ωj → RN+ = {x =

(x1, . . . , xN ) | x1 > 0} as j → ∞ and ũj , ṽj converge to some u, v uniformly
in every compact subset of RN+ . Now, u(0) = 1 and 0 ≤ v(0) ≤ 1. Hence, (u, v)
satisfies

∆u = 0, ∆v = 0 in RN+ ,

0 ≤ u, v ≤ 1 in RN+ ,

u = v = 0 on ∂RN+ .

By the boundary condition and the maximum principle, u ≡ v ≡ 0 for x ∈ RN+
which violate to u(0) = 1. Consequently, lim supj→∞

|π(xj)|
kj

< ∞. Since kj → 0,
we have π(xj)→ 0 as j →∞.

Next, we show that lim infj→∞
|π(xj)|
kj

> 0. Were it not the case, we would have,

up to a subsequence, that limj→∞
|π(xj)|
kj

= 0. Then (ũj , ṽj) satisfies

−∆ũj =
2αλ

α+ β − εj
ũα−1
j ṽ

β−εj
j

|π(xj)
kj

+ π(x)|s
− k2

jM
p−1−εj
j ũj

p−εj , in Ωj ,

−∆ṽj =
2(β − εj)λ
α+ β − εj

ũαj ṽ
β−1−εj
j

|π(xj)
kj

+ π(x)|s
− k2

jM
p−1−εj
j ṽj

p−εj , in Ωj ,

0 ≤ ũj , ṽj ≤ 1, in Ωj ,
ũj = ṽj = 0, on ∂Ωj ,

(3.6)
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Up to a rotation, we have Ωj → RN+ and ũj , ṽj converge to some u, v uniformly in
compact subsets of RN+ respectively, where (u, v) satisfies

−∆u =
2αλ
α+ β

uα−1vβ

|π(x)|s
, −∆v =

2βλ
α+ β

uαvβ−1

|π(x)|s
in RN+ ,

0 ≤ u, v ≤ 1 in RN+ , u = v = 0 on ∂RN+ .

The boundary condition violates to u(0) = 1. Hence, lim infj→∞
|π(xj)|
kj

> 0.
Now, we complete the proof of Theorem 1.1 by showing that problem (1.1) has

a nontrivial solution.
First, we remark that dist(xj , ∂Ω) = O(kj). Indeed, since P⊥ ∩ Ω = ∅, we have

xj − π(xj) ∈ P⊥ ⊂ RN \ Ω. Because xj ∈ Ω, there exists tj ∈ (0, 1) such that
tjxj + (1− tj)(xj − π(xj)) ∈ ∂Ω. Therefore,

d(xj , ∂Ω) ≤ |xj − (tjxj + (1− tj)(xj − π(xj)))| = (1− tj)|π(xj)| ≤ |π(xj)| = O(kj).

Hence, we may assume dist(xj ,∂Ω)
kj

→ σ ≥ 0. By an affine transformation, we
find (ũj , ṽj) converges to (u, v) uniformly in any compact subset of RN+ and (u, v)
satisfies

−∆u =
2αλ
α+ β

uα−1vβ

|π(x)|s
, −∆v =

2βλ
α+ β

uαvβ−1

|π(x)|s
in RN+ ,

u, v > 0 in RN+ ; u = v = 0 on ∂RN+
(3.7)

with u(0, . . . , σ) = 1. By the definition of µα,β,s(Ω), we have

µα,β,s(Ωj) ≤
∫

Ω
(|∇ũj |2 + |∇ṽj |2) dx( ∫

Ω

ũαj ṽ
β−ε
j

|x|s dx
) 2

2∗(s)

,

and then

µα,β,s(RN+ ) ≤

∫
RN+

(|∇u|2 + |∇v|2) dy( ∫
RN+

uαvβ

|π(x)|s dx
) 2

2∗(s)
= 2λ

(∫
RN+

uαvβ

|π(x)|s
dx
) 2∗(s)−2

2∗(s)
;

that is,∫
RN+

(|∇u|2 + |∇v|2) dx = 2λ
∫

RN+

uαvβ

|π(x)|s
dx ≥ (2λ)

−2
2∗(s)−2µα,β,s(RN+ )

2∗(s)
2∗(s)−2 . (3.8)

Furthermore, noting that

lim
j→∞

∫
Ω

(|∇uj |2 + |∇vj |2) dx = lim
j→∞

k
−

(N−2)εj
2∗(s)−2−εj

j

∫
Ωj

(|∇ũj |2 + |∇ṽj |2) dx

≥ lim
j→∞

∫
Ωj

(|∇ũj |2 + |∇ṽj |2) dx

≥
∫

RN+
(|∇u|2 + |∇v|2) dx,

(3.9)

we derive from (3.2), (3.8), (3.9) that

c = (
1
2
− 1

2∗(s)
) lim
j→∞

∫
Ω

(|∇uj |2 + |∇vj |2) dx

≥ (
1
2
− 1

2∗(s)
)(2λ)

−2
2∗(s)−2µα,β,s(RN+ )

2∗(s)
2∗(s)−2 ,
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which yields a contradiction to (3.2). Thus, (u, v) is a nontrivial solution of (1.1)
if Nj ≤Mj .

Now we show Mj = O(Nj). Indeed, since u is nontrivial, so is v. Otherwise, we
would have

∆u = 0 in RN+ ,

0 ≤ u ≤ 1, u(0, . . . , σ) = 1 in RN+ ,

u = 0 on ∂RN+ .

By the strong maximum principle, u would be a constant because it attains its
maximum value inside RN+ . This yields a contradiction between u(0, . . . , σ) = 1
and the boundary condition. Therefore, there exists y0 ∈ RN+ such that v(y0) 6= 0.
Hence,

ṽj(y0) = m−1
j vj(xj + kjy0)→ v(y0) > 0

implying

1 ≥ nj
mj
≥ vj(xj + kjy0)

mj
≥ v(y0)− ε > 0

for ε > 0 small and j large, namely, Nj = O(1)Mj as j → ∞. Replacing Mj

by Nj in above blow up process, we may also derive a contradiction if we assume
u = v = 0. Consequently, (1.1) has a positive nontrivial solution. The proof of
Theorem 1.1 is complete.
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Anal., 259 (2010), 1816-1849.

[14] Haiyang He, Jianfu Yang; Positive solutions for critical elliptic systems in non-contractible
domain, Nonlinear Anal. TMA 70 (2009), 952-973.

[15] P. L. Lions; The concentration-compactness principle in the calculus of variations. The locally
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