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EXISTENCE OF SOLUTIONS FOR CRITICAL ELLIPTIC
SYSTEMS WITH BOUNDARY SINGULARITIES

JIANFU YANG, LINLI WU

ABSTRACT. This article concerns the existence of positive solutions to the
nonlinear elliptic system involving critical Hardy-Sobolev exponent
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a+tp |n(z)|®

u>0, v>0, in§,
u=v=0, on 909,

where N > 4 and Q is a C! bounded domain in RV, 0 < s < 2, a+ 8 =
2%(s) = 2029 0 B> 1, A>0and 1 <p < .

Let P be a linear subspace of RV such that k = dimg P > 2, and 7 be
the orthogonal projection on P with respect to the Euclidean structure. We
consider mainly the case when P+ N Q = () and P+ NIQ # . We show that
there exists A* > 0 such that the system above possesses at least one positive
solution for 0 < A < \* provided that at each point z € P+ NAQ the principal
curvatures of Q) at x are non-positive, but not all vanish.

1. INTRODUCTION

Let P be a linear subspace of RY such that k¥ = dimg P > 2, and 7 be the
orthogonal projection on P with respect to the Euclidean structure. In this paper,
we are concerned with the existence of positive solutions of the following nonlinear
elliptic system involving critical Hardy-Sobolev exponent
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where N > 4 and Q is a C' bounded domain in RY. We assume in this paper that
0<s<2, a+p8=2%s) = Q(Jffv__;),oz,ﬁ>1,/\>0and1<p<%.

For the one equation case, if & = N, the problem is related to the Caffarelli-
Kohn-Nirenberg inequalities. It was discussed in [5] the existence of minimizer of
the best constant of the Caffarelli-Kohn-Nirenberg inequalities and related subjects.

In particular, it shows that if 0 € 2, the best Hardy-Sobolev constant

. Jo IVulda
M2*(s),s(Q) = llnf 2% (s) 2/2*(s)
w€H;(Q)\{0} (fQ u|z\s dI)

(1.2)

is never attained unless § = RY and o= (s),s () = ug*(s)7s(RN). If s = 0, the
quantity fio«(s) 5(€2) is the best Sobolev constant

Vu|*dx
S=5(Q) = in Jo IV VoL
weHF OO} ( [ Juf? dx) /
where 2% = % is the critical Sobolev exponent and S is achieved if and only if

Q =RV, see [19]. Related results can also be found in [§] and [18].

In contrast with the case 0 € Q, if 0 € 91, the problem is closely related to the
properties of the curvature of 92 at 0. Ghoussoub and Kang showed in [9] that
there exists a solution of the problem

w2 (-1
—AUZT—F)\UP, u>0 in; w=0, ondQ,
€T S
where A > 0,1 <p< %, 0 € 09 and the mean curvature of 9 at 0 is negative.

Such a result was proved by the global compactness method. Moreover, Ghoussoub
and Robert in [I0] have proved that fig-(s) s(€2) is achieved if 0 € 0Q and the
mean curvature of 92 at 0 is negative. For the elliptic equation with two critical
exponents
u2* (s)—1 Ntz
—Au:ﬁ+)\um7 u>0 in; w=0, ondf, (1.3)
€T S
using the blow-up method, Hsai et al [I3] prove that problem (1.3) possesses at
least one positive solution.
In [I7], the Hardy-Sobolev inequality

(/ e dz) e / Vul® dz, Yu e DV(RY)  (14)
H2x(s),P R ‘W(:E)|S = Jen ) .

was established for all u € D"2(R™). Then, it was shown in [7] that pio-(5) »(Q) >
pi2=(s),p(RY) > 0 for all smooth domain © C RY. The attainability of s« () ()
depends on the position between P and €, this was discussed in [12].

In this article, we study the existence of positive solutions of . In [14],
positive solutions of problem were found in non-contractible domains if A =
0,k = N and s = 0. In [20], the existence of sign-changing solutions was obtained
for with k = N and s = 0. For further results for the system we refer the
references in [I4] and [20].

Equation involves the Hardy type potential, that is s # 0 and possibly,
k < N, and the lower order terms are negative, which will push the energy up.
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We will prove that (1.1)) possesses at least one positive solution by the blow up
argument. The limiting problem after blowing up is as follows.

200 u* 1P

w=—"_2_" nRY,
a+ B |n(x) i
28 u*Pl N
—Av = in R
"Tas B M (+5)

u>0, v>0, inIRﬁ7

u=v=0, on(‘)Rf.

Denote

, (|Vul? + |Vv|?)dx
hopp@ = e o 2
(uv)E(Hg (2))*\{0} (Jo de) B

[m(z)[°

(1.6)

for a domain © C RY. The solution of will be obtained by showing that
fta,3,p(RY) is achieved. The minimizer of o35 (RY) is the least energy solution
of up to a multiplicative constant. It was observed in [2] that u, g (€2) and
ta+a,p(€2) are closely related. Precisely, we have

., _B o, —«a

Ha,3,P(2) = [(5)"‘*5 + (B)m]uawm(m (1.7)

for a + 8 < 2*. Moreover, if wg realizes fia+3,5(€2), then ug = Awg and vy = Bwy

realizes o, 8,7 () for any real constants A and B such that % = \/%

In the case 2 = Rf, it was proved in [12] that ,LLQ*(S)"p(Rﬁ) is achieved by a
function u € H{(RY) provided that P+ C ORY. This implies that yia,5p(RY) is
achieved if a + 3 = 2*(s) and P+ C BR{X . Hence, there exists a least energy entire
solution of in this case.

To deal with , we consider a related subcritical problem, and obtain a se-
quence of solutions of the subcritical problems. Then, we analyse the blow up
behavior of the approximating sequence. Since the coefficient of lower order terms
are negative, the energy of the corresponding functional becomes larger, it makes
difficult to find the upper compact bound. Our main result is as follows.

Theorem 1.1. Let Q be a smooth bounded domain of RN, N >3, and let P be a
linear subspace of R such that k = dimg P > 2. Suppose s € (0,2), then we have

(i) If P-NQ # 0, problem possesses at least one positive solution provided
that s = 1.

(i) If P-NQ =0, problem possesses at least one positive solution.

(iil) IfPENQ =0 and PLNON # 0, there exists \* > 0 such that for 0 < X\ < \*
problem possesses at least one positive solution provided that at each
point x € PLNOQ the principle curvatures of O at x are non-positive, but
not all vanish.

In section 2, we find a suitable upper bound for the mountain pass level and prove
(i) and (ii) of Theorem then using this bound and the blow-up argument, we
prove (iii) of Theorem in section 3.
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2. PRELIMINARIES
We recall that
Jo IVul? da

11
w€H (2)\{0} (fQ |u2*()|>5’ dx )2* 5

M2 (s),P(§2) = (2.1)

where 2*(s) = %, s € (0,2) and 7 is the orthogonal projection on P with
respect to the Euclidean structure. The attainability of jip«(4) »(€2) depends on the
position between Q and P. Actually, it was proved in [12] that if P+ N Q # 0,
ti2=(5),P () = pia=(s),p (RY). Therefore, jis+(5) () is not achieved. If P-NQ =0,
the problem becomes subcritical without singularities, thus po«(5) »(€2) is attained.
Finally, if PN Q=0 and P+ N9Q # 0, pa-(5),p () is achieved provided that the
principle curvatures of 9Q at z € P+ N O are non-positive, and do not all vanish.
Furthermore, the following lemma was also shown in [12].

Lemma 2.1. There ezists a minimizer u € C*(RY) N HF(RY) of pow(s),p(RY)
such that
2% (s)—1
—Au = uig mn Rf,
()]

u>0 in]R_]f, u=20 onﬁRf

(2.2)

*(s)
in D'(RY) satisfying [on |[Vul? dz = Mz*(s)’p(Rf);(S)*?, provided that 2 < k <
+
N —1 and P+ C ORY.

Let u € CYRY) n HJ(RY) be the minimizer of jip«(5) p(RY). We have the
following estimates.

Lemma 2.2. There exists C > 0 such that
lu(z)| < C(1+[z))' N, [Vu()] < C(1+ |z[)~V (2.3)
forz e Rf.

Proof. Let

u* () = fe| =V v e RY,

el

be the Kelvin transformation of u. Since u € Dy’ Q(RN ), we may verify that the u*
u*| 2% (s)

also satisfies equation (|2 , and both f]RN |Vu*|? dz and f]RN W dx are finite.

Next, by a regularity result in [12], u* € C*(RY). It 1mphes in a standard way
that (2.3) holds. The proof is complete. O

By (1.7), we see that o 57(2) and po-(5) p(£2) are closely related if a 4 3 =
2*(s), which and Lemma allow us to state the following result.

Proposition 2.3. Suppose o+ 3 = 2*(s). Then
() fro,p.P(Q) = papp(RY) if PLNQH#D, and piapp() is not achieved.
(i) IfPENQ =0, papp(Q) is attained.
(iil) IFPENQ =0 and PN # 0, piasp() is achieved provided that the
principle curvatures of 0 at x € P+ NOQ are non-positive, and do not all
vanish.
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Moreover, all components of the minimizer of pa,g,p (Rf) satisfy the decaying law
in (2.3).

Proof of (i) and (ii) of Theorem[I.] In the case (i), problem is a critical
problem with singularities in 2. The existence of positive solution of the prob-
lem can be proved by the mountain pass theorem as [I], [4]. In the case (ii),
problem is a subcritical problem without singularities, the result is readily
obtained. (]

In the rest of the paper, we only consider the case (iii); that is, we assume that
PLNQ=0and PLNIQ £ 0.

In the following, we establish the upper bound for the mountain pass level. We
recall that by [10], pto« (), p (RY ) is achieved by a function u € Hg (RY ) if P+ c ORY.
This implies that pa g,p(RY) is achieved if o + 3 = 2%(s). Hence, there exists a
least energy entire solution of system .

The energy functional for (1.1]) is
)3
24 _uy Loy Loy g,

1 1
T _ - 2 - 2
A1) /Q(2|W| VO — s

which is well defined on HE(Q). It is well known that to find positive solutions
of problem (|1.1) is equivalent to find nonzero critical points of functional Iy in
HY(Q) x HE (). Now, we bound the mountain pass level for the functional Iy.

Lemma 2.4. Suppose that Q is a C' bounded domain in RN with PN Q =0
and PN OQ # 0. There exist \* > 0 and nonnegative functions ug and vo in
HY(Q) \ {0} such that for 0 < X < X* and 1 < p < 5, we have Ix(ug,vg) < 0
and

L (tuo, tvo) < (@07 (2 = Ly 5 p @Yo
OIE?SXI AllUg, tUg 2 2*(8) )U’Ct,ﬁ,'P =+ .

provided that the principle curvatures of O at x € P+ N IQ are non-positive, and
do not all vanish.

Proof. Let (u,v) be the minimizer of i g.p(RY ), such that

a,,B
[ vl dos [ 190 de = ppp®Y), [ EEae—t
N Rﬁ\r] R

RY ~ |m ()]
Then, there exist A, B € R such that u = Aw, v = Bw with % = %, where w is
a minimizer of fig-(s) p(RY). Since
w(z)] < CA+ 2N, V()| < CA+a])77,
we obtain
u(@)] < CAL+ 12D, [Vu(z)] < O+ Ja]) ™7, (2.4)
o(2)] < CA+]a))' ™, [Vo()] < O+ |2]) ™. (2.5)
Moreover, (u,v) satisfies
a—1 ay,B-1
—Au = Oéjé_ua@p(Rf)le, —Av = oj—ﬁua’ﬂ’p(Rf)lﬁrg};P’ in RY.
(2.6)

Let 79 € P NOQ. Since P NQ = 0, we have P+ C T,,0, where T, 00
is the tangent space of the smooth manifold 9 at zo. Thus, (T,,0Q)t C P.
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Denote k = dimg P, we choose a direct orthonormal basis (e1,...,ex) of RY such
that e; = ng, is the outward normal of 9Q at xg, span{es,...,ex} = P and
span{eri1,...,en} = P+. For any x € RV, we denote 2 = (x1,v,2), where

r1 € R, y € span{es, ..., e} and z € PL.

Since 99 is smooth, there exist open sets U,V of RN such that 0 € U and
xo € V, and there exist ¢ € C®(U,V) and ¢g € C®(U’) with U’ = {(y,2) :
there exists x; € R such that (z1,y,2) € U} such that

(i) ¢ : U — V is a C* diffeomorphism, ¢(0) = zo;
(ii) o(UN{z1>0}) = o(U) N Q and (U N {1 = 0}) = o(U) N O

(iii) ¢0(0) =0 and Vo(0) = 0;

(iv) @(x1,y,2) = (#1 = @o(y, 2), ¥, 2) + o for all (x1,y,2) € U.

Denote 7 = ¢~ !. We choose a small positive number ¢ so that there exist neighbor-
hoods V and V of xg, such that ¢(V) = B,,(0), »(VNQ) = B} (0), Y(V) = B (0),
YV NQ) = BJﬂ;l (0). For € > 0, we define

e (z) = €7¥n(z)u(@) =n(@)ue,  Ve(x) =¢€" E 21}(9:)1}(7’&(:)) = n(x)ve,
where 1 € C3°(V) is a positive cut-off function with 7 = 1 in V. In what follows,
we estimate each term in I (t@.,t0.). We have

[ Ve = [ (Va2 4+ Vu? + 29nVucu.) de

Q Q

Since
/nu€V77Vusdx:—/ |V77|2u§dmf/ VnnVususdzf/n(An)\us\zdz,
Q Q Q Q

we obtain

/|Vﬂ5|2dx:/ 172|Vu5|2d:£—/ n(An)|u5|2dx.
Q QNU QNU

By the change of the variable X = @ € BT, (0) and (2.4)), we obtain

ro/e

[ aanudde] < oe? / (X)) An(p( X)) [u?(X) dX
Qnu B/ . (0\B}, (0)

= 0(?)

and since Vyu(r) = 5’%qu(w(;))vmw(x), we deduce for X' = (Xa,..., Xn)
and V' = (9x,,...,0x,) that

/ n?|Vue|? dx
QU

g/ |Vu|2dX—2/ 7 (0(e X)) u(X)V'u(X)(V'g) (e X') dX
R

; .
[ P AITUXPIT o) X)X = I+ o+ Lo
B
ro/e
Using that

N
Vo (X7)[ = O(1X]),  po(X') = Zain +o(1)(IX"?)
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and (2.4), we have
I3 < 0/ (1+ X)) "H|eX)?dX = O(£?).
RN

Integrating by parts, we infer that

4
Ir = / L eEX)V n(e(X))ru(X) V' u(X)po(eX') dX
B
ro/e
2
- g/ P (e(EX)VO1u(X)V u(X)po(eX") dX
BTO/E
9 N
+ = / P e(EX)21u(X) Y diu(X)po(eX") X = Loy + Loz + L.
Bm/E =2
By (2.4),
I < Ce2 / (1+ X)) 72V X[2 dX < V.
By e (0\Bro (0)

In the same way, Io; = O(¢"V). By equation (2.6)),

N
a u®Lyh
y = Au— X)=-——2_ RY)——— — X).
;@zu(x) Au — dnu(X) a+[3uo"3’s( +)"}T(X)|S Onu(X)
Therefore,
2 a\ u®1yf
Iyg=-= 2(p(eX X)——pia.g.s(RY) ———0o(eX)dX (2.7
2 E/B:O/E”(@(e D) 22 o (BY) o X)X (217
2
2 [ PeEX)Ou) (X)X ) X = By B (29)
ro/e
Since u = Aw,
O() 2 81w(X)2*(s) ’
=== X))l (e X)) dX
1 c Bt n ((p(& )) |7T(X)‘S 500(5 ) )

ro/e

where Cy = %uaﬁ’s(Rf)AaBﬁ. Integrating by parts, we obtain

2n(p(eX))01n(p(eX))po(eX’)

F=Cy w2 ) ax
- ()P
2 /
~ Cos 1 (p(eX))po(eX) X1 o) g
e Jor T O
ro/e
= I + Fia.
. N2_N—-Ns+2
We may verify as above that Fi; = O(e™ ~-2 ).
Now, we estimate F5,. Integrating by parts, we deduce
1
o= [ Ol (eleX) ool eX ] (@r)? dX
B7'0/E
1
w2/ P (p(eX))goleX) @ru)v™ dSx
€ Bjo/em{xlzo}
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=2 [ el X (X ) 01 X
Bl /e
+§/B+ . n*(p(eX))po(eX)(O1u)? dSx

ro/e

= Fo1 + Fo.
It can be shown that Fa; = O(eV~1). Hence,
I = Fip + Foy + O(eN 7).
Since 7(p(¢X)) =1 in BE, we have

2(p(eX XX, o
Flg—f@ n (50(5 ))90(18_52 ) 1 9%(s) AX
e JBl,0Bh |7 (X)]
C()S (po(EX/)Xl 2% (s)
- — — dX = Jy + Jo.
e Joy, X" 1
‘We have
X)I13(1 X [)A-N)2"(s)
J1 SCE/ [XOP(+ | |12 dX
) /5\B+ ‘ﬂ—(X)|S
1 o'
SCE(/ mdx)(/ — iy de)
(B TO/E\B JNRN =k || 3 TO/E\B NR* |z 3
N(N-—s)
S Ce n~N—2

In the same way,
Jy = _%/ (SX/) w2 ) dx — COS / ‘pO(EX/)Xlw(X)T(s) ax
e Jry Im (X)\S+2 e Jrey\pr [m(X)[*F2
Po(eX") Xy

COS EX/) 2 ( )
= - dX + 0O
: MwﬂXWH +0("

2 2(3) N(N—s
ffsCosZaz/ XXLng(lJro( 1)) + 0™+

S)

*)

+2

N(N s)

__sml/ XX w(X)* )& 2

N_1 7 (X)[5+2 dXZai(l"'O( ) +O(e
N(N—s)

= —CoK1H(0)(1+0(1))e +O(e ~=2"),

where

N -
1 |X/|2X1w2 (s)
— i K= ——— dX.
N1 ]-S/N [m(X)]++2
=2 R+

Similarly,

Fyy = i/( n?(p(eX))po(eX") (1u(X))? dSx

B, e \B iy )N{X2=0}
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1
+ */ @0(6X’)(31U(X))2 dSx = L1 + Ls.
BT n{X,=0}

Also
C |2 / i
Ly <— [(01u)(0, X")[[po(eX")| dX
€ J{<leX!|<ro}
< Cs/ X722 X7 = 0N,
0 <leX’|<ro}
Using that
/ po(eX") (Onu(X))2dSx = O(N),
RN-1\(BT, Nn{X1=0})
one finds

Ly = 0o(eX)(D1u(X))?dSX +O(eN 1)

N—-1

M | =

[
™

M= 55—

I|
N

ai/ [(D1)(0, X)EX2dX"(1 4 o(1)) + OV 1)
RN—l

K2

— Ko HO)(1 +o(1))e + 0N ),
where Ky = v [(Onu)(0, X")|?|X’|?> dX’. Consequently,
/ Vi |? do = / Va2 dX — (oK1 — Ka)H(0)(1 + o(1))e + O(2),
Q RY

and similarly,

/ |V, |? dox = / |V|?dX — (C1K1 — Ko)H(0)(1 + o(1))e + O(£?).
Q RY

where Cy = @ffﬁua’g’s(Rf)AaBﬁ.
Next, let X = @ We estimate

a2 vl 0290 a8 a 5
/ Uele 0> / U o / ugvy o / % ix
a |m(z)[® onv |m(z)]* ont [T(@)]s i, |TECEX) s

since n = 1 in QNV. We recall that x5 € P+ N9, then we may write 7(p(e X)) =
(ex1 + @o(ey,ez),ey,0) and

o = A0 (1 SR + )

N
o

Therefore,

1 1 ( _ sXapo(eX')  spp(eX’) )

K T REF T rXE 22X

L o(ZsnleX) | eeX) )

TEREF AR X 2 (X
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This and

ua’U’B N(N-—s)
dX =0 7~72)
/M\BEO [m(X)]°

enable us to show that

~a~0 a,,B 1\, o J6]
/ oL d:c:/ utv” s S X1p(eXNu*(X)v”(X) X + O(?)
Q B

~ £ s s+2
o ()] f |m(X)] e Ja, |7 (X))
uv? 5/ X1p(e X u*v?
= ———dX - - e dX +0(?).
/M [m(X)I° eJpy, Im(X)F?
2e
Moreover,

X N, B

_s 1@(;9 )Stizv IX

e Jm1, |7 (X))
— _5 paps Xl@(gX,)wz (=) dX
A oy, T RCOPT

2e

N 202" (5) .
= 5o apaen? [ KT x (1 o1)) + 0( R

i=2 RY | (X)[*+2
XX 2w N v
— Ny N|7|T(X)s+2dXZai(1+0( )+ 0@ v=).
Ry i=2
Hence,
ug'v 5 u®P ,
oo r@F ey o X KsHO) 1 + o) + O,
n

where Ky = sA°B7 [y %)H” dX = A*BPK,.

Finally, let X = d’(w) € B, (0). We estimate

ro/e
. (2=N)(p+1) x
/ Pl de = ¢ 7 / nQ(m)[u(L< ))]p+1 dx
Q QnuU €
= RN / wt dx
B+
ro/e
= MO [t gx 4 0T,
RN
Similarly,
N42 _ (N-2) N(p+1)
/vp+1dx—€2 2p/ VP AX 40" 2 ).
Q RY
Since ¢ < N 5 #—%>1. For t > 0, we have

I\ (tue, to.)

t? 2127 (5) ) u®vP
=— Vul? dX Vol2dX ) — / dX
2(/]@' u +/M' vRAX) = S o OO
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H(0 4 X
+ %[(2.[{2 — C()Kl — ClKl)t2 + 2*(8) ()\Kg + 0(1))t2 (S)}t‘ + 0(52)
H(0
= fi(t) + ; )Efz(t) +0(e?),
where )
t2 N 20F
1) = Sitas (BRY) = T
It can be verified that
B = filto) = (2N T (L - 2 RY)TorE
Olgclglfl()—fl(o)—( ) (i—r@)ua,ﬁ,s( +) )
with tg = (%ua”@,s(Rf))W;*?. Since K7 > 0,
4\ (g
jgao):(255——6551——Cﬁkﬁﬁ§4—§;éskgt§“)
2\ 4\ *
= (2K, — A“BPRK )2 + —2 AoBAK, 42 )
T A TN
2\ Mo, B S(RN)
= 2Kot2 + ——A“BPK (FRE L )2,
2tO + 2*(8) 1( Y )tO

Hence, fo(tp) > 0 if A > 0 and small.
Since H(0) < 0, by choosing T large enough, we have I\ (T, Tv:) < 0 fort > T
and € > 0 small. Let ug = T,, vg = T.. We obtain

max I (tuo, £00) < (20) T (= — — Yo 5.4 (RY)F02
0<t<1 ’ 2 2%(s)/l A
and
I\ (ug,vg) < 0.
This completes the proof of Lemma [2.1 O

3. EXISTENCE OF POSITIVE SOLUTION IN )

Now we will use the blow up argument to prove (iii) of Theorem [1.1} For any
¢ > 0, by the mountain pass theorem, we have a positive solution pair (u.,ve) of
the subcritical system

20\ a—1,8—¢
—Au, = ° - uf™¢, in Q
a+p-c @P
26\ wuf1-e
SN CU L S Y (3.1)
atpf—c [n(z)
us > 0,v. >0, in €,
ue = ve =0, on 9.

Using Lemma we see that the mountain pass level c. of (3.1]) satisfies

)

. -2 1 1 R M)
Ce = I§(ue,ve) < (2A) T2 (5 — o—— ) o S(RJF)Q*(S)*2 (3.2)
2 2%(s) o
if 0 < A< A*, where
1 1 2\ ulvP—e
Is ey Veg) = 7v£2 7v62_ == d
(verve) = [ (GIVu + 5Voe = 2Ty o
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1 1
T T

It can be easily shown that both [uc| g1 (o) and [|ve[| g1 () are uniformly bounded
for € > 0 small. Thus, there is a subsequence {(u;, v;)} of {(ue,ve)} such that

uj —u, v;—wv, in H(Q),
uj —wu, v; —wv, inLPTHQ), (3.3)
wj —u, wvj—wv, inL?®(Q |r(x)| *dz),
with u,v > 0 and (u, v) is a solution of system (1.1)). If (u,v) is a nontrivial solution,
by the strong maximum principle, u,v > 0, then we are done.

Now, we prove (u,v) is nontrivial. This will be shown by the blowing up argu-
ment. Suppose on the contrary that u = v = 0 in . By the regularity result, see
for instance [12, Proposition 3.2], u.,v. € C1(Q2). Let x;,y; € Q be such that

M; = uj(z;) = maxu;(z),  Nj = v;(y;) = maxv;(z). (3.4)

Then, we have either m; — oo or n; — oo as j — oo. Indeed, on the contrary
we would have m; < C and n; < C for a positive constant C. By the Sobolev
embedding,

P

/UJUj d <c/ Y g0
—— AT & X —
o |m(x)l® q |m(z)[*

as j — oo. This implies

e
uavﬁ 7

V| + |V, 2 dm:Q/ #dx—)\/u“l_ejdx—)\/vp+1_ejdm—>0;
/Qu 2+ V) [ K K

that is, u; — 0, v; — 0 strongly in Hg (). It yields
1
0= lim - / (IVu;)? +|Vo;[2)de = ¢ > 0
j—oo 2 9]

a contradiction.
Suppose N; < M; — oo. Denote
’EL](,I) = Mj_luj(ka —+ Ij), 17](93) = Mj_l’l)j(kjlli —+ l‘j), for xz € Qj,
72*(5)72753-
where k; = M;  *°  and Q; = {z € RN | z; + kjz € Q}. Obviously, (ij,9;)
satisfies

~a—1~B—¢;
2a\ ki s U; Vs s p—es .
—Au; = a (—*) L —kJQ-M]P ! EJu? Y in Q,
atf=e M@l (g + meye)l
~a~B—1—¢;
—Aﬁ o 2(6 - 5]))\( kj )s Uj Uj ’ . kszflfsjﬁp*Ej in Q
i = oy - 1 j ) 79
at+ B e Im@)l |m(miy + mgo)ls 7 ’

Ogﬁj,@jgl, in Qj,

’l]j = 17]' = 0, on 6QJ

Since M; — o0, kj — 0 as j — oo. Furthermore, we have

(2=5)(p—c;—1)

¥ (s)-2—¢;

23 p—l-g; _
ijj =k,

7 —0 asj— o0
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as the facts that k; —>Oand2—(2‘z)s()p7;’€)>0 ie, p< HE2.

We will show that M; = O(1)N;. First, we claim that |7 (z;)| = O(k;) as j — oo.
\W(Ij)l _
j
Because (1, ;) is uniformly bounded in C’loC7 we may assume that @; — u,v; —
vin CP .. Suppose now x; — xg € Q. There are two cases:

Suppose on the contrary that limsup;_, 00.

(i) onQorxoeaQandw

(i) zo € 0N and %:,39) — o >0.

— oo; and

In the case (i), we have Q; — RY as j — oo and (u,v) satisfies

Au=0, Av=0 inR"Y,
0<u,v<1, wu(0)=1

Furthermore,

which yields

2N 2N
/ uN-2 dy < o0, / vN=2 dy < 00.
RN RN

However, by the Liouville theorem, u = v = 1 for € RY. This is a contradiction.

In case (i), after an orthogonal transformation, we have Q; — RY = {z =
(z1,...,zn) | 1 > 0} as j — oo and @, , ¥; converge to some u, v uniformly
in every compact subset of RY. Now, u(0) = 1 and 0 < v(0) < 1. Hence, (u,v)
satisfies

Au=0, Av=0 inRY,
0<u,v<1 ian,

u=v=20 onaRf.

By the boundary condition and the maximum principle, u = v = 0 for = € Rf

which violate to u(0) = 1. Consequently, limsup;_, lﬂ(kﬂ < oo. Since k; — 0,
J

we have m(z;) — 0 as j — oo.

Next, we show that liminf; ., w > 0. Were it not the case, we would have,
J

up to a subsequence, that lim;_, % = 0. Then (a;, ;) satisfies

~a—1~B—¢;
20\ ad ol e e,
Ay = — = — KM iy,
a+p 6]‘4 + 7(z)]®
~aq~B—1—¢;
2(8—¢j)N  ujv; e,
gy = 20— =X WYy — KM in (3.6)

a—{—ﬂ—g ‘ﬂ(£7)+71'( )Is J
0<a;,v; <1, in £y,

u; =0; =0, on 0§y,
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Up to a rotation, we have Q; — RY and @;, 9; converge to some u, v uniformly in
compact subsets of ]Rf respectively, where (u,v) satisfies

2a\ u*tof 20\ u*P-t

= , —Av= —_—

a+ 3 |x(z)® a+f |r(x)*

0<u,v<1 ian u=v=0 on@RN.

. mN
in R,

The boundary condition violates to u(0) = 1. Hence, liminf;_, M > 0.

Now, we complete the proof of Theorem [1.1] - by showing that problem ) has
a nontrivial solution.

First, we remark that dist(z;,00Q) = O(k;). Indeed, since P N Q = 0, we have
z; — m(x;) € P C RV \ Q. Because z; € Q, there exists t; € (0,1) such that
tiz; + (1 —t;)(x; —m(z;)) € 0Q. Therefore,

d(z,0Q) < |oj — (tiz; + (1 —t;)(z; —m(z;))) = (1 —tj)|m(z;)| < [7(z;)] = O(k;).

dist(x;,00)
kj

Hence, we may assume — o > 0. By an affine transformation, we

find (@;,7;) converges to (u,v) uniformly in any compact subset of RY and (u,v)
satisfies - 5
20\ u®” 26\ -
y o 20A U v, “Ap— BA uv ian,
a+ B |n(z)® a+f |n(z)]*
u,v >0 ian; u=v=0 onﬁRf
with u(0,...,0) = 1. By the definition of p, g s(£2), we have
Jo(IVE;* + |V5;]%) da
:uOtﬁ,S(Qj) < uj%)/s 4 )
]
(fn EE dz) @

(3.7)

and then

Ha,B,s (RN) >

fRﬁ(|vu|2 +[Vol?) dy B 2)\(/ u®oP dl’) 2*2(:()372 )
U g e )
n ™

that is,

/ (|Vu|2+|Vv|2)da::2)\/ s @A 1 5 (RY) T2, (3.8)
RY y
Furthermore, noting that

(N=2)e;

lim | (|Vy,|? + |Vo;[?) de = hm k; ST / (Vi |? + |V;]?) da
Jj— Jo y
> lim [ (|Va;]* + |Vo,°) do (3.9)

J— Q;

> [ (7l + Vo) do
we derive from (3.2 . . ) that

1 1
=G hm/ (1Y, 2 + [V |?) de
2% (s)

2 2%(s)
11 N
)2 T i ,4(RY) 77,

2G5




EJDE-2013/109 EXISTENCE OF SOLUTIONS 15

which yields a contradiction to . Thus, (u,v) is a nontrivial solution of
if N; < M.

Now we show M; = O(N;). Indeed, since u is nontrivial, so is v. Otherwise, we
would have

Au=0 inRY,
0<u<1u0,..,0)=1 inRY,
u=~0 onaRf.

By the strong maximum principle, u would be a constant because it attains its
maximum value inside Rf . This yields a contradiction between u(0,...,0) = 1
and the boundary condition. Therefore, there exists yo € RY such that v(yo) # 0.
Hence,

¥;(y0) = mj 'vj (5 + kjyo) — v(yo) > 0
implying

1>—=>

n; vi(x; + k;j
J i (x5 + ]yO)Zv(yo)—€>0
my; mj
for ¢ > 0 small and j large, namely, N; = O(1)M; as j — oo. Replacing M;
by N; in above blow up process, we may also derive a contradiction if we assume
u = v = 0. Consequently, (1.1) has a positive nontrivial solution. The proof of

Theorem is complete.
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