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ATTRACTORS FOR STOCHASTIC STRONGLY DAMPED
PLATE EQUATIONS WITH ADDITIVE NOISE

WENJUN MA, QIAOZHEN MA

Abstract. We study the asymptotic behavior of stochastic plate equations
with homogeneous Neumann boundary conditions. We show the existence of

an attractor for the random dynamical system associated with the equation.

1. Introduction

Let Ω be a bounded open set of Rn (n = 5) with a smooth boundary ∂Ω. We
consider the stochastic strongly damped plate equation with additive noise,

dut + du+ (f(u) + ∆2u+ ∆2ut)dt = gdt+
m∑
j=1

hjdWj ,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

u|∂Ω =
∂u

∂n
|∂Ω = 0, t > 0,

(1.1)

for (x, t) ∈ Ω × [0,+∞), where u0 ∈ H2
0 (Ω) and u1 ∈ L2(Ω). Here u = u(x, t)

is a real valued function on Ω × [0,+∞), g ∈ H2
0 (Ω) is a given external force.

The nonlinear term f is a C1-function with f(0) = 0, that satisfies the following
conditions:

lim inf
|s|→∞

f(s)
s

> −λ2
1, ∀s ∈ R, (1.2)

|f ′(s)| 6 C(1 + |s|8), ∀s ∈ R, (1.3)

f(s+$) = f(s), ∀s ∈ R, $ > 0, (1.4)

where λ1 is the first eigenvalue of ∆2 on H2
0 (Ω) and C is a positive constant. hj ∈

H4(Ω) ∩H2
0 (Ω) with ∂hj

∂n = 0 on ∂Ω, j = 1, . . . ,m, and {Wj}mj=1 are independent
two-sided real-valued Wiener processes on a probability space (Θ,F ,P), where

Θ = {ω = (ω1, ω2, . . . , ωm) ∈ C(R,Rm) : ω(0) = 0}
is endowed with compact open topology, P is the corresponding Wiener measure,
and F is the P-completion of Borel σ-algebra on Θ.
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We identify ω with (W1,W2, . . . ,Wm), as ω(t) = (W1(t),W2(t), . . . ,Wm(t)) for
t ∈ R. Define

θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Θ.
A random attractor of a random dynamical system is a measurable and compact

invariant random set attracting all the orbits. When such an attracting set exists,
it is the smallest attracting compact set and the largest invariant set [4]. This
seems to be a good generalization of the now classical concept of a global attractor
for deterministic dynamical systems [1]. The notion of a random attractor is very
useful for many infinite-dimensional random dynamical systems (RDS), see [4, 5].

Many authors have studied the existence of a random attractor for an RDS. For
instance, Crauel and Flandoli in [5] introduced the notion of a random attractor and
obtained a general theorem on the existence of a random attractor for the RDS.
Their theorem has been successfully applied to the stochastic reaction-diffusion
equations and the stochastic Navier-Stokes equations. In [4] they generalized the
notion of a random attractor for the stochastic dynamical system introduced pre-
viously and considered the stochastic nonlinear wave equations. The asymptotic
behavior of solutions for stochastic wave equation has been studied by several au-
thors (see [3, 6, 7, 10, 14]). The existence of global attractor for plate equation
was studied in [8, 16]. And in [13], the author have investigated the existence of
uniform attractor about the non-autonomous case. Recently, Yang and Kloeden
in [15] studied the existence of a random attractor for a class of stochastic semi-
linear degenerate parabolic equations. But there were no results on the random
attractor for the stochastic strongly damped plate equation with additive noise. It
is therefore necessary to investigate this problem. In this article, we consider the
asymptotic dynamics of the stochastic plate equation with homogeneous Neumann
boundary condition.

This article is organized as follows. In section 2, we recall some basic concepts
and properties for general random dynamical systems. In section 3, we first provide
some basic settings about (1.1) and show that it generates a random dynamical
system in proper function space, and then we prove the existence of a unique
random attractor of the random dynamical system.

2. Random dynamical systems

In this section, we recall some basic knowledge about general random dynamical
systems (see [1] for details).

Let (X, ‖ · ‖X) be a separable Hilbert space with Borel σ-algebra B(X) and let
(Θ,F ,P, (θt)t∈R) be a metric dynamical system.

Definition 2.1. Let (Θ,F ,P, (θt)t∈R) be a metric dynamical system. Suppose
that the mapping φ : R+×Ω×X → X is (B(R+)×F ×B(X),B(X))-measurable
and satisfies the following two properties:

(1) φ(0, ω)x = x, and
(2) φ(s, θtω) ◦ φ(t, ω)x = φ(s+ t, ω)x

for all s, t ∈ R+, x ∈ X and ω ∈ Θ. Then φ is called a random dynamical system
(RDS). Moreover, φ is called a continuous RDS if φ is continuous with respect to
x for t > 0 and ω ∈ Θ.

To study the asymptotic behavior of the RDS determined by (1.1), we first need
to recall some definitions and properties.
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A set-valued mapping B : Θ → 2X is called a random closed set if B(ω) is
closed, nonempty, and ω 7→ d(x,B(ω)) is measurable for all x ∈ X for each ω ∈ Θ.
A random set B := {B(ω)}ω∈Θ is said to tempered if

lim
t→∞

e−ηt diam(B(θ−tω)) = 0

for a.e. ω ∈ Θ and all η > 0, where diam(B) := supx,y∈B d(x, y).
Let D be the collection of all tempered random sets in X. We will only deal

with the system D of tempered random sets in this article.

Definition 2.2. A random set A := {A(ω)}ω∈Θ ∈ X is called a D-random attrac-
tor for an RDS φ if

(1) A is a random compact set, i.e. A(ω) is nonempty and compact for a.e.
ω ∈ Θ and ω 7→ d(x,A(ω)) is measurable for every x ∈ X;

(2) A is φ-invariant, i.e. φ(t, ω,A(ω)) = A(θtω), for all T > 0 and a.e. ω ∈ Θ;
(3) A attracts all tempered random sets B ∈ D in the sense that

lim
t→∞

dist(φ(t, θ−tω,B(θ−tω)), A(ω)) = 0, a.e. ω ∈ Θ.

Theorem 2.3. Let φ be a continuous random dynamical system over dynami-
cal system (Ω,F ,P, (θt)t∈R). Suppose that there exists a D-random absorbing set
{B(ω)}ω∈Ω which absorbs every tempered random set D ∈ D . Then,
φ has a unique D-random attractor A = {A(ω)}ω∈Ω, which is unique in the class
of tempered random sets with

A(ω) = ∩τ>0∪t>τφ(t, θ−tω,B(θ−tω)), ω ∈ Ω.

3. Attractor for the strongly damped plate equation

3.1. Basic settings. In this subsection, we give some basic settings about (1.1)
and show that it generates a random dynamical system.

Let A = ∆2, then D(A) = {u ∈ H4(Ω) ∩ H2
0 (Ω) : ∂u

∂n |∂Ω = 0}. Clearly, A is a
self-adjoint, positive linear operator with the eigenvalues {λi}i∈N:

0 = λ0 < λ1 6 λ2 6 · · · 6 λi 6 . . . , λi → +∞ (i→ +∞).

Let E = H2
0 (Ω)×L2(Ω), which is a separable Hilbert space endowed with the usual

norm
‖Y ‖H2

0×L2 = (‖∆u‖2 + ‖v‖2)1/2 for Y = (u, v)>, (3.1)

where ‖ · ‖ denotes the usual norm in L2(Ω) and > stands for the transposition.
For our purpose, it is convenient to convert the problem (1.1) into a determin-

istic system with a random parameter, and then show that it generates a random
dynamical system. Consider Ornstein-Uhlenbeck equations

dzj + zjdt = dWj(t), j = {1, 2, . . . ,m}, (3.2)

and Ornstein-Uhlenbeck processes

zj(θtωj) = −
∫ 0

−∞
es(θtωj)(s)ds, t ∈ R.

From [2], it is known that the random variable |zj(ωj)| is tempered, and there is a
θt-invariant set Θ̃ ⊂ Θ of full P measure such that t 7→ zj(θtωj) is continuous in t



4 W. MA, Q. MA EJDE-2013/111

for every ω ∈ Θ and j = 1, 2, . . . ,m. Put

z(θtω) = z(x, θtω) =
m∑
j=1

hjzj(θtωj), (3.3)

which is a solution to

dz + zdt =
m∑
j=1

hjdWj .

Lemma 3.1 ([11]). For any ε > 0, there exist tempered random variable r, r(l) :
Θ 7→ R+, l = 1

2 , 1, such that for all t ∈ R, ω ∈ Θ,

‖z(θtω)‖ 6 eε|t|r(ω), e−ε|t|r(ω) 6 r(θtω) 6 eε|t|r(ω),

‖A(l)z(θtω)‖ 6 eε|t|r(l)(ω), e−ε|t|r(l)(ω) 6 r(l)(θtω) 6 eε|t|r(l)(ω),

where r(l)(ω) =
∑m
j=1 rj(ωj)‖A(l)hj‖.

It is convenient to reduce (1.1) to a evolution equation of first order in time

u̇ = v,

v̇ = −Av −Au− v − f(u) + g +
m∑
j=1

hjẆj ,

u(x, 0) = u0(x), v(x, 0) = u1(x), x ∈ Ω,

(3.4)

Let

Y =
(
u
v

)
, M =

(
0 I
−A −A− I

)
,

F (t, ω, Y ) =
(

0
−f(u) + g +

∑m
j=1 hjẆj

)
.

Then problem (3.4) has the simple matrix form

Ẏ = MY + F (t, ω, Y ). (3.5)

Let ψ1 = u, ψ2 = v − z(θtω), then (3.4) can be rewritten as the equivalent system,
in E,

ψ̇1 = ψ2 + z(θtω),

ψ̇2 = −Aψ1 −Aψ2 − ψ2 − f(ψ1) + g −Az(θtω),

ψ1(x, 0) = u0(x), ψ2(x, 0) = u1(x)− z(ω), x ∈ Ω,

(3.6)

which has the vector form

ψ̇ = Mψ + F (θtω, ψ), (3.7)

where

ψ =
(
ψ1

ψ2

)
, F (θtω, ψ) =

(
z(θtω)

−f(ψ1) + g −Az(θtω)

)
(3.8)

We will consider (3.5) or (3.7) for ω ∈ Θ̃ and write Θ̃ as Θ from now on. From
[9], M is an unbounded closed operator on E with domain D(M),

D(M) = {(u, v)> : u, v ∈ H2
0 (Ω), u+ v ∈ D(A)}. (3.9)
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Moreover, the spectral set of M consists of only following points

µ±i =
−(λi + 1)±

√
(λi + 1)2 − 4λi
2

, i = 0, 1, 2, . . . (3.10)

and M generates a C0-semigroup of bounded linear operators {eMt}t>0 on E.
Let F

ω
(t, ψ) := F (θtω, ψ), it is easy to verify that F

ω
(·, ·) : [0,+∞) × E → E

is continuous in t and globally Lipschitz continuous in ψ for each ω ∈ Θ. By the
classical semigroup theory on the existence and uniqueness of the solutions [12], we
have the following theorem.

Theorem 3.2. Consider (3.7). For each ω ∈ Θ and each ψ0 ∈ E, there ex-
ists a unique function ψ(·, ω, ψ0) ∈ C([0,+∞);E) such that ψ(0, ω, ψ0) = ψ0 and
ψ(t, ω, ψ0) satisfies the integral equation

ψ(t, ω, ψ0) = eMtψ0 +
∫ t

0

eM(t−s)F (θsω, ψ(s, ω, ψ0))ds, (3.11)

ψ(t, ω, ψ0) is jointly continuous in t, ψ0, and is measurable in ω. Furthermore, if
ψ0 ∈ D(M), there exists ψ(·, ω, ψ0) ∈ C([0,+∞);D(M)) ∩ C1([0,+∞);E), which
satisfies (3.7). Hence the solution mapping

S(t, ω) : ψ0 7→ ψ(t, ω, ψ0) (3.12)

generates a random dynamical system.

Define a mapping S(t, ω) by

S(t, ω) : Y0 = ψ0 + (0, z(ω))> 7→ Y (t, ω, Y0) = ψ(t, ω, ψ0) + (0, z(θtω))>, (3.13)

where Y0 = (u0, u1)> and ψ0 = (u0, u1 − z(ω))>. Then S(t, ω) is a continuous
random dynamical system associated with the problem (3.5) or (1.1) on E. S(t, ω)
has the following relation with S̄(t, ω)

S(t, ω) = R(θtω)S(t, ω)R−1(θtω), (3.14)

where R(θtω) : (a, b)> 7→ (a, b− z(θtω))> is a homeomorphism of E.
We will also use the transformation

ϕ1 = u = ψ1, ϕ2 = v + εu− z(θtω),

where ε is a given positive number. Then the (3.7) can be rewritten as

ϕ̇ = Mεϕ+ F ε(θtω, ϕ), ϕ0(x, 0) = (u0(x), u1(x) + εu0(x)− z(ω)), (3.15)

where

ϕ =
(
ϕ1

ϕ2

)
, Mε =

(
−εI I

ε(1− ε)I + εA−A (ε− 1)I −A

)
, (3.16)

F ε(θtω, ϕ) =
(

z(θtω)
−f(ϕ1) + g + εz(θtω)−Az(θtω)

)
. (3.17)

Then the mapping

S̄ε(t, ω) = TεS(t, ω)T−ε : ϕ0 7→ ϕ(t, ω, ϕ0), (3.18)

generates a random dynamical system associated with (3.15), where ϕ0 = (u0, u1 +
εu0 − z(ω))>, and Tε : (a, b)> 7→ (a, b+ εa)> is a isomorphism of E.

Notice that all the above random dynamical systems S(t, ω), S(t, ω), Sε(t, ω) are
equivalent. Hence, we only need to consider the random dynamical system S(t, ω).



6 W. MA, Q. MA EJDE-2013/111

Let p0 = ($, 0)> = $η0 ∈ E1, then Mp0 = 0. Thus, by the periodicity of
function f , the random dynamical system S(t, ω) is p0-translation invariant in the
sense that

ψ(t, ω, ψ0 + p0) = ψ(t, ω, ψ0) + p0, t > 0, ω ∈ Θ, ψ0 ∈ E, (3.19)

which implies that the average of the first component of ψ(t, ω, ψ0 + p0) will be
unbounded in E1 (corresponding to the direction of η0 with respect to 0 eigen-
value), hence S(t, ω) is unbounded in the direction of η0 in E1, which means that
it is impossible to obtain a bounded attractor for S(t, ω) as usual. So we need
to introduce a random dynamical system Φ(t, ω) defined on cylinder induced from
S(t, ω) according to p0-translation invariance of S̄(t, ω). To this end, we introduce
some space and notation.

For any u ∈ L2(Ω), define the spatial average of u as

u =
1
|Ω|

∫
Ω

u(x)dx. (3.20)

Let

L̇2(Ω) = {u ∈ L2(Ω) : ū = 0}, Ḣ2
0 (Ω) = H2

0 (Ω) ∩ L̇2(Ω), E22 = Ḣ2
0 (Ω)× L̇2(Ω)

By (3.10), M has two real eigenvalues 0 and -1 with eigenvectors η0 = (1, 0)> and
η−1 = (1,−1)>. Let

E1 = span{η0}, E−1 = span{η−1}, E11 = E1 ⊕ E−1 = R2, E2 = E−1 ⊕ E22.

Then
E = E11 ⊕ E22 = R2 ⊕ E22 = E1 ⊕ E−1 ⊕ E22 = E1 ⊕ E2, (3.21)

and E1 is positive invariant under M .
Let T1 = E1/p0Z and E = T1 ⊕ E2 = T1 ⊕ E−1 ⊕ E22 = T1 × E−1 × E22. For

Ψ0 := ψ0(modp0) = Ψ0 + p0Z ⊂ E denotes the equivalence class of Ψ0, which is an
element of E. And the norm on E is denoted by

‖Ψ0‖E = inf
y∈p0Z

‖ψ0 + y‖E .

Note that, ψ(t, ω, ψ0 + kp0) = ψ(t, ω, ψ0) + kp0, for all k ∈ Z for t > 0, ω ∈ Θ and
ψ0 ∈ E. With this, we define

Φ(t, ω) : Ψ0 7→ Ψ(t, ω,Ψ0) = ψ(t, ω, ψ0)(modp0). (3.22)

It is easy to see that Φ(t, ω) is a random dynamical system on E.
Similarly, the random dynamical system S(t, ω) also induces a random dynamical

system Φ(t, ω) on E defined by

Φ(t, ω) : Y0 7→ Y(t, ω,Y0) = Ψ(t, ω,Ψ0) + Z(θtω)(modp0), (3.23)

where Y0 = Y0(modp0),Z(θtω) = (0, Z(θtω))> and Ψ0 = Y0 − Z(ω)(modp0).
We introduce a new norm which is equivalent to the usual norm ‖ · ‖H2

0×L2 on
E in (3.1). For Yi = (ui, vi)> ∈ E11, i = 1, 2, let

〈Y1, Y2〉E11

=
1
4
〈u1, u2〉+ 〈1

2
u1 + v1,

1
2
u2 + v2〉,

(3.24)

where 〈·, ·〉 denotes the inner product on L2(Ω), and for Yi = (ui, vi)> ∈ E22, i =
1, 2, let

〈Y1, Y2〉E22 = µ〈A1/2u1, A
1/2u2〉+ 〈v1, v2〉, (3.25)
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where A1/2 = ∆ and µ is chosen such that µ = 1− ε ∈ ( 1
2 , 1) in which ε ∈ (0, 1) is

a small positive number. By the generalized Poincaré inequality

‖A1/2u‖2 > λ1/2
1 ‖u‖2, ∀u ∈ Ḣ2

0 (Ω),

Expression (3.25) is then positive definite. A bilinear form on E can be induced
from (3.24) and (3.25),

〈X,Y 〉E = 〈X,Y 〉E11 + 〈X −X,Y − Y 〉E22 , (3.26)

whereX = X+X−X ∈ E, Y = Y+Y−Y ∈ E, withX,Y ∈ E11 andX−X,Y−Y ∈
E22. It is easy to obtain the following fact.

Lemma 3.3. Expressions (3.24) and (3.25) define inner products on E11 and E22,
respectively. Meanwhile, (3.26) defines an inner products on E, and the correspond-
ing norm ‖ · ‖E is equivalent to the usual norm ‖ · ‖H2

0×L2 in (3.1).

Under the inner product 〈·, ·〉E , E1⊥E−1, E11⊥E22, E1⊥E2. Denote by P,Q and
Q the projections from E into E1, E−1 and E22, respectively:

PY =
(
u+ v

0

)
∈ E1, QY =

(
−v
v

)
∈ E−1, QY = Y − Y =

(
u− u
v − v

)
∈ E22,

where Y = (u, v)> ∈ E. Sometimes we write Qu = u− u for u ∈ L2(Ω).

3.2. Random attractor. First we consider the boundedness of the component
Qψ of solution ψ of (3.7) in E−1. Taking the average of (3.6), by Green’s formula
and Neumann boundary condition (1.2), and take the second equation, we have

ψ̇2 = −ψ2 − f(ψ1) + g, ψ2(0) = u1 − z(ω), (3.27)

then
d

dt
|ψ2(t, ω)|2 6 −|ψ2(0, ω)|2 + (c1 + |g|)2, t > 0, (3.28)

thus,

|ψ2(t, ω)|2 6 |ψ2(0, ω)|2e−t + (c1 + |ḡ|)2 = |u1 − z(ω)|2e−t + (c1 + |g|)2, t > 0.

So if |u1 − z(ω)| is tempered, then there exists t0 > 0 such that

|ψ2(t, ω)| 6 2(c1 + |g|), t > t0. (3.29)

This show the uniformly boundedness of Qψ = (−ψ2, ψ2) of solution of (3.7) in
one-dimensional subspace E−1 of R2, which implies that Qψ possesses a compact
absorbing set {B−1(ω)} in E−1.

Next we prove that Qψ of solution ψ of (3.7) possesses a compact attracting set
in E22.

Lemma 3.4. There exists a small positive constant 0 < σ < ε such that

〈MεQY,QY 〉E 6 −σ‖QY ‖2E −
1
2
‖A1/2Qv‖2 − 1

2
‖Qv‖2 (3.30)

for Y = (u, v)> ∈ E, and

〈MεQY,AQY 〉E 6 −σ‖A1/2QY ‖2E −
1
2
‖AQv‖2 − 1

2
‖A1/2Qv‖2forY

= (u, v)> ∈ D(M) ∩ E.
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The proof of the above lemma is similar to that of [17, Lemma 1], and it is
omitted.

Lemma 3.5. Assume that (1.2)–(1.4) and g ∈ H2
0 (Ω) hold. Then there exists a

random ball {B0(ω)} ∈ D centered at 0 with random radius %(ω) > 0 such that for
any {B̂(ω)} ∈ D , there is a T bB(ω, %) > 0 such that for any ϕ0(θ−tω) ∈ B̂(θ−tω)
satisfies for a.e. ω ∈ Θ,

‖Qϕ(t, θ−tω, ϕ0(θ−tω))‖E 6 %(ω) ∀t > T bB(ω, %). (3.31)

Proof. By (3.15) and QMε = MεQ, we have

Qϕ̇ = MεQϕ+QF ε(θtω, ϕ), (3.32)

where

QF ε(θtω, ϕ) =
(

Qz(θtω)
Q[−f(u) + g + εz(θtω)−Az(θtω)]

)
. (3.33)

Taking the inner product 〈·, ·〉E of (3.32) with Qϕ ∈ E22, we note that

µ〈A1/2Qz(θtω), A1/2Qϕ1〉 6 µ‖A1/2z(θtω)‖ · ‖A1/2Qϕ1‖

6
µ

2σ
‖A1/2z(θtω)‖2 +

σµ

2
‖A1/2Qϕ1‖2,

〈−(f(u)− f(u)), Qϕ2〉 6 2C(ϕ1 + |ϕ1|9) · ‖Qϕ2‖ 6 (2C(ϕ1 + |ϕ1|9))2 +
1
4
‖Qϕ2‖2,

〈g − g,Qϕ2〉 6 ‖g − g‖ · ‖Qϕ2‖ 6 4‖g‖2 +
1
4
‖Qϕ2‖2,

〈ε(z(θtω)− z(θtω)), Qϕ2〉 6 ‖ε(z(θtω)− z(θtω))‖ · ‖Qϕ2‖

6
ε2

σ
‖z(θtω)‖2 +

σ

2
‖Qϕ2‖2,

〈Az(θtω), Qϕ2〉 6 ‖A1/2z(θtω)‖ · ‖A1/2Qϕ2‖ 6
1
2
‖A1/2z(θtω)‖2 +

1
2
‖A1/2Qϕ2‖2,

〈MεQϕ,Qϕ〉E 6 −σ‖Qϕ‖2E −
1
2
‖A1/2Qϕ2‖2 −

1
2
‖Qϕ2‖2.

From the above inequalities, we have

d

dt
‖Qϕ‖2E + 2σ‖Qϕ‖2E 6 2R0(θtω), (3.34)

where

R0(θtω) =
µ+ σ

2σ
‖A1/2z(θtω)‖2+(2C(|ϕ1|+|ϕ1|9))2+4‖g‖2+

ε2

σ
‖z(θtω)‖2. (3.35)

Applying the Gronwall lemma, for all t > 0, we have

‖Qϕ(t, ω, ϕ0(ω))‖2E 6 e−2σt‖ϕ0(ω)‖2E + 2
∫ t

0

R0(θsω)e−2σ(t−s)ds. (3.36)

By replacing ω by θ−tω, we get from (3.36) that, for all t > 0,

‖Qϕ(t, θ−tω, ϕ0(θ−tω))‖2E 6 e−2σt‖ϕ0(θ−tω)‖2E + 2
∫ t

0

R0(θs−tω)e−2σ(t−s)ds

= e−2σt‖ϕ0(θ−tω)‖2E + 2
∫ 0

−t
R0(θτω)e2στdτ.
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By Lemma 3.1 with ε = σ
4 , we have that∫ 0

−t
R0(θτω)e2στdτ 6

∫ 0

−t
R̃0(τ, ω)e2στdτ 6

∫ 0

−∞
R̃0(τ, ω)e2στdτ < +∞, (3.37)

where

R̃0(τ, ω) =
µ+ σ

2σ
(e

σ
4 |τ |r(1/2)(ω))2 + (2C(|ϕ1|+ |ϕ1|9))2 + 4‖g‖2 +

ε2

σ
(e

σ
4 |τ |r(ω))2.

Note that {B̂(ω)} ∈ D is tempered, then for any ϕ0(θ−tω) ∈ B̂(θ−tω),

lim
t→+∞

e−2σt‖ϕ0(θ−tω)‖2E = 0.

Hence, there exists a T bB(ω, %) > 0 such that for any ϕ0(θ−tω) ∈ B̂(θ−tω) satisfies
for a.e. ω ∈ Θ,

‖Qϕ(t, θ−tω, ϕ0(θ−tω))‖E 6 %(ω)forallt > T bB(ω, %), (3.38)

where

%2(ω) = 2
∫ 0

−∞
R̃0(τ, ω)e2στdτ. (3.39)

So, the proof is complete. �

We now construct a random compact attracting set for RDS S̄ε(t, ω). For this
purpose, we split the solution ϕ of the system (3.7) with the initial value ϕ0 =
(u0, v0 + εu0 − z(ω))> into two parts ϕ = ϕa + ϕb = (ua, va + εua)> + (ub, vb +
εub − z(θtω))>, where ϕa solves

ϕ̇a = Mεϕ
a, ϕa0 = (u0, v0 + εu0)>, (3.40)

and ϕb solves
ϕ̇b = Mεϕ

b + F ε(θtω, ϕ), ϕb0 = (0,−z(ω))>. (3.41)

Lemma 3.6. Assume that (1.2)–(1.4) and g ∈ H2
0 (Ω) hold. Then there exists a

random variable %1(ω) > 0 such that for any {B̂(ω)} ∈ D and ϕ0(ω) ∈ B̂(ω), there
is a T bB(ω, %1) > 0 such that for any ϕ of the system (3.7) satisfies for a.e. ω ∈ Θ,

‖Qϕa(t, θ−tω, ϕa0(θ−tω))‖E 6 e−2σt‖ϕa0(θ−tω)‖E → 0, as t→ +∞, (3.42)

and
‖A1/2Qϕb(t, θ−tω, ϕb0(θ−tω))‖E 6 %1(ω), ∀t > T bB(ω, %1), (3.43)

where Qϕa and Qϕb satisfy (3.40) and (3.41).

Proof. By (3.40), we have
Qϕ̇a = MεQϕ

a. (3.44)
Take the inner product 〈·, ·〉E of (3.44) with Qϕa. By Lemma 3.5, we obtain

‖Qϕa(t, θ−tω, ϕa0(θ−tω))‖2E 6 e−2σt‖ϕa0(θ−tω)‖2E . (3.45)

Then, the first assertion is valid.
From (3.41), we have

Qϕ̇b = MεQϕ
b +QF̄ε(θtω, ϕb). (3.46)

Take the inner product 〈·, ·〉E of (3.46) with AQϕb. By Lemma 3.4, we have

〈MεQϕ
b, AQϕb〉E 6 −σ‖A1/2Qϕb‖2E −

1
2
‖AQϕb2‖2 −

1
2
‖A1/2Qϕb2‖2. (3.47)
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By the Cauchy-Schwarz inequality, we obtain

µ〈A1/2Qz(θtω), A1/2AQϕb1〉 6 µ‖AQz(θtω)‖ · ‖AQϕb1‖

6
µ

2σ
‖Az(θtω)‖2 +

σµ

2
‖AQϕb1‖2,

〈Qf(ϕb1), AQϕb2〉 6 ‖A1/2Qf(ϕb1)‖ · ‖A1/2Qϕb2‖ 6 ‖A1/2f(ϕb1)‖2 +
1
4
‖A1/2Qϕb2‖2,

〈Qg,AQϕb2〉 6 ‖A1/2g‖ · ‖A1/2Qϕb2‖ 6 ‖A1/2g‖2 +
1
4
‖A1/2Qϕb2‖2,

〈εQz(θtω), AQϕb2〉 6 ‖εA1/2Qz(θtω)‖ · ‖A1/2Qϕb2‖

6
ε2

2σ
‖A1/2z(θtω)‖2 +

σ

2
‖A1/2Qϕb2‖2,

〈QAz(θtω), AQϕb2〉 6 ‖QAz(θtω)‖ · ‖AQϕb2‖ 6 ‖Az(θtω)‖2 +
1
2
‖QAϕb2‖2.

From the above inequalities and (3.47), we have

d

dt
‖A1/2Qϕb‖2E + 2σ‖A1/2Qϕb‖2E 6 2R1(θtω), (3.48)

where

R1(θtω) =
µ+ 2σ

2σ
‖Az(θtω)‖2 + ‖A1/2f(ϕb1)‖2 + ‖A1/2g‖2 +

ε2

2σ
‖A1/2z(θtω)‖2.

By Gronwall’s lemma, for all t > 0,

‖A1/2Qϕb(t, ω, ϕb0(ω))‖2E

6 e−2σt‖A1/2ϕb0(ω)‖2E + 2
∫ t

0

R1(θsω)e−2σ(t−s)ds

= e−2σt‖A1/2z(ω)‖2E + 2
∫ t

0

R1(θsω)e−2σ(t−s)ds.

(3.49)

Replacing ω by θ−tω, in (3.49) we obtain that for all t > 0,

‖A1/2Qϕb(t, θ−tω, ϕb0(θ−tω))‖2E

6 e−2σt‖A1/2z(θ−tω)‖2 + 2
∫ t

0

R1(θs−tω)e−2σ(t−s)ds

= e−2σt‖A1/2z(θ−tω)‖2E + 2
∫ 0

−t
R1(θτω)e2στdτ.

(3.50)

By Lemma 3.1 with ε = σ
4 , we have

lim
t→+∞

e−2σt‖A1/2z(θ−tω)‖2 6 lim
t→+∞

e−2σt(e
σ
4 |τ |r(1/2)(ω))2 = 0,∫ 0

−t
R1(θτω)e2στdτ 6

∫ 0

−t
R̃1(τ, ω)e2στdτ 6

∫ 0

−∞
R̃1(τ, ω)e2στdτ < +∞,

where

R̃1(τ, ω) =
µ+ 2σ

2σ
(e

σ
4 |τ |r1(ω))2 + ‖A1/2f(ϕb1)‖2 + ‖A1/2g‖2 +

ε2

2σ
(e

σ
4 |τ |r(1/2)(ω))2.

Set

%2
1(ω) = 2

∫ 0

−∞
R̃1(τ, ω)e2στdτ, (3.51)
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Hence, there exists a T bB(ω, %) > 0 such that for any ϕ of the system (3.7) satisfies
for a.e. ω ∈ Θ,

‖A1/2Qϕb(t, θ−tω, ϕb0(θ−tω))‖E 6 %1(ω), ∀t > T bB(ω, %1), (3.52)

So, the second assertion is valid. �

Notice that

‖A1/2Qϕb(t, θ−tω, ϕb0(θ−tω))‖E =
∥∥∥(A1/2Qϕb1

A1/2Qϕb2

)∥∥∥
E
> c̃1

∥∥∥(A1/2Qϕb1
A1/2Qϕb2

)∥∥∥
H2

0×L2

= c̃1(‖AQϕb1‖2 + ‖A1/2Qϕb2‖2)1/2,

which along with (3.31), yields that for ϕ0(ω) ∈ B̂(ω) ∈ D ,

‖Qϕb(t, θ−tω, ϕ0(θ−tω))‖H4×H2
0
6 K0(%1(ω) + %(ω)), (3.53)

for all t > T bB(ω, %1) + T bB(ω, %) for a constant K0 > 0. Let {B1(ω)} be a closed
ball of E:

B1(ω) = {b(ω) ∈ E : ‖Qb(ω)‖H4×H2
0
6 K0(%1(ω) + %(ω))}. (3.54)

By (3.42), (3.53), and

Qϕ(t, θ−tω, ϕ0(θ−tω)) = Qϕa(t, θ−tω, ϕ0(θ−tω)) +Qϕb(t, θ−tω, ϕ0(θ−tω)), (3.55)

we have for a.e. ω ∈ Θ,

dE(ϕ(t, θ−tω,B0(θ−tω)), B1(ω))→ 0 as t→ +∞, (3.56)

this implies that for a.e. ω ∈ Θ,

dE(T−εϕ(t, θ−tω,B0(θ−tω)), T−εB1(ω))→ 0ast→ +∞, (3.57)

where QT−εB1(ω) ⊂ E22 is bounded in the norm of H4(Ω)×H2
0 (Ω) by (3.53) and

(3.54). By the compact embedding of Ẽ = H4(Ω) ×H2
0 (Ω) into E, {QT−εB1(ω)}

is compact in E22, which imply that ω 7→ B0(ω) := (B1(ω) + B−1(ω))(modp0) is
a tempered random compact attracting set for Φ(t, ω). Thus for Theorem 2.3, we
have the following result.

Theorem 3.7. Assume that (1.2)–(1.4) and g ∈ H2
0 (Ω) hold. Then the random

dynamical system Φ(t, ω) defined in (3.5) has a unique random attractor {A0(ω)}
in E, where

A0(ω) = ∩t>0∪τ>tΨ(τ, θ−τω,B0(θ−τω)), ω ∈ Ω,

in which {B0(ω)} is a tempered random compact attracting set for Φ(t, ω).
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