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BLOW-UP AND GENERAL DECAY OF SOLUTIONS FOR A
NONLINEAR VISCOELASTIC EQUATION

WENYING CHEN, YANGPING XIONG

Abstract. In this article we investigate a nonlinear viscoelastic equation that

admits blow-up and decay. First, we establish blow-up results for this equation,
even for vanishing initial energy. Then, we show that the solutions decay under

suitable conditions.

1. Introduction

In this article, we consider the viscoelastic equation

utt −∆u+
∫ t

0

g(t− τ)∆u(τ)dτ + ut = u|u|p−1, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω, p > 1,
and g is a positive nonincreasing function.

There have been extensive studies on some special cases of this equation and
the physical background is also given in these works; see [3, 4, 1, 9, 7, 8, 10, 5,
12, 2, 14] and references therein. For instance, the equation without ut is studied
in [3], the local existence theorem is established, and for certain initial data and
suitable conditions on g and p, that this solution is global with energy which decays
exponentially or polynomially depending on the rate of the decay of the relaxation
function g. In the absence of the viscoelastic term (g = 0), for instance, the equation

utt −∆u+ aut|ut|m = bu|u|γ , (x, t) ∈ Ω× (0,∞), (1.2)

we know that the source term bu|u|γ(γ > 0) causes finite-time blow-up of solutions
with negative initial energy when a = 0, cf. [1]. The interaction between the
damping and the source terms was first considered by Levine [7, 8] for the linear
damping case (m = 0). He showed that solutions with negative initial energy blow
up in finite time. Recently, In [14], it is proved that the solution blows up in finite
time even for vanishing initial energy. Another case with time dependent damping
b(t)ut is studied in [11]. Georgiev and Todorova [5] extended Levines result to the
nonlinear damping case (m > 0). In [4], it is showed that the solution blows up in
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finite time even for vanishing initial energy. We mention the work of Liu and Zhou
[9], the equation

utt −∆u = a−k|u|γ , (x, t) ∈ Rn × (0,∞), (1.3)

is studied, it is proved that the solutions blow up in finite time with more relaxed
initial data and extended index γ.

For the problem (1.1) in Rn, Mohammad Kafinia and Salim Messaoudib in [6]
give a finite-time blow-up result under suitable conditions on the initial data and
the relaxation function, this work extend the result of [13], established for the wave
equation, to the problem (1.1) in Rn. In this paper we improve the result of blow-up
in [6], and discuss the phenomenon of decay for the solution of equation (1.1). This
is an important breakthrough, since it is only well known that the solution blows
up in finite time if the initial energy is negative from all the previous literature.

Now, we list some notation that will be used in our paper. Use ‖ · ‖p to denote
the Lp(Rn) norm. Throughout this paper, C denotes a generic positive constant
(generally large), it may be different from line to line.

The remainder of the paper will be organized as follows. In the next section,
we review some preliminaries that will be used in the proof of our main theorems.
Then, the blow-up phenomenon will be considered in Section 3. In the last Section,
we discuss the decay of the solution to equation (1.1).

2. Preliminaries

In this section we review some preliminaries that will be used in the proof of our
main theorems. Throughout this paper,

n+ 2
[n− 2]+

=

{
∞, n = 1, 2,
n+2
n−2 , n ≥ 3.

The relaxation function g satisfies:
(H1) g : R+ → R+ is a differentiable function such that

g(0) > 0, 1−
∫ ∞

0

g(τ)dτ = l > 0, t ≥ 0.

(H2) There exists a positive differentiable function ξ(t) such that

g′(t) ≤ −ξ(t)g(t), t ≥ 0.

and ∣∣ξ′(t)
ξ(t)

∣∣ ≤ k, ξ(t) > 0, ξ′(t) ≤ 0, t > 0.

Remark 2.1. Since ξ is nonincreasing, then ξ(t) ≤ ξ(0) = M .

The embedding H1
0 (Ω) ↪→ Lq(Ω) for 2 ≤ q ≤ 2n

n−2 , if n ≥ 3 and q ≥ 2, if n = 1, 2;
Lr(Ω) ↪→ Lq(Ω) for q < r; that is to say, there exists a constant Ce, such that

‖u‖q ≤ Ce‖∇u‖2, ‖u‖q ≤ Ce‖u‖r. (2.1)

These two inequalities will be used frequently in this article.
We define the energy corresponding to problem (1.1) as

E(t) =
1
2
‖ut‖22 +

1
2

(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 +

1
2

(g ◦ ∇u)(t)− 1
p+ 1

‖u‖p+1
p+1, (2.2)
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here

(g ◦ v)(t) =
∫ t

0

g(t− τ)‖v(t)− v(τ)‖22dτ .

By a direct calculation we obtain

E′(t) =
1
2

(g′ ◦ ∇u)(t)− 1
2
g(t)‖∇u‖22 − ‖ut‖22 ≤

1
2

(g′ ◦ ∇u)(t) ≤ 0. (2.3)

Hence, we can deduce that E(t) ≤ E(0) for t ≥ 0.

Remark 2.2. The largest T for which the solution exists on [0, T ) × Rn is called
the lifespan of the solution of (1.1). The supremum of the T ’s is denoted by T ∗ .
If T ∗ =∞, we say the solution is global while T ∗ <∞ we say that solution blows
up in finite time.

Lemma 2.3. If p satisfies p < n+2
[n−2]+

, then there exists a positive constant C > 1,
such that

‖u‖sp+1 ≤ C
(
‖∇u‖22 + ‖u‖p+1

p+1

)
with 2 ≤ s ≤ p+ 1, (2.4)

for any u being a solution of (1.1) on [0, T ). Consequently,

‖u‖sp+1 ≤ C
(
H(t) + ‖ut‖22 + (g ◦ ∇u)(t) + ‖∇u‖22

)
with 2 ≤ s ≤ p+ 1, (2.5)

on [0, T ) and here H(t) := −E(t).

Proof. If ‖u‖p+1 ≤ 1, the estimate ‖u‖sp+1 ≤ ‖u‖2p+1 ≤ B2‖∇u‖22 is true.
If ‖u‖p+1 > 1, we have ‖u‖sp+1 ≤ ‖u‖

p+1
p+1. Combining the two inequalities we

obtain (2.4).
Note that (2.5) follows from (2.4) and the definition of energy corresponding to

the solution. �

3. Blow-up phenomenon

Theorem 3.1. Assume that (H1), (H2) hold, 1 < p < n+2
[n−2]+

,
∫∞

0
g(τ)dτ <

(p+1)(p−1)
1+(p+1)(p−1) and E(0) < 0. Then the solution blows up in finite time.

Proof. From the definition of H(t), we have

H ′(t) = −1
2

(g′ ◦ ∇u)(t) +
1
2
g(t)‖∇u‖22 + ‖ut‖22 ≥ 0,

and

0 < H(0) ≤ H(t) ≤ 1
p+ 1

‖u‖p+1
p+1.

Moreover, we define

L(t) = H1−α(t) + ε

∫
Ω

uut dx,

here ε small to be chosen later, 0 < α ≤ p−1
2(p+1) .
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By differentiating the above equality, we have

L′(t) = (1− α)H−α(t)H ′(t) + ε

∫
Ω

|ut|2dx+ ε

∫
Ω

uuttdx

= (1− α)H−α(t)
(
− 1

2
(g′ ◦ ∇u)(t) +

1
2
g(t)‖∇u‖22 + ‖ut‖22

)
+ ε‖ut‖22 − ε‖∇u‖22 + ε

∫
Ω

∇u(t)
∫ t

0

g(t− τ)∇u(τ) dτ dx

− ε
∫

Ω

uutdx+ ε‖u‖p+1
p+1.

(3.1)

Using Young and Schwarz inequality, we obtain∫
Ω

∇u(t)
∫ t

0

g(t− τ)∇u(τ) dτ dx

≥ −δ‖∇u‖22 −
1
4δ

(∫ t

0

g(τ)dτ
)

(g ◦ ∇u)(t) +
(∫ t

0

g(τ)dτ
)
‖∇u‖22 ,

(3.2)

∫
Ω

uutdx ≤
δ2

2
‖u‖22 +

δ−2

2
‖ut‖22 (3.3)

Inserting (3.2) and (3.3) into (3.1), we deduce

L′(t) ≥ (1− α)H−α(t)
(
− 1

2
(g′ ◦ ∇u)(t) +

1
2
g(t)‖∇u‖22 + ‖ut‖22

)
+ ε‖ut‖22

+
(
− 1− δ +

∫ t

0

g(τ)dτ
)
ε‖∇u‖22 −

ε

4δ

(∫ t

0

g(τ)dτ
)

(g ◦ ∇u)(t)

− εδ2

2
‖u‖22 −

εδ−2

2
‖ut‖22 + ε‖u‖p+1

p+1.

If we set δ2 = kHα, δ−2 = k−1H−α, k > 0 and we have

Hα(t)‖u‖22 ≤ C(
1

p+ 1
)α‖u‖2+α(p+1)

p+1 .

Then

L′(t) ≥
(

1− α− ε

2k

)
H−α(t)‖ut‖22 +

[
p+ 1− kC

2

( 1
p+ 1

)α]
εH(t)

+
[p− 1

2

(
1−

∫ t

0

g(τ)dτ
)
− δ − kC

2

( 1
p+ 1

)α]
ε‖∇u‖22

+
[p+ 1

2
− 1

4δ

∫ t

0

g(τ)dτ − kC

2

( 1
p+ 1

)α]
ε(g ◦ ∇u)(t)

+
[p+ 3

2
− kC

2

( 1
p+ 1

)α]
ε‖ut‖22.

According to the hypothesis in Theorem 3.1 and take k and δ to be small enough
such that

p− 1
2

(
1−

∫ t

0

g(τ)dτ
)
− δ − kC

2

( 1
p+ 1

)α
> 0,

p+ 1
2
− 1

4δ

∫ t

0

g(τ)dτ − kC

2

( 1
p+ 1

)α
> 0.
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Choose ε (k is fixed) small enough such that

1− α− ε

2k
≥ 0, L(0) = H1−α(0) + ε

∫
Ω

u0u1dx > 0.

Then, we can deduce that

L′(t) ≥ C[H(t) + ‖ut‖22 + ‖∇u‖22 + (g ◦ ∇u)(t)].

Thanks to Hölder and Young inequality, we obtain∣∣∣ ∫
Ω

uutdx
∣∣∣1/(1−α)

≤ ‖u‖1/(1−α)
2 ‖ut‖1/(1−α)

2 ≤ C‖u‖1/(1−α)
p+1 ‖ut‖1/(1−α)

2

≤ C(‖u‖sp+1 + ‖ut‖22)

≤ C
(
H(t) + ‖ut‖22 + (g ◦ ∇u)(t) + ‖∇u‖22

)
,

(3.4)

where 2 ≤ s = 2
1−2α ≤ p+ 1. Hence,

L1/(1−α)(t) =
(
H1−α(t) + ε

∫
Ω

uutdx
)1/(1−α)

≤ 21/(1−α)
(
H(t) +

∣∣∣ ∫
Ω

uutdx
∣∣∣1/(1−α))

≤ C
(
H(t) + ‖ut‖22 + (g ◦ ∇u)(t) + ‖∇u‖22

)
,

which implies that L′(t) ≥ λL1/(1−α)(t), where λ is a constant depending on C, p,
α and ε. Therefore

L(t) ≥ (L
−α
1−α (0) +

−α
1− α

λt)−
1−α
α .

So L(t) approaches infinite as t tends to (1−α)/
(
αλL

α
1−α (0)

)
. This completes the

proof. �

To obtain another blow-up result we first give the following lemma.

Lemma 3.2. Assume that (H1), (H2) hold, additionally, assume that

‖u0‖p+1 > λ0 ≡ B
−2
p−1
0 , E(0) < E0 =

(1
2
− 1
p+ 1

)
B

−2(p+1)
p−1

0 .

Then

‖u‖p+1 > λ0, ‖∇u‖2 > B
−(p+1)
p−1

0 , for all t ≥ 0,
where B0 = B

l1/2
for ‖u‖p+1 ≤ B‖∇u‖2.

Proof. From (2.2) and the hypothesis, we know that

E(t) =
1
2
‖ut‖22 +

1
2

(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 +

1
2

(g ◦ ∇u)(t)− 1
p+ 1

‖u‖p+1
p+1

≥ 1
2

(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 −

1
p+ 1

‖u‖p+1
p+1

≥ l

2
‖∇u‖22 −

1
p+ 1

‖u‖p+1
p+1 ≥

1
2B2

0

‖u‖2p+1 −
1

p+ 1
‖u‖p+1

p+1.

Set h(ξ) = 1
2B2

0
ξ2 − 1

p+1ξ
p+1, ξ ≥ 0. Then h(ξ) satisfies

• h(ξ) is strictly increasing on [0, λ0);

• h(ξ) takes its maximum value ( 1
2 −

1
p+1 )B

−2(p+1)
p−1

0 at λ0;
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• h(ξ) is strictly decreasing on (λ0,∞).
Since E0 > E(0) ≥ E(t) ≥ h(‖u‖p+1) for all t ≥ 0, there is no time t∗ such that
‖u(·, t∗)‖p+1 = λ0. By the continuity of the ‖u(·, t)‖p+1−norm with respect to the
time variable, one has

‖u(·, t)‖p+1 > λ0 = B
−2
p−1
0 for all t ≥ 0,

and consequently,

‖∇u(·, t)‖2 ≥
1

l1/2B0
‖u(·, t)‖p+1 >

1
l1/2

B
−(p+1)
p−1

0 > B
−(p+1)
p−1

0 .

This completes the proof. �

Theorem 3.3. Suppose that(H1), (H2) hold, 1 < p < n+2
[n−2]+

,∫ ∞
0

g(τ)dτ <
(p+ 1)(p− 1)

1 + (p+ 1)(p− 1)
,

‖u0‖p+1 > λ0 and E(0) ≤ E0. Then the solution of (1.1) blows up in finite time.

Proof. Set G(t) = E0 +H(t), then

G′(t) = −1
2

(g′ ◦ ∇u)(t) +
1
2
g(t)‖∇u‖22 + ‖ut‖22 ≥ 0,

from which we obtain

0 < G(t) = E0 +H(t) =
(1

2
− 1
p+ 1

)
B

−2(p+1)
p−1

0 +H(t)

<
(1

2
− 1
p+ 1

)
‖∇u‖22 +H(t) < C(‖∇u‖22 +H(t))

and

0 < G(t)

= E0 −
1
2
‖ut‖22 −

1
2

(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 −

1
2

(g ◦ ∇u)(t) +
1

p+ 1
‖u‖p+1

p+1

≤ E0 −
1
2

(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 +

1
p+ 1

‖u‖p+1
p+1

≤
(1

2
− 1
p+ 1

)
B

−2(p+1)
p−1

0 − l

2
( 1
l1/2

)2
B

−2(p+1)
p−1

0 +
1

p+ 1
‖u‖p+1

p+1

≤ 1
p+ 1

‖u‖p+1
p+1.

Let

Q(t) = G1−α(t) + ε

∫
Ω

uutdx,

with ε small to be chosen later, 0 < α ≤ p−1
2(p+1) .

By the same process as in the proof of Theorem 3.1, deduce that

Q′(t) ≥ C[H(t) + ‖ut‖22 + ‖∇u‖22 + (g ◦ ∇u)(t)].

Thanks to (3.4), we obtain

Q1/(1−α)(t) =
(
G1−α(t) + ε

∫
Ω

uutdx
)1/(1−α)



EJDE-2013/12 BLOW-UP AND GENERAL DECAY OF SOLUTIONS 7

≤ 21/(1−α)
(
G(t) +

∣∣∣ ∫
Ω

uutdx
∣∣∣1/(1−α))

≤ C
(
H(t) + ‖ut‖22 + (g ◦ ∇u)(t) + ‖∇u‖22

)
,

which implies that Q′(t) ≥ λQ1/(1−α)(t), where λ is a constant depending on C, p,
α and ε. Therefore

Q(t) ≥ (Q
−α
1−α (0) +

−α
1− α

λt)−
1−α
α .

So Q(t) approaches infinite as t tends to 1−α
αλQ

α
1−α (0)

. This completes the proof. �

4. Decay solutions

The purpose of this section is to give a decay result of the solution. Set

I(t) =
(

1−
∫ t

0

g(τ)dτ
)
‖∇u‖22 + (g ◦ ∇u)(t)− ‖u‖p+1

p+1.

As in [10], to give our decay result, we first prove the following lemmas.

Lemma 4.1. Suppose that (H1), (H2) hold, p < n+2
[n−2]+

, and (u0, u1) ∈ H1
0 (Ω) ×

L2(Ω) such that

β =
Cp+1
e

l

(2(p+ 1)E(0)
(p− 1)l

)(p−1)/2

< 1, I(u0) > 0, (4.1)

then I(u(t)) > 0, for all t > 0. Here Ce is given in (2.1).

Proof. Since I(u0) > 0, there exists Tm < T , such that

I(u(t)) > 0, ∀t ∈ [0, Tm],

which gives

1
2

(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 +

1
2

(g ◦ ∇u)(t)− 1
p+ 1

‖u‖p+1
p+1

=
p− 1

2(p+ 1)

[(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 + (g ◦ ∇u)(t)

]
+

1
p+ 1

I(t)

≥ p− 1
2(p+ 1)

[(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22 + (g ◦ ∇u)(t)

]
.

So we have

l‖∇u‖22 ≤
(

1−
∫ t

0

g(τ)dτ
)
‖∇u‖22 ≤

2(p+ 1)
p− 1

E(t) ≤ 2(p+ 1)
p− 1

E(0). (4.2)

By using (H1), (4.1) and (4.2), we obtain

‖u‖p+1
p+1 ≤ Cp+1

e ‖∇u‖p+1
2 ≤ βl‖∇u‖22 <

(
1−

∫ t

0

g(τ)dτ
)
‖∇u‖22

Hence,

I(t) =
(

1−
∫ t

0

g(τ)dτ
)
‖∇u‖22 + (g ◦ ∇u)(t)− ‖u‖p+1

p+1 > 0, ∀t ∈ [0, Tm].

By repeating this process, and using that

lim
t→Tm

Cp+1
e

l

(2(p+ 1)E(u, ut)
(p− 1)l

)(p−1)/2

≤ β < 1,
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we show that Tm is extended to T . �

To establish the decay rate, we use the functional

F (t) = E(t) + ε1Ψ(t) + ε2Φ(t), (4.3)

where ε1 and ε2 are positive constants and

Ψ(t) = ξ(t)
∫

Ω

uutdx, Φ(t) = −ξ(t)
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx.

This functional, for ξ(t) = 1, was first introduced in [3] and [2]. Now, let us consider
some useful properties of this functional.

Lemma 4.2. Assume that u(x, t) is the solution of (1.1) and that (4.1) holds.
Then there exists k1 < 1 and k2 > 1 such that

k1E(t) ≤ F (t) ≤ k2E(t). (4.4)

Proof. Using Young, Schwarz and Poincaré inequality, we obtain∫
Ω

uutdx ≤
C2
∗

2
‖∇u‖22 +

1
2
‖ut‖22, (4.5)∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx ≤ 1
2
‖ut‖22 +

1
2

(1− l)C2
∗(g ◦ ∇u)(t). (4.6)

Using (4.5) and (4.6), we have

k2E(t)− F (t) ≥
[(k2 − 1

2
− k2 − 1

p+ 1

)
l − ε1C

2
∗M

2

]
‖∇u‖22

+
1
2
{k2 − 1− (ε1 + ε2)M}‖ut‖22 +

k2 − 1
p+ 1

I(t)

+
[k2 − 1

2
− k2 − 1

p+ 1
− ε2(1− l)C2

∗M

2

]
(g ◦ ∇u)(t).

Similarly,

F (t)− k1E(t) ≥
[(1− k1

2
− 1− k1

p+ 1

)
l − ε1C

2
∗M

2

]
‖∇u‖22

+
1
2

[1− k1 − (ε1 + ε2)M ]‖ut‖22 +
1− k1

p+ 1
I(t)

+
[1− k1

2
− 1− k1

p+ 1
− ε2(1− l)C2

∗M

2

]
(g ◦ ∇u)(t).

By choosing ε1 and ε2 small enough, such that k2E(t)−F (t) ≥ 0 and F (t)−k1E(t) ≥
0, we complete the proof. �

Lemma 4.3. Let (H1) and (H2) hold, and p ≤ n+2
[n−2]+

. Assume that (u0, u1) ∈
H1

0 (Ω)× L2(Ω) and u is the solution of (1.1). Then

Ψ′(t) ≤
(

1 +
(1− k)(1 + k)C2

∗
l

)
ξ(t)‖ut‖22 +

1− l
2l

ξ(t)(g ◦ ∇u)(t)

− l

4
ξ(t)‖∇u‖22 + ξ(t)‖u‖p+1

p+1

(4.7)
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Proof. By a direct computation, we have

Ψ′(t) = ξ(t)
(
‖ut‖22 + ‖u‖p+1

p+1 − ‖∇u‖22 +
∫

Ω

∇u(t)
∫ t

0

g(t− τ)∇u(τ) dτ dx

−
∫

Ω

uutdx
)

+ ξ′(t)
∫

Ω

uutdx

:= ξ(t)
(
‖ut‖22 + ‖u‖p+1

p+1 − ‖∇u‖22 +A1 −A2

)
+ ξ′(t)A2.

(4.8)

By Young, Schwarz and Poincaré inequality, we have

A1 ≤
1
2
‖∇u‖22 +

1
2
(
1 +

1
η

)
(1− l)(g ◦ ∇u)(t) +

1
2

(1 + η)(1− l)2‖∇u‖22, (4.9)

A2 ≤ αC2
∗‖∇u‖22 +

1
4α
‖ut‖22. (4.10)

Combining (4.8) and (4.9) with (4.10) yields

Ψ′(t) ≤
(
1 +

1− k
4α

)
ξ(t)‖ut‖22 +

1
2
(
1 +

1
η

)
(1− l)ξ(t)(g ◦ ∇u)(t)

−
[1

2
− (1 + η)(1− l)2

2
− (1 + k)αC2

∗

]
ξ(t)‖∇u‖22 + ξ(t)‖u‖p+1

p+1.

We choose η = l/(1− l) and α = l/(4(1 + k)C2
∗); then (4.7) is true. �

Lemma 4.4. Let (H1) and (H2) hold, p ≤ n+2
[n−2]+

, (u0, u1) ∈ H1
0 (Ω) × L2(Ω) and

u is the solution of (1.1). Then

Φ′(t) ≤ δ
[
1 + 2(1− l)2 + C2p

e

(2(p+ 1)E(0)
l(p− 1)

)p−1]
ξ(t)‖∇u‖22

− g(0)C2
∗

4δ
ξ(t)(g′ ◦ ∇u)(t) +

[(
2δ +

1
2δ
)
(1− l) +

(2 + k)(1− l)C2
∗

4δ

]
× ξ(t)(g ◦ ∇u)(t) +

[
δ(2 + k)−

∫ t

0

g(τ)dτ
]
ξ(t)‖ut‖22.

(4.11)

Proof. Straightforward computations show that

Φ′(t) = ξ(t)
∫

Ω

∇u
∫ t

0

g(t− τ)(∇u(t)−∇u(τ)) dτ dx

− ξ(t)
∫

Ω

(∫ t

0

g(t− τ)∇u(τ)dτ
)(∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ
)
dx

+ ξ(t)
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

− ξ(t)
∫

Ω

u|u|p−1

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

− ξ(t)
∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ)) dτ dx− ξ(t)
(∫ t

0

g(τ)dτ
)
‖ut‖22

− ξ′(t)
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

:= ξ(t)
[
I1 + I2 + I3 + I4 + I5 −

(∫ t

0

g(τ)dτ
)
‖ut‖22

]
− ξ′(t)I3.

(4.12)
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By Young and Poincaré inequality, we have

I1 ≤ δ‖∇u‖22 +
1− l
4δ

(g ◦ ∇u)(t), (4.13)

I2 ≤
(

2δ +
1
4δ

)
(1− l)(g ◦ ∇u)(t) + 2δ(1− l)2‖∇u‖22, (4.14)

I3 ≤ δ‖ut‖22 +
C2
∗(1− l)

4δ
(g ◦ ∇u)(t), (4.15)

I4 ≤ δC2p
e

(2(p+ 1)E(0)
l(p− 1)

)p−1

‖∇u‖22 +
(1− l)C2

∗
4δ

(g ◦ ∇u)(t), (4.16)

I5 ≤ δ‖ut‖22 −
g(0)C2

∗
4δ

(g′ ◦ ∇u)(t). (4.17)

Combining (4.12)-(4.17), we have the required estimate (4.11). �

We are ready to give our decay result.

Theorem 4.5. Suppose that (H1), (H2) and (4.1) hold, p ≤ n+2
[n−2]+

, (u0, u1) ∈
H1

0 (Ω)×L2(Ω). Then there exists positive constants α and λ such that the solution
of (1.1) satisfies

E(t) ≤ αe−λ
R t
t0
ξ(τ)dτ

, t ≥ t0.

Proof. Since g is positive, continuous and g(0) > 0, then for any t0 > 0, we have∫ t

0

g(τ)dτ ≥
∫ t0

0

g(τ)dτ = g0 > 0, ∀t ≥ t0. (4.18)

Combining (2.3), (4.3), (4.7), (4.11) and (4.18), for t ≥ t0, we have

F ′(t) ≤ −
{
ε2[g0 − δ(2 + k)]− ε1

(
1 +

(1− k)(1 + k)C2
∗

l

)}
ξ(t)‖ut‖22

−
{ε1l

4
− ε2δ

[
1 + 2(1− l)2 + C2p

e

(2(p+ 1)E(0)
l(p− 1)

)p−1]}
ξ(t)‖∇u‖22

+
{ε1(1− l)

2l
+ ε2

[(
2δ +

1
2δ

)
(1− l) +

(2 + k)(1− l)C2
∗

4δ

]}
ξ(t)(g ◦ ∇u)(t)

+
(1

2
− ε2g(0)C2

∗M

4δ

)
(g′ ◦ ∇u)(t) + ε1ξ(t)‖u‖p+1

p+1

:= −J1ξ(t)‖ut‖22 − J2ξ(t)‖∇u‖22 + J3ξ(t)(g ◦ ∇u)(t)

+ J4(g′ ◦ ∇u)(t) + ε1ξ(t)‖u‖p+1
p+1.

(4.19)

We choose suitable constants ε1 and ε2 satisfying

ε1
(
1 + (1−k)(1+k)C2

∗
l

)
g0 − δ(2 + k)

< ε2 <
ε1l

4δ
[
1 + 2(1− l)2 + C2p

e

( 2(p+1)E(0)
l(p−1)

)p−1]
and δ, ε1 small enough, such that

g0 − (2 + k)δ >
1
2
g0, J1 > 0, J2 > 0, k3 := J4 − J3 > 0,

which imply

J4(g′ ◦ ∇u)(t) + J3ξ(t)(g ◦ ∇u)(t) ≤ −k3ξ(t)(g ◦ ∇u)(t).
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Applying (4.4) and (4.19) yields

F ′(t) ≤ −γξ(t)E(t) ≤ −γ
k2
ξ(t)F (t).

Therefore, after integrating the above inequality and using (4.4) again, we obtain
the desire result. �
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