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EXISTENCE OF ENTIRE SOLUTIONS FOR NON-LOCAL
DELAYED LATTICE DIFFERENTIAL EQUATIONS

SHI-LIANG WU, SAN-YANG LIU

Abstract. In this article we study entire solutions for a non-local delayed
lattice differential equation with monostable nonlinearity. First, based on a

concavity assumption of the birth function, we establish a comparison theorem.

Then, applying the comparison theorem, we show the existence and some
qualitative features of entire solutions by mixing a finite number of traveling

wave fronts with a spatially independent solution.

1. Introduction

The purpose of this article is to study entire solutions to a non-local delayed
lattice differential equation which describes the growth of mature population of a
single species in a patchy environment (see [6, 9, 8]):

u′n(t) = D
∑

i∈Z\{0}

I(i)[un−i(t)− un(t)]− dun(t) +
∑
i∈Z

J(i)b
(
un−i(t− τ)

)
, (1.1)

where n ∈ Z, t ∈ R, D > 0 and τ ≥ 0 are given constants, the kernel functions I
and J and the birth function b satisfy

(A1) I(i) = I(−i) ≥ 0, J(i) = J(−i) ≥ 0,
∑
i∈Z\{0} I(i) = 1,

∑
i∈Z J(i) = 1, and

for every λ ≥ 0,
∑
i∈Z\{0} e

−λiI(i) <∞,
∑
i∈Z e

−λiJ(i) <∞;
(A2) b ∈ C2(R+,R+), b(0) = b(K)−dK = 0, b′(0) > d, b(u) > du for u ∈ (0,K),

b′(u) ≥ 0 and b(u) ≤ b′(0)u for all u ∈ [0,K], where K > 0 is a constant.
Ma et al [6] proved that there exists a minimal wave speed c∗ > 0 such that a

monotone traveling wave solution (traveling wave front for short) of (1.1) exists if
and only if its wave speed is not lower than this minimal wave speed. There is no
doubt that the study of traveling wave solutions is important in many applications.
It can describe certain dynamical behavior of the studied problem such as (1.1).
However, the dynamics of delayed lattice differential equations is so rich that there
might be other interesting patterns. Recently, quite a few front-like entire solutions
have been found in many problems; see e.g., [1, 2, 3, 5, 4, 7, 8, 11, 10]. Here an
entire solution is meant by a classical solution defined for all space and time. It is
clear that traveling wave solutions are also entire solutions.
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Recently, Wang et al [8] constructed some types of entire solutions for (1.1)
by mixing traveling wave fronts with speeds c > c∗ and a spatial independent
solution. The basic idea in [8], similar to [2], is to use traveling wave fronts and their
exponential decay at −∞ to build subsolution and upper estimates, respectively,
and then prove the existence of entire solutions by employing comparison principle.
However, the issue of the existence of entire solution of (1.1) connecting traveling
wave fronts with minimal wave speed c∗ (minimal wave front for short) is still open.
Resolving this issue represents a main contribution of our current study.

More precisely, in this paper, we consider the entire solutions of (1.1) connecting
the minimal wave front. Since the decay of the minimal wave front at −∞ may
not be exponential, the approach in [2, 8] can not be applied directly for (1.1) to
construct appropriate upper estimates. To overcome this difficulty, by making a
concavity assumption on the birth function b, we establish a comparison theorem
(see Lemma 3.1). Applying the comparison theorem, a new upper estimate is
obtained and some new types of entire solutions are constructed by mixing any
finite number of traveling wave fronts with speeds c ≥ c∗ and a spatial independent
solution (see Theorem 3.4).

We should remark that Wang et al [8] also established the uniqueness of entire so-
lutions and the continuous dependence of entire solutions on parameters, which are
not discussed in the present paper, for the spatially discrete Fisher-KPP equation:

u′n(t) =
D

2
[un+1(t) + un−1(t)− 2un(t)] + f(un(t)). (1.2)

The rest of this article is organized as follows. In Section 2, we give some
preliminaries. In Section 3, we establish a comparison theorem. Then, we prove
the existence and qualitative features of entire solutions of (1.1).

2. Preliminaries

In this section, first we state some known results on traveling wave fronts and
spatial independent solutions of (1.1). Then, we consider the initial value problem
of (1.1) and establish some comparison theorems.

For traveling wave fronts of (1.1), let us substitute un(t) := U(ξ), ξ = n + ct,
into (1.1), then we obtain the corresponding wave equation

cU ′(ξ) = D
∑

i∈Z\{0}

I(i)
[
U(ξ − i)−U(ξ)

]
− dU(ξ) +

∑
i∈Z

J(i)b(U(ξ − i− cτ)). (2.1)

Obviously, the characteristic function for (2.1) with respect to the trivial equilib-
rium 0 can be represented by

∆(c, λ) = cλ−D
∑

i∈Z\{0}

I(i)
[
e−λi − 1

]
+ d− b′(0)e−λcτ

∑
i∈Z

J(i)e−λi (2.2)

for c ≥ 0 and λ ∈ C,
Properties of ∆(c, λ) and traveling wave solutions of (1.1) were investigated in

[6, 8]. For the sake of completeness, we recall them as follows.

Proposition 2.1. Consider (1.1) and (2.2).
(1) There exist λ∗ > 0 and c∗ > 0 such that

∆(c∗, λ∗) = 0,
∂

∂λ
∆(c∗, λ)

∣∣
λ=λ∗

= 0.
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Furthermore, if c > c∗, then the equation ∆1(c, λ) = 0 has two positive real roots
λ1(c) and λ2(c) with λ1(c) < λ∗ < λ2(c), λ′1(c) < 0 and ∂

∂c [cλ1(c)] < 0 for c > c∗.
(2) For each c ≥ c∗, equation (1.1) has a traveling wave front φc(ξ) which satisfies

φc(−∞) = 0, φc(+∞) = K and d
dξφc(ξ) > 0 for ξ ∈ R. Moreover, if c > c∗, then

lim
ξ→−∞

φc(ξ)e−λ1(c)ξ = 1, φc(ξ) ≤ eλ1(c)ξ for ξ ∈ R.

Next, we consider the spatially independent solutions of (1.1); i.e., solutions of
the delayed differential equation

Γ′(t) = −dΓ(t) + b(Γ(t− τ)). (2.3)

The following result follows from [8, Theorem 4.3].

Proposition 2.2. There exists a solution Γ(t) : R→ [0,K] of (2.3) which satisfies
Γ(−∞) = 0 and Γ(+∞) = K. Furthermore,

Γ′(t) > 0, lim
t→−∞

Γ(t)e−λ
∗t = 1, Γ(t) ≤ eλ

∗t for all t ∈ R,

where λ∗ is the unique positive root of the equation λ+ d− b′(0)e−λτ = 0.

We now consider the initial value problem of (1.1) with the initial data

un(s) = ϕn(s), n ∈ Z, s ∈ [−τ, 0]. (2.4)

The definitions of supersolution and subsolution are given as follows.

Definition 2.3. A sequence of differentible functions v(t) = {vn(t)}n∈Z, with
t ∈ [−τ, b) and b > 0, is called a supersolution (resp. subsolution) of (1.1) on
[0, b) if v(t) is bounded for (n, t) ∈ Z× [−τ, b) and

v′n(t) ≥ (resp. ≤)D
∑

i∈Z\{0}

I(i)[vn−i(t)− vn(t)]− dvn(t) +
∑
i∈Z

J(i)b
(
vn−i(t− τ)

)
,

for t ∈ (0, b).

By Definition 2.3, we have the following result, see [8, Lemmas 3.2 and 5.1 and
Theorem 3.4].

Proposition 2.4. (1) For any ϕ = {ϕn}n∈Z with ϕn ∈ C([−τ, 0], [0,K]), Equation
(1.1) admits a unique solution u(t;ϕ) = {un(t;ϕ)}n∈Z on [0,+∞) satisfies un ∈
C([−τ,+∞), [0,K]). Moreover, there exists M > 0 which is independent of ϕ such
that

|u′n(t;ϕ)|, |u′′n(t;ϕ)| ≤M for all n ∈ Z, t > τ.

(2) Let {u+
n (t)}n∈Z and {u−n (t)}n∈Z be a pair of super- and sub-solutions of

(1.1) on [0,∞) such that u±n (t) ≥ 0 and u−n (s) ≤ u+
n (s) for n ∈ Z, t ∈ [−τ,∞) and

s ∈ [−τ, 0]. Then u+
n (t) ≥ u−n (t) for n ∈ Z and t ≥ 0.

(3)] Let u+
n (t) ∈ C

(
[−τ,+∞), [0,+∞)

)
and u−n (t) ∈ C

(
[−τ,+∞), (−∞,K]

)
be

such that u+
n (s) ≥ u−n (s) for all n ∈ Z and s ∈ [−τ, 0]. If

d

dt
u+
n (t) ≥ D

∑
i∈Z\{0}

I(i)[u+
n−i(t)− u

+
n (t)]− du+

n (t) + b′(0)
∑
i∈Z

J(i)u+
n−i(t− τ),

and
d

dt
u−n (t) ≤ D

∑
i∈Z\{0}

I(i)[u−n−i(t)− u
−
n (t)]− du−n (t) + b′(0)

∑
i∈Z

J(i)u−n−i(t− τ),

for n ∈ Z and t > 0, then u+
n (t) ≥ u−n (t) for all n ∈ Z and t ≥ 0.
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3. Existence of entire solutions

In this section, we first establish a comparison theorem. Then, applying the
comparison theorem, we prove the existence and qualitative features of entire so-
lutions of (1.1). The approach adopted here is inspired by the work of Hamel and
Nadirashvili [3].

To obtain the comparison theorem, we need the concavity assumption of the
birth function b:

(A3) b′′(u) ≤ 0 for u ∈ [0,∞).

Lemma 3.1. Assume (A1)–(A3). Let ϕ = {ϕn}n∈Z, ϕ(i) = {ϕ(i)
n }n∈Z with ϕn and

ϕ
(i)
n in C([−τ, 0], [0,K]), i = 1, . . . ,m0, be m0 + 1 given functions with

ϕn(s) ≤ min{K, ϕ(1)
n (s) + · · ·+ ϕ(m0)

n (s)} for n ∈ Z, s ∈ [−τ, 0].

Let u and u(i) be the solutions of the Cauchy problems of (1.1) with initial data

un(s) = ϕn(s), n ∈ Z, s ∈ [−τ, 0], (3.1)

u(i)
n (s) = ϕ(i)

n (s), n ∈ Z, s ∈ [−τ, 0], (3.2)

respectively. Then

0 ≤ un(t) ≤ min{K, u(1)
n (t) + · · ·+ u(m0)

n (t)}
for all n ∈ Z and t ≥ 0.

Proof. Set Qn(t) = u
(1)
n (t)+· · ·+u(m0)

n (t). By Proposition 2.4, we have 0 ≤ un(t) ≤
K for all n ∈ Z and t ≥ 0. Thus, it suffices to show that un(t) ≤ Qn(t) for all n ∈ Z
and t ≥ 0. First, we show that for any vi ∈ (0,K], i = 1, . . . ,m0,

b(v1 + · · ·+ vm0) ≤ b(v1) + · · ·+ b(vm0). (3.3)

For m0 = 1, (3.3) holds obviously. For m0 = 2, using the concavity of the function
b, we have

b(v1 + v2)− b(v1)
v2

≤ b(v1)
v1

,
b(v1 + v2)− b(v2)

v1
≤ b(v2)

v2
,

which imply that

v1b(v1 + v2) ≤ (v1 + v2)b(v1), v2b(v1 + v2) ≤ (v1 + v2)b(v2).

Thus, we have b(v1 + v2) ≤ b(v1) + b(v2). Using mathematical induction, we can
show that (3.3) holds. It then follows that

Q′n(t) =
m0∑
k=1

d

dt
u(k)
n (t)

= D
∑

i∈Z\{0}

I(i)[Qn−i(t)−Qn(t)]− dQn(t) +
∑
i∈Z

J(i)
m0∑
k=1

b
(
u

(k)
n−i(t− τ)

)
≥ D

∑
i∈Z\{0}

I(i)[Qn−i(t)−Qn(t)]− dQn(t) +
∑
i∈Z

J(i)b
(
Qn−i(t− τ)

)
for all n ∈ Z and t > 0; that is, the function Q(t) = {Qn(t)}n∈Z is a supersolution
of (1.1) on [0,∞). By our assumption, un(s) ≤ Qn(s) for n ∈ Z and s ∈ [−τ, 0].
Therefore, from the assertion (2) of Proposition 2.4, we have un(t) ≤ Qn(t) for all
n ∈ Z and t ≥ 0. This completes the proof. �
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In the sequel, we assume that φc(ξ) and Γ(t) are the traveling wave front and spa-
tially independent solution of (1.1) decided in Propositions 2.1 and 2.2, respectively.
For any k ∈ N, l,m ∈ N∪{0}, θ1, . . . , θl, θ′1, . . . , θ′m, θ ∈ R, c1, . . . , cl, c′1, . . . , c

′
m ≥ c∗

and χ ∈ {0, 1} with l +m+ χ ≥ 2, we denote

ϕ(k)
n (s) := max

{
max
1≤i≤l

φci(n+ cis+ θi
)
, max
1≤j≤m

φcj (−n+ c′js+ θ′j
)
, χΓ(s+ θ)

}
,

un(t) := max
{

max
1≤i≤l

φci
(n+ cit+ θi

)
, max
1≤j≤m

φcj
(−n+ c′jt+ θ′j

)
, χΓ(t+ θ)

}
,

where n ∈ Z, s ∈ [−k − τ,−k] and t > −k. Let U (k)(t) = {U (k)
n (t)}n∈Z be the

unique solution of (1.1) with the initial data:

U (k)
n (s) = ϕ(k)

n (s), n ∈ Z, s ∈ [−k − τ,−k]. (3.4)

By Proposition 2.4, we have un(t) ≤ U (k)
n (t) ≤ K for all n ∈ Z and t ≥ −k.

Applying the comparison lemma 3.1, we obtain the following result which pro-
vides appropriate upper estimate of U (k)(t).

Lemma 3.2. Assume (A1)–(A3). The function U (k)(t) = {U (k)
n (t)}n∈Z satisfies

U (k)
n (t) ≤ Un(t) := min

{
K,Π(n, t)

}
for any n ∈ Z and t ≥ −k, where

Π(n, t) =
l∑
i=1

φci
(n+ cit+ θi

)
+

m∑
j=1

φcj
(−n+ c′jt+ θ′j

)
+ χΓ(t+ θ).

Before stating our main results in this subsection, we give the following definition
and notation.

Definition 3.3. Let m0 ∈ N and p, p0 ∈ Rm0 . We say that a sequence of functions
Ψp(t) = {Ψn;p(t)}n∈Z converges to a function Ψp0(t) = {Ψn;p0(t)}n∈Z in the sense
of topology T if, for any compact set S ⊂ Z×R, the functions Ψn;p(t) and Ψ′n;p(t)
converge uniformly in S to Ψn;p0(t) and Ψ′n;p0(t) respectively as p tends to p0.

For any N1 ∈ Z and γ ∈ R, denote the regions T iN1,γ
(i = 1, . . . , l) and T̃ jN1,γ

(j = 1, . . . ,m), by

T iN1,γ := {n ∈ Z|n ≥ N1} × [γ,+∞), i = 1, . . . , l, Tγ := RN × (−∞, γ],

T̃ jN1,γ
:= {n ∈ Z||n ≤ N1} × [γ,+∞), j = 1, . . . ,m, T̃γ := Z× [γ,+∞).

Following the priori estimate of Proposition 2.4 and the upper estimate of Lemma
3.2, we can obtain the following result.

Theorem 3.4. Assume (A1)–(A3). For any l,m ∈ N ∪ {0}, θ1, . . . , θl, θ′1, . . . , θ′m,
θ ∈ R, c1, . . . , cl, c′1, . . . , c

′
m ≥ c∗ and χ ∈ {0, 1} with l+m+ χ ≥ 2, there exists an

entire solution Up(t) =
{
Un;p(t)

}
n∈Z of (1.1) such that

un(t) ≤ Un;p(t) ≤ Un(t) for all (n, t) ∈ Z× R, (3.5)

where p := pl,m,χ =
(
c1, θ1, . . . , cl, θl, c

′
1, θ
′
1, . . . , c

′
m, θ

′
m, χθ

)
. Furthermore, the fol-

lowing properties hold.
(1) 0 < Un;p(t) < K and d

dtUn;p(t) > 0 for any (n, t) ∈ Z× R.
(2) limt→+∞ supn∈Z

∣∣Un;p(t) −K
∣∣ = 0 and limt→−∞ sup|n|≤N0

Un;p(t) = 0 for
any N0 ∈ N.
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(3) If b′(u) ≤ b′(0) for u ∈ [0,K], then for any γ ∈ R, Un;pl,m,1(t) converges to
Un;pl,m,0(t) as θ → −∞ in T , and uniformly on (n, t) ∈ Tγ .

(4) For any N1 ∈ Z and γ ∈ R, Up(t) converges to K in the sense of topology
T as θi → +∞ and uniformly on (n, t) ∈ T iN1,γ

; Up(t) converges to K in
the sense of topology T as θ′j → +∞ and uniformly on (n, t) ∈ T̃ jN1,γ

; and
Up(t) converges to K in the sense of topology T as θ → +∞ and uniformly
on (n, t) ∈ T̃γ .

Proof. By Proposition 2.4(2) and Lemma 3.2, we have

un(t) ≤ U (k)
n (t) ≤ U (k+1)

n (t) ≤ Un(t) for all n ∈ Z and t ≥ −k. (3.6)

Using the priori estimate of Proposition 2.4 and the diagonal extraction process,
there exists a subsequence U (kl)(t) = {U (kl)

n (t)}l∈N of U (k)(t) such that U (kl)(t)
converges to a function Up(t) =

{
Un;p(t)

}
n∈Z in the sense of topology T . Since

U
(k)
n (t) ≤ U (k+1)

n (t) for any t > −k, we have

lim
k→+∞

U (k)
n (t) = Un;p(t) for any (n, t) ∈ Z× R.

The limit function is unique, whence all of the functions U (k)(t) converge to the
function Up(t) in the sense of topology T as k → +∞. Clearly, Up(t) is an entire
solution of (1.1). Also, (3.5) follows from (3.6). The proof of assertion of part (1)
is similar to that of Wang et al [8, Theorem 1.1] and is omitted. The assertion of
part (2) is a direct consequence of (3.5).

(3) For χ = 0, we denote ϕ(k)(s) = {ϕ(k)
n (s)}n∈Z, by ϕ(k)

pl,m,0(s) = {ϕ(k)
n;pl,m,0(s)}n∈Z,

and U (k)(t) = {U (k)
n (t)}n∈Z by U (k)

pl,m,0(t) = {U (k)
n;pl,m,0(t)}n∈Z. Similarly, for χ = 1,

we denote ϕ(k)(s) by ϕ(k)
pl,m,1(s), and U (k)(t) by U (k)

pl,m,1(t). Let

W (k)(t) = {W (k)
n (t)}n∈Z := U (k)

pl,m,1
(t)− U (k)

pl,m,0
(t), t ≥ −k − τ.

Then 0 ≤W (k)
n (t) ≤ K for all (n, t) ∈ Z× [−k,+∞). Moreover, by the assumption

b′(u) ≤ b′(0) for u ∈ [0,K], it is easy to verify that

d

dt
W (k)
n (t)

= D
∑

i∈Z\{0}

I(i)[W (k)
n−i(t)−W

(k)
n (t)]− dW (k)

n (t)

+
∑
i∈Z

J(i)
[
b
(
U

(k)
n−i;pl,m,1

(t− τ)
)
− b
(
U

(k)
n−i;pl,m,0

(t− τ)
)]

≤ D
∑

i∈Z\{0}

I(i)[W (k)
n−i(t)−W

(k)
n (t)]− dW (k)

n (t) + b′(0)
∑
i∈Z

J(i)W (k)
n−i(t− τ)

for n ∈ Z, t > −k. Let us define the function

Ŵ (t) =
{
Ŵn(t)

}
n∈Z =

{
eλ

∗(t+θ)
}
n∈Z.

By Proposition 2.2, we have

W (k)
n (s) = ϕ(k)

n;pl,m,1
(s)− ϕ(k)

n;pl,m,0
(s) ≤ Γ(s+ θ) ≤ eλ

∗(s+θ) = Ŵn(s)
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for n ∈ Z, s ∈ [−k− τ,−k]. Moreover, it is easy to see that Ŵ (t) satisfies the linear
equation

d

dt
Ŵn(t) = D

∑
i∈Z\{0}

I(i)[Ŵn−i(t)− Ŵn(t)]− dŴn(t) + b′(0)
∑
i∈Z

J(i)Ŵn−i(t− τ).

It then follows from the statement (3) of Proposition 2.4 that

0 ≤W (k)
n (t) ≤ Ŵn(t) = eλ

∗(t+θ) for all (n, t) ∈ Z× [−k,+∞).

Since limk→+∞ U
(k)
n;pl,m,i(t) = Un;pl,m,i

(t), i = 0, 1, we get

0 ≤ Un;pl,m,1(t)− Un;pl,m,0(t) ≤ eλ
∗(t+θ)

for all (n, t) ∈ Z×R, which implies that Upl,m,1(t) converges to Upl,m,0(t) as θ → −∞
uniformly on (n, t) ∈ Tγ for any γ ∈ R. For any sequence θ` with θ` → −∞ as `→
+∞, the functions Up`

l,m,1
(t) (here p`l,m,1 := (c1, θ1, . . . , cl, θl, c′1, θ

′
1, . . . , c

′
m, θ

′
m, θ

`))
converge to a solution of (1.1) (up to extraction of some subsequence) in the sense
of topology T , which turns out to be Upl,m,0(t). The limit does not depend on the
sequence θ`, whence all of the functions Upl,m,1(t) converge to Upl,m,0(t) in the sense
of topology T as θ → −∞.

The proof of part (4) is similar to that of part (3), and omitted. This completes
the proof. �
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