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REGULARITY ON THE INTERIOR FOR THE GRADIENT OF
WEAK SOLUTIONS TO NONLINEAR SECOND-ORDER
ELLIPTIC SYSTEMS

JOSEF DANECEK, EUGEN VISZUS

ABSTRACT. We consider weak solutions to the Dirichlet problem for nonlinear
elliptic systems. Under suitable conditions on the coefficients of the systems
we obtain everywhere Holder regularity on the interior for the gradients of
weak solutions. Our sufficient condition for the regularity works even though
an excess of the gradient of solution is not very small. More precise partial
regularity on the interior can be deduced from our main result. The main
result is illustrated through examples at the end of this article.

1. INTRODUCTION

In this paper we give conditions guaranteeing that a weak solution to the Dirich-
let problem for a nonlinear elliptic system

—Do(A3(Du)) =0 inQ,i=1,...,N,

1.1
u=g on 0f) (1.1)

belongs to Cll.gg (2, RY) space. Here and in the following, summation over repeated

indices is understood.
By a weak solution to the Dirichlet problem (1.1)), we mean a function w in
Wh2(Q,RY) such that

/ AX(Du)Dog' dz =0, Yo e Wy (Q,RY)
Q

and u — g € WOI’Q(Q,]RN).

Here 2 C R™ is a bounded open set, n > 3, the function g belongs to the
space W12(Q, RY), the coefficients (A%);—1... N,a=1,..n are differentiable, have the
linear controlled growth and satisfy the strong uniform ellipticity condition. More
precisely, denoting by

0A¥
AP (p) = T
i (p) o0 ()

and assuming that A$(0) = 0 we require
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(i) there exists a constant M > 0 such that for every p € R™V
| A7 (p)| < M(1+ Ip]),

(i) 1457 (p)] < M,
(iii) the strong ellipticity condition holds; i.e., there exists a constant v > 0 such
that for every p, £ € R™V,

AT e = Vgl
(iv) there exists a real function w defined and continuous on [0, c0), which is

bounded, nondecreasing, increasing on a neighbourhood of zero, w(0) = 0
and such that for all p, ¢ € R™N

1A% (p) — AT (q)] < w(lp — q))-
We set woo = limy 00 w(t) < 2M.

Here it is worth to point out (see [9, pg. 169]) that for uniformly continuous co-
efficients A%ﬁ there exists the real function w satisfying the assumption (iv) and,
viceversa, (iv) implies the uniform continuity of the coefficients and the absolute
continuity of w on [0,00). It is clear that if w(t) = 0 for ¢ € [0,00), then the sys-
tem is reduced to the system with constant coefficients and in this case the
regularity of weak solutions is well understood (see, e.g. [9] and references therein).

The system has been extensively studied (see, e.g. [I @ 15 23]). Tt is
well known that the Dirichlet problem has a unique solution u € W12(Q,RY).
Moreover, for boundary function g € W12(€, RY) it holds

/|Du|2dx§C’D/|Dg|2dx, (1.2)
Q Q

/ |Du — (Du)g|*dr < C’D/ |Dg — (Dg)al* dx (1.3)
Q Q

where (Dg)q = ﬁfﬂ Dgdz, m(2) = m, () is the n - dimensional Lebesgue
measure of Q and Cp = n?N?(M/v)?. The estimates and can be proved
by a standard technique (see [10], Remark on pg.113). For reader’s convenience the
proofs of and are given in Appendix to this paper.

The first regularity results for n = 2 and for nonlinear systems were established
by Morrey (see [21]) and they state that the gradient of unique solution to
is locally Holder continuous. If n > 3, it is known that the gradient Du may be
discontinuous and unbounded (see [14} 18] 23]).

For n > 3 and for the nonlinear systems many partial regularity results were
obtained, i.e., it was proved that the gradient of any weak solution to (or more
general system) is locally Holder continuous up to a singular set of the Hausdorff
dimension n—2 (see, e.g. [IL 9, 23]). In the last two decades some new methods for
proving the partial regularity of weak solutions to the nonlinear systems, based on
a generalization of the technique of harmonic approximation, have appeared (see,
e.g. [13, 8] and references therein). These methods extend the previous partial
regularity results in such a way that they allow to establish the optimal Hoélder
exponent for the gradients of weak solutions on their regular sets.

In this place, it is worth to mention the papers [24] 25] where the authors through
examples showed that (for n = 3) the gradient of the unique minimizer of the
convex and differentiable functional F' (in this case is the Euler-Lagrange
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equation of F) can be discontinuous or unbounded. Thus full regularity cannot be
achieved even in this special case. On the other hand, Campanato in [2] proved
that the weak solution of the system belongs to W,2>+¢(Q, RY) which implies
that Du € CY(Q,R™) for n = 2 and u € CLY(Q,RY) for 2 < n < 4, v €
(0,1). Kristensen and Melcher have recently proved (using a method which avoids
employing the Gehring’s lemma) in [I6] that an analogous result is true under the
strong monotonicity and the Lipschitz continuity of the coefficients. Moreover,
they have stated the value of the last mentioned € as € = da/5 where 6 > 1/50
is a universal constant, 0 < a < (§ are the constant of the monotonicity and the
Lipschitz continuity constant respectively.

The aim of this paper is to extend the last mentioned results and the results of
the paper [7], giving some conditions sufficient for the everywhere interior regularity
of the solutions to the systems for n > 3. In the paper [7], the first author
with John and Stard gave conditions, expressed in terms of the continuity modulus
of the first derivatives of the coefficients of (|1.1]), that guarantee the local Holder
continuity of the gradients of solutions to n Q). More precisely, they proved
that there exists vy > 0 such that for every ellipticity constant v > 1y with the ratio
M/v < P, where P > 1 is a given constant, the gradients of weak solutions to (|1.1))
are locally Holder continuous in Q (see [B] as well). The point of the current paper
is to give conditions guaranteeing the same quality of the solutions to when
the ratio we, /v is admitted to be arbitrary and no lower bound for the constant of
ellipticity v is needed (we remind that if the constant M is given, then wo, < 2M).

The main results are stated in two theorems. The first of them refers that if
Weo /v is small enough, the solutions to are regular. This result is not very
surprising but, moreover, an upper bound C., (although probably not optimal)
of weo/v is designed there (see below). If we/v > C.pr, then a sufficient
condition for regularity of solutions to the system is given in Theorem [2.3
A basic advantage of condition below is that it admits (for sufficiently big
ellipticity constant v) an arbitrary growth of the continuity modulus w = w(t)
when ¢ is near by zero. Here it is needful to note that Theorem works likewise
when v is small but, in this case, the modulus of continuity w has to grow slowly
enough. Many proofs of regularity results for systems like the system (1.1) are
based on a certain excess-decay estimate for the excess function U,(z) (in our case
this function is defined by below). The key assumption of the excess-decay
estimate is that U,(x) has to be sufficiently small on a ball B,(z) € 2. On the
other hand, our condition does not suppose smallness of the excess function
U () (see Remark [2.4] below). We would like to note that more delicate estimates
and careful designing of some parameters in proofs allow us to state these results
in a much simpler form than in [7].

Various conditions, guaranteeing the regularity of weak solutions, were studied
by Giaquinta and Necas in [I1}, [12] (the Liouville’s condition for regularity formu-
lated through L*°-spaces), Danécek in [4] (the Liouville’s condition for regularity
formulated through BM O-spaces), Chipot and Evans in [3] and Koshelev in [I5].
Koshelev’s condition, interpreted according to the assumptions (ii) and (iii), is the
following : If it is supposed that nNM|¢[? > A?jﬁ(p)ggfé > v|¢]? for every p,
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EER™, AT = ATY and

M 1 1+ (2721)2 +1
v niN 1+ (7:;21)2 _ 17

then any solution to has the locally Hélder continuous gradient in €. It is
proved in [I5] that the above condition is sharp. The same result is proved, by
an another method which is based on an estimate of the gradient of solution in
a suitable weighted Morrey space, in [I8]. Further results concerning the local
(and global as well) Hélder regularity of the solutions and the dispersion of the
eigenvalues of the coefficients matrix of elliptic systems can be found in [20] [19].
On the other hand, the last mentioned condition does not cover the linear systems
with constant coefficients and the large dispersion of the eigenvalues of A%—B , while
every linear system with constant coefficients satisfies the conditions and
as well. Chipot and Evans in [3] consider the variational problem and assume that

A?jﬁ (p) tend to a constant matrix for p tending to infinity. Thus the modulus of

continuity of A%ﬁ (p) approaches zero for sufficiently large p while our assumption
requires that its changes are small enough. Herein we would like to note that, as
far as we know, the above mentioned condition from the paper [3] was for the first
time employed in [4].

The methods of proving main results follow the standard procedures used in the
direct proofs of the partial regularity. The novelty is an employment of special
complementary Young functions which allows us (through a modification of the
Natanson’s Lemma - see Lemma below) to get some key estimates. As a conse-
quence of our proof of the main result (Theorem below) we obtain the partial
regularity result concerning the more precise identification of the singular set of the
weak solution to (1.1)). As it is known (see [9) 23] 3] [§]), the singular set of the
weak solution to is characterized as follows

Qqing = {z € Q: limi(r)lf][ |Du(y) — (Du)sr|* dy > 0}.
r— B,.(z)

Our description of the singular set Q \ Qg, from Theorem below, indicates
clearly that Q\ Qr C Qging and the constant which describes Q\ Q% is computable.

Four examples, illustrating above mentioned results, are given at the end of the
paper. The first one presents a system which our results can be applied to. The
second and the third of them show typical samples of modulus of continuity that
our main result deals with. The fourth one indicates that the regularity of gradient
of boundary data, which is considerably weaker than the Campanato’s one, does
not admit the singularities of the weak solutions to in a subdomain.

2. MAIN RESULTS

By Q2 € © we will understand any bounded subdomain 2y which is compactly
embedded into Q (i.e. Qo C Qo C Q) and the boundary 9 is smooth. For z € Q,
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r > 0 such that B.(z) = {y € R" : |y — x| <r} C Q we set

o w(y) — (D)o 2
BT o, 1) (D

- ][ Du(y) — (Du), | dy,
B, (x)

U.(z) =

o, r) = /B | 1Du) = (D) dy

where (Du),,» = f5 @) Du(y) dy and &, is the n - dimensional Lebesgue measure
of the unit ball.

Theorem 2.1. Let n <9 < n+2, Qo € Q with dist(Qg,dN) > d > 0 be given.
Let u be a weak solution to the Dirichlet problem (1.1)) where g € W12(Q) and the
hypotheses (1), (i), (i), (iv) be satisfied with M, v and the function w for which
o 1
L < = Ccr (22)
v \/8n2N2(2n+5L) e

where the constant L is given in Lemma [3.10 below. Then
”DUHLQ”L"(QO,R"N) < CdEﬁHDgHH(QARnN) (2.3)
for some 0 < dy < d. The norm ||Dul|z2.0(q,rn~) is defined in Deﬁnition

below.

Remark 2.2. The inequality (2.3) implies that Du € BMO(Qq, R™V)) for ¥ = n
and Du € CO0=m/2(Qq R™)) for n < ¥ < n + 2.

For the rest of this article, we always suppose that ws /v > Cop.

Theorem 2.3. Let Qp € Q with dist(Q,0Q) > 2d > 0 andn < 9 < n+2 be
given. Let u be a weak solution to the Dirichlet problem where g € WH2(Q)
and the hypotheses (i), (ii), (iii), (iv) be satisfied with M, v and the function w.
Then the condition

1
sMeoy/Una(z) <1, Vo € Qo (2.4)
where 0 < ¢ < 1 and
w2(t) e(‘;fge))z/(zu—n B 6(2 1,1’)2/(2“71)
M= sup £
to<t<oo t—to

implies that Du € C%("=™)/2(Qq, R™V) in the case ¥ > n and Du € BMO(Qg, R™Y)
for & =n. Here tg > 0, w(ty) = v/, € > 0 is specified in where the constant
€0 = W (L is the constant from Lemma|3.10) and p > 2.

Remark 2.4. As it is visible from the condition , an appropriate choice of
the constant ¢y guarantees the regularity even if the excess Usg is not assumed
to be very small in Q. Moreover, the term (Upy(z))'/? in can be replaced
with HDuHLz(Q,Rnw)/(Qd)”/Q or, in the case of the Dirichlet problem (L.1)), with

011)/2||DgHL2(Q,RnN)/(2d)"/2 where Cp is from (1.2]). See Example 5.2 and [5.3| for
additional information.
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Remark 2.5. It can be seen (according to the assumption (iii)) that M is finite.
On the parameter p we only quote that its main goal is to damp the exponential
growth. A structure of the Young functions in and the estimates -
below indicate a role of u. It is visible from these estimates that it is possible to
find a value of the parameter p which is optimal in some measure.

The next theorem is a straightforward consequence of Theorem It presents
the well-known partial regularity result but unlike the other partial regularity re-
sults this theorem describes the so-called singular set a little bit more precisely.

Theorem 2.6. Let n < 9 < n+ 2 be given and v € VVi)’f(Q,RN) be a weak
solution to the system (L.1). Let the hypotheses (i), (ii), (iii), (iv) be satisfied
with M, v and the function w. Then there exists an open set Qr C § such that
u € CHUO2(Qr RN), and H"2(Q\ Qr) = 0, where H" 2 is the (n — 2) -
dimensional Hausdorff measure. Moreover,

0\ = {0 tmipt fDuy) - (Du Pz (oY) @)

where the constants M and cy are defined in Theorem [2.3

3. PRELIMINARIES

Besides the spaces C5°(Q, RY), the Holder spaces C%* (€2, RY) and the Sobolev
spaces WEP(Q RN), Wéc’p(Q, RY), we use the Campanato spaces £ (Q, RY) (see
Definition below). By Xic(Q,RY) we denote the space of functions which
belong to X (2, RY) for every subdomain Q € € with a smooth boundary.
Definition 3.1 ([I7]). Let A € [0,n + ¢], ¢ € [1,00). The Campanato space
L9 (2,RN) is the subspace of such functions u € L4(2, RY) for which

1
ull, = sup — u(y) — ug |7 dy < o0
[ ][q,A(QyRN) 50,060 T‘A . (z) | ( ) s |

where u,, = fﬂr(w) u(y)dy and Q.(z) = QN By(r). The norm in the space
ﬁq’A(Q,RN) is defined by ||UH£(1,)\(Q7RN) = Hu||Lq(Q7RN) + [U}LQ,A(Q,RN).
Proposition 3.2 ([1l [9, 17]). For a bounded domain Q C R™ with a Lipschitz
boundary, for ¢ € [1,00) and 0 < A < pu < oo the relation LIH(Q,RN) C
L3R holds and L9(Q,RN) is isomorphic to the COX=/9(Q RN), for
n<A<n+gq.

Now, let &, ¥ be a pair of the complementary Young functions

1 (52-)2/(2n=1)
ue' 2ve

®(u) = ulnf (au), T(u) < V(u) = o for u >0 (3.1)
where @ > 0 and p > 2 are constants,
0 for 0 < 1
In, (au) = or0su<l/a, (3.2)
In(au) for u >1/a.

Then the Young inequality for @, ¥ reads
wo < O(u) + ¥(v), wu,v>0. (3.3)
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Lemma 3.3 (|26, pg.37]). Let ¢ : [0,00) — [0,00) be a nondecreasing function
which is absolutely continuous on every closed interval of finite length, $(0) = 0. If
w > 0 is measurable and E(t) = {y € R" : w(y) > t} then

/ owdy = / m(E ()¢ (t) dt.
The next Lemma will be employed in the proof of Theorem

Lemma 3.4 ([5, pg.388]). Let v € L} _(Q,RN), N > 1, B.(z) € Q, b > 0 and
€ (1,400). Then

1.
/ In%. (bjv]?) dy < S(S ) 1b/ |v|? dy.
Br(z) € Br(z)

The following Lemma is a small modification of [I, Lemma 1.IV].

Lemma 3.5. Let A, Ry < Ry be positive numbers, n < 9 < n+2, n a nonnegative
and nondecreasing function on (0,00). Then there exist g, ¢ positive so that for
any nonnegative, nondecreasing function ¢ defined on [0,2R;] and satisfying with
(B1 + Ban(Uar,)) € [0,€0] the inequality
o 1 o
o) < {A(EYHr2 + 5(1 + A(E)nﬁ)[Bl + Ban(Uzr)]}¢(2R) (3.4)

for all o, R such that 0 < 0 < R < Ry, it holds

#(0) < co’p(2Ry), Yo : 0 <o < Ry. (3.5)
Remark 3.6. Note that we can take
1 (2713 4) s AN
- 2(271"1‘314)7&2%19 ’ - ( 2R0 ) ’

Proof. 1. Without loss of generality we can suppose that A > 1. Choose 7 € (0,1)

so that 273 A 270 = 1 je. 7= (k) /"2, g = 77/2.

II. We will prove by induction that
(27" Ro) < T $(2Ry), Usyrg, < Uap,- (3.6)

Let k = 1. Putting 0 = 27Rg, R = Ry in (3.4)) we obtain thanks to the assumptions
on 7, By, Ban, €, that

¢(2TRO)

< {2”+2AT7’+2 + %(1 + A(2T)") (B + BQU(U2R0)}}¢(2RO)

1

S R P 5(1 + 2" P2 A" 2By + Ban(Uag,)] 7" Y 6(2R)

3
é Tﬂ <2n+2ATn+2_19 + ZGQT_6)¢(2R(])

< 77$(2Ry).

Therefore,

Uarr, < Usrg,-
Suppose (3.6)) is valid for j = 1,...,k and put o = 27" Ry, R = 7* R into (3.4)).
‘We obtain

P27 Ry) < {27 T2AT 4 %(1 + A(27)" ") [By + Ban(Ussx g, )] } (27" Ry).
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Using now (3.6]) for j = k, choice of 7, assumptions on By, Ban, ¢ and estimates
of p(27%Ry) we have

3
¢(2Tk+1RO) < (2n+2ATn+2—19 + 1607_19>T19¢(27-kR0)

< 772" Ro) = 7"V g(2Ry).

As ¥ > n it immediately implies the estimate U r+1r, < Uar, and we have (3.6).

III. Now let o be an arbitrary positive number less than Ry. Then there is an
integer k such that 2r**'Ry < ¢ < 27%Ry. Using the monotonicity of ¢, this
inequality and (3.6) we obtain

1
k ko
#(0) < ¢(277Ry) < 7" ¢(2Ry) < o Ry )19¢(2R0)

If we set ¢ = (27Rg)~" in this estimate, the proof is complete. O

In the proof of Theorem 2:3] we will use a modification of the Natanson’s Lemma
[22, pg.262]. It reads as follows.

Lemma 3.7. Let f : [a,00) — R be a nonnegative function which is integrable on
[a,b] for alla < b < oo and

1 at+h
N = sup E/ f(t)dt <

0<h<oo

is satisfied. Let g : [a,00) — R be an arbitrary nonnegative, non-increasing and

integrable function. Then
oo
[ g

[ swawar<w [~ ga

Remark 3.8. The foregoing estimate is optimal because if we put f(¢) =1, ¢t €
[a, 00) then an equality will be achieved.

exists and

Proof. For a < b < oo we put

Ny = sup h/ t)dt < oo.

0<h<b—a

The integral fb f)g(t) dt exists because f(t)g(t) < g(a)f(t), for almost all ¢ > a.

If we put F(t f f(s)ds and use the integration by parts and the fact that
F(t) < (t— a)/\/b, we obtaln

t/f fydt = /'mewﬁ=F@am+/'ﬂw&¢@Mt

b b
<N[(b-a)g) + [ - a)-g0) ] =N [ glt)ar.
For an increasing sequence {bk}zi1 such that by > a and limy_, . b = 00 put

fk(t):{f(t) for a <t < by

0 for by <t < o0

g(t) fora<t<b
0 for by <t < o0.

it )~
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It is clear that if kK — oo then frgr — fg a.e. in [a,00) and

o0 bk bk o0
| wom@d= [ soowd<nn, [T gma<n [T g
Now the Fatou’s Lemma implies the result. ([l

In the proof of the next proposition we employ the following form of the Cac-
ciopoli’s inequality, which is possible to derive by the difference quotient method
(see [9], pg.43-46). For the weak solution to the system (1.1)) it holds

Clne
D22 dy < 7/ \Du— (Du), |2 dy (3.7)
/Bﬂm (¢=0)% JB,@) N

where x € Q, 0 < 0 < ¢ < dist(z,09)), Coaee = 16n2N2(M/v)2.

Proposition 3.9. Let u € WH2(Q,RY) be a weak solution to the system (1.1]).
Then for every ball Bog(x), © €  and arbitrary constants b >0, 4 > 2, ¢1, co € R
we have

/B D) = (D) 5 (ADU) = )l
R(T

1-1/q
< ChCewc(Cut f, 1Du —aifas) " [ ipu) ey
R\T 2R(Z

(p—=1)q+1
q—1

where 1 < g <n/(n—2), Cyy = Qtren ((H=1)gt1y

=1 Cg=1)e and Cp(n, q) is the Sobolev
- Poincaré constant.

Proof. Let x € Q and 0 < R < dist(x,09)/4. We denote Br = Br(z) for simplic-
ity. By means of the Holder inequality with ¢ < n/(n —2), the Sobolev - Poincare’s
and the Caccioppoli’s inequalities we obtain

/B |Du — (Du) g, | Ink (b| Du — ¢1]?) dy
R

1/q S (o
< (/ |Du— (Du) g, |* dy) (/ /(@ 1>(b|Du—c1|2)dy)
BR BR

< C}QDRn(—1+1/q)+2/

Br

1-1/q

1-1/q
|D2u|2(/B lan/(qfl)(b|Du — |} dy)
R

1-1/q
< CI%CC,ICC( 7[ lni“/(qfl)(b|Du —al?) dy) / |Du — co|? dy
B

R Bar

and finally, we obtain the result by means of Lemma (3.4 O
The next Lemma is well known; see, e.g. [11 [9] 23].

Lemma 3.10. Let v € W12(Q,RY) be a weak solution to the linear system with
constant coefficients of the type satisfying (i) and (iii). Then there exists a
constant L = cp,(n, N)(M/v)?*™+1) such that for every x € Q and 0 < 0 < R <
dist(x, 00Q) the estimate

g
[ Do) = Doy < L) [ Duly) - (D)l dy
Bo(z) Br(x)

holds.
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4. PROOFS OF THEOREMS

Proof of Theorem[2.1 At first we recall that we set ¢(r) = ¢(zo,7) = fBr(zo) |Du—

(D), .r|? dz for B.(zg) C Q. Now let zo be any fixed point of Qy C €, with
dist(Q9,092) > d > 0 and let 0 < R < d. Where no confusion can raise, we will
use the notation Bg, ¢(R) and (Du)pg instead of Br(xo), ¢(zo, R) and (Du)y, g.
Denoting by A?fo = A?;-ﬁ((Du)R)7

AP = /O AP ((Du)g + t(Du — (Du)g)) dt

we can rewrite the system (1.1)) as

—D, (A?‘ﬁ

SDgul) = —Da (A5 — A%) (Dawd — (Dgud)r) ).

Split u as v + w where v is the solution to the Dirichlet problem

_D, (A‘?‘ﬁ

"D’ ) =0 in Br
v—uec Wy?(Bg,RY)

and w € Wy*(Bg,RY) is the weak solution of the system

~Da (A%{BODﬁwj) =—Da ((Az?fo — A7) (D! — (Dﬁuj>R))-

For every 0 < 0 < R it follows from Lemma that

/ |Dv — (Dv),|? da < L(%)””/ \Dv — (Dv)g|? dz

o BR
hence

/ \Du — (Du),|? da

BO‘

< 2L(%)”+2/ \Du—(Du)RdeH/ |Dw|?* dx
Br Br

§4L(%)”+2/ \Du—(Du)R|2dm+2(1+2L(%)”+2)/ | Dwl|? d.
Br Br

Now w € Wy?(Bg,RN) satisfies
/ A%?ODﬁijagpi dx
Br

< /B A28, — A% Dgud — (Dg?) | D |
R

SnN(/BR W*(|Du — (Du)g|)| Du — (Du)R|2d:v)l/2(/BR|Dg02da:)1/2

for any ¢ € W&’Z(BR,RN). Choosing ¢ = w, we obtain

u2/ | Dw|? dx < n2N2/ w?(|Du — (Du)g|)|Du — (Du)g|* dx.
Br Br
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Now

o(0) = / |Du — (Du), | de

o

<aL(F)"? [ 1Du - (Dl do (11)
R Br
2n2N%(1 + 2L(%)"?
+ 2O [ (1~ (DuyhlDu — (D) .
Br

As w is bounded by we, we can deduce from (4.1)) that

(E

é(0) < [4L(%)”+2 T %(1 AL R)7L+2)4n2N2(“’§)2]¢(R)

for any 0 < ¢ < R < d. Following Lemma we put A = 4L, B, = 0 and
By = 4n?N?(“=)2. Now the assumptions of Lemma will be fulfilled if

42N (Y22 < ¢ .
1%

Using (2.2)) we can conclude (taking into account (1.2)), (1.3) as well) that the result
follows in a standard way. O

Proof of Theorem[2.3. We recall again that we set ¢(r) = ¢(zo,7) = fBT(%) | Du —
(D) .r|? dz and U, = U,(zq) = 15, (a0) 1Pu(@) — (Du) gy r|? dx for B,.(xq) C Q.
Let 29 be any fixed point of Qq C €, dist(,0Q) > 2d > 0, Bagr(zo) C Q.
Following the first part of the proof of Theorem step by step, we obtain the
estimate (4.1)).

To estimate the last integral in (4.1) we use the Young inequality (3.3) (here
complementary functions are defined through (3.1))) and for any 0 < ¢ < w?, we
obtain

< E/BR |Du — (Du)g|* In!{ (ag|Du — (Du)g|?) dz + /BR @(W?R) g 42

=cli + 15

where w%(z) = w?(|Du(z) — (Du)gl).
The term I; can be estimated by means of Proposition [3.9] and we obtain

I < C}CcaccCht(2"acUsg) "/ 1¢(2R) = K (acUzr)' ™/ 9(2R) (4.3)

where 1 < ¢ <n/(n—2) and K = CI%CCGCC(gnCW)l—l/q.
Applying Lemma [3.3] to the second integral I, we have

W2 1 [ d~ W2(t) 1y
L=[ ¥(Eygz==-[ =¥ bdt:= 21 e
. /BR(g)x a/o dt(€)mR() a2 (4.4)
where
~ 2 2 w2 (t —
\Il(L(t)) - L(t)e(ﬁii)ww Y fort>0

and mp(t) = m({y € Br(o) : |[Du — (Du)g| > t}).
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Using the estimate mg(t) < k, R", ky, is the Lebesgue measure of the unit ball,
we have (we use Lemma

Le [ 25 Ormpars [~ 25D ymaey i

dt to €
o g ~ W3(t) bd <~ w?(s) °

< " — U —U

_mnR/O ; ( )dt+ sup ( /to I ( 5 )ds) . mp(s)ds

d € to<t<oo

t—to

~ 2 ~ , 2
|:\I,(W(t)) _ \I/(W (to)

g (< () BT )}/BRDU_(DU)RW

< nn\Il(T)R” + sup

to<t<oo

Kn = WQ(tO) M 1/2 n/2 ;1/2
< g V(F) SRR + g2 (2R) 262 (2R)

{f,(@) M

e TQ}J #(2R) (4.5)

<

where

~ 2 ~ 2
(¥ ®y _ P (to)
M= sup =) (= ) (4.6)
to<t<oo t—to

If for some R > 0 the average Ur = 0 then it is clear that xy is the regular point.
So in the next we can suppose Uy is positive for all R > 0.

Inserting (4.2)—(4.5) into (4.1 yields
6(0) < AL(F)"?6(R) + 2 N2(1 +2L(3)"?)

= w2 4.7)
eK 1 \11(7(“’)) M (
X [~ (2"aelUsg) Y9 4 — E 2R).
[VQ ( ag 2R) + ay2( Usn + m)]é( )
In (4.7) we can choose
16en?N?
=———— for U 0
@ 601/200 UQR or Yok >
where 0 < ¢y < 1 be an arbitrary constant and
e=esP (4.8)

where «, 8 € R are constants, ¢y = (we remind that w?(ty) = ¢).

Then for Usr > 0, we obtain

1
4(2n+5 )0/ (n+2-9)

#(0) < AL( L) 6(R) + 5 (14 20( %))

x [KE ot e D0=1/0,, 6-0e-1/a) | 4% (e + M \/Uzr)]$(2R)
(4.9)

_ (2 1 T yn+2
= 4L(3) " o(R) + 2(1 +2L(%) )
« [KKl(eg—lyﬂ—Q)Q—l/q + % + %CO \/@] €0¢(2R)

where K| = 4n?N?(2"t*en?N? /cq)t—1/4.
The constants « and 3 can be always chosen in such a way that

KK (g vP72)2 1 < %
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and finally we have

1 1 1
¢(o) < 4L(%)n+2¢(R> + 5(1 + 2L(%)n+2) (5 + EMCO VUzr)€0$(2R). (4.10)
We can put
Bi = sey, By=—M
1= 5% 2= 10 €0
and if we take into account assumption (2.4) of Theorem we can use Lemma
3.9l [l

Proof of Theorem[2.6. Let xy € Qg and R; > 0 be chosen in such a way that
Bog, (z9) € ©Q and let 0 < R < R;y. Using the same procedure as in the proof of
Theorem gives us the estimates (4.10). As z¢ € Qg, it is clear that there exists
0 < Ry < Ry such that Usg, (z0) < 25/(Mcp)? and so is satisfied and we can
use Lemma [3.5] in the same way as at the end of the proof of Theorem The
claim then follows in a standard way (see, e.g. [5, Chapter VI]. O

5. ILLUSTRATING EXAMPLES AND COMMENTS

Example 5.1 ([6]). A class of systems where the above results can be applied is
the class of the perturbed linear elliptic systems. Suppose £ = (L%ﬁ)ﬁj’a’ﬁzl
symmetric positive definite constant matrix such that

NP < Lfele)

is

and put
A3 (p) = L ply + m(sin /|pi| — v/|p,| cos /Ipi, )
where 0 < m < A. The modulus of continuity w from (iv) has the form
1
olt) = §m\/i for 0 <t < 4,
m for t > 4.

If m is chosen in a suitable way (with respect to A) then our results can guarantee
the interior regularity of the gradient of weak solution to the Dirichlet problem

().

Example 5.2. To illustrate some parameters from the proof of Theorem [2.3] we
can consider the following modulus of continuity

wo(t):% for 0 <t <tg, s>0,
w(t) = w(t) = VEkt?, fortg<t<t;,0<y<1, k>0
Woo for t > t;

where € > 0 is from ([4.8)), wo(to) = wi(to) = VE < Weo-
For M from (4.6) (see (4.4) and (4.7)) as well) where w is the above function we
obtain the estimate
~ 2 ~ 2
J(¥ ) — P« (to)
M oy T B
to<t<t; t—1o

(M)% 2 (L)ﬁ
t2e' 2vE —ty e 2vE

to<t<t t—to
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Example 5.3. As an another typical sample of the function w = w(t) considered
in Theorem we can take modulus of continuity

wo(t):% for 0 <t <ty s>0,

w(t) = Qwi(t) =/eln(l+0(¢)), for to<t<ty, (5.1)
Woo for t > t;

where € > 0 is from (4.8)), wo(to) = w1(to) = V& < weo, B(t) is a suitable increasing
function such that lim,_,,+ 0(t) = e — 1. For M defined by (4.6)), where w is the

above function, we obtain

B ()

[

M= su
to<tEt1 t—to

2
1 )2;;71

12
(1 + O(t))2vee lzvm A0 720 (4 4 o)) — olavm
= Ssu
to<tI<)t1 t—to

If we choose = 2, tg > 1 and 6(t) = O(e? + t)lnl/s(”rt) (© > 0 is a constant), we
can see that M <1 for ty < t < t1. In this case the condition ((2.4]) takes the form

1
ECO Ugd(l')gl, VreQ.

Example 5.4. In Q = Br(0) C R™ (the fact, that the ball Br is centered at
zero, has no importance for next considerations) we consider the Dirichlet problem
for g € VVIE’CQ(R”,RN) and, moreover, we assume that for 0 < A < n 42
the estimate R~ fBR(O) |Dg — (Dg)o.r|?dy < c()), with ¢(\) > 0 holds. Then,
choosing Qp = B,(0), 0 < r < R and d = (R — r)/2, the condition will have
the form

1 1 T

gMCO (C’D c(MN)k, (1 — =
where the constant Cp is from the estimate . If the function w is defined by
then the condition will have the form

r

1
£ €0 (C’D (M), (1 — 7

The last two conditions show that a suitable choice of R and A gives regularity of
solution in Qy = B,(0).

1/2

)= RA‘") <1, VaeB(0) (5.2)
1/2

) R’\‘”) <1, VazeB(0) (5.3)

6. APPENDIX

Proof of the estimate (1.2)). Denote by A%ﬁ (p) = 0AY (p)/@p? and put
1

Then we have
0 = —Da(A2(Du)) = —Da[AZ(Du) — AZ(0)]

= —Da( /O 1 %A?(wu) dt) = —Da( /0 1 A2 (tDu) Dy dt)

= —Dqo (A} Dgu).
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Now the definition of the weak solution to (1.1)) has the form
0= / AP Dgul Do’ dz, Vo € Wy (Q,RY).
Q

Setting ¢ = u — g into the previous equality and using (ii), (iii) we obtain

1// |Du|2dfc§MZZ/ |Dpt’||Dag’| da.
Q Q

(I NE]
The estimate
nN nN 1/2
Z|ck| < (nNZ |ck\2) , c€R
k=1 k=1
leads to
1/2 1/2
1// |Du|? dz < nNM(/ | Dul? dx) (/ |Dg|? da:) .
Q Q Q
The estimate (1.2]) follows from the above inequality. O

Proof of the estimate(1.3]). Denote by A?jﬁ (p) = 0A (p)/@p? and put

AP = /01 AP ((Dg)a + t(Du — (Dg)a)) dt.
The same procedure as above gives
0= —Da (A7 (Du)) = —Da[ A (Du) = A7 ((Dg))] = —Da(A7 (Dgu’ = (Dsg)a)).
Now the definition of weak solution to is
0= /Qﬁglf(pﬁuj — (Dpg?)a) Do’ dz, Yo e Wy (Q,RY).
Setting ¢ = [(u’ — (Dag")aza) — (¢° — (Dag')aza)] we have
0= [ A (D~ (Dsg ) (Dot = (Dog')) = (Dag’ = (Dag')o)) do
and finally (as in the proof of the estimate (1.2)) we obtain
[ 1Du= (D)ol dz < NP [ 1Dg = (Dg)a e
Now the estimate
/ |Du — (Du)q|* dr < / |Du —c|*dz, VYceR
Q Q
gives the result. O
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