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REGULARITY ON THE INTERIOR FOR THE GRADIENT OF
WEAK SOLUTIONS TO NONLINEAR SECOND-ORDER

ELLIPTIC SYSTEMS

JOSEF DANĚČEK, EUGEN VISZUS

Abstract. We consider weak solutions to the Dirichlet problem for nonlinear

elliptic systems. Under suitable conditions on the coefficients of the systems

we obtain everywhere Hölder regularity on the interior for the gradients of
weak solutions. Our sufficient condition for the regularity works even though

an excess of the gradient of solution is not very small. More precise partial
regularity on the interior can be deduced from our main result. The main

result is illustrated through examples at the end of this article.

1. Introduction

In this paper we give conditions guaranteeing that a weak solution to the Dirich-
let problem for a nonlinear elliptic system

−Dα

(
Aαi (Du)

)
= 0 in Ω, i = 1, . . . , N,

u = g on ∂Ω
(1.1)

belongs to C1,γ
loc (Ω,RN ) space. Here and in the following, summation over repeated

indices is understood.
By a weak solution to the Dirichlet problem (1.1), we mean a function u in

W 1,2(Ω,RN ) such that∫
Ω

Aαi (Du)Dαϕ
i dx = 0, ∀ϕ ∈W 1,2

0 (Ω,RN )

and u− g ∈W 1,2
0 (Ω,RN ).

Here Ω ⊂ Rn is a bounded open set, n ≥ 3, the function g belongs to the
space W 1,2(Ω,RN ), the coefficients (Aαi )i=1,...,N,α=1,...,n are differentiable, have the
linear controlled growth and satisfy the strong uniform ellipticity condition. More
precisely, denoting by

Aαβij (p) =
∂Aαi

∂pβj
(p)

and assuming that Aαi (0) = 0 we require
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(i) there exists a constant M > 0 such that for every p ∈ RnN

|Aαi (p)| ≤M(1 + |p|),

(ii) |Aαβij (p)| ≤M ,
(iii) the strong ellipticity condition holds; i.e., there exists a constant ν > 0 such

that for every p, ξ ∈ RnN ,

Aαβij (p)ξiαξ
j
β ≥ ν|ξ|

2,

(iv) there exists a real function ω defined and continuous on [0,∞), which is
bounded, nondecreasing, increasing on a neighbourhood of zero, ω(0) = 0
and such that for all p, q ∈ RnN

|Aαβij (p)−Aαβij (q)| ≤ ω(|p− q|).

We set ω∞ = limt→∞ ω(t) ≤ 2M .
Here it is worth to point out (see [9, pg. 169]) that for uniformly continuous co-
efficients Aαβij there exists the real function ω satisfying the assumption (iv) and,
viceversa, (iv) implies the uniform continuity of the coefficients and the absolute
continuity of ω on [0,∞). It is clear that if ω(t) = 0 for t ∈ [0,∞), then the sys-
tem (1.1) is reduced to the system with constant coefficients and in this case the
regularity of weak solutions is well understood (see, e.g. [9] and references therein).

The system (1.1) has been extensively studied (see, e.g. [1, 9, 15, 23]). It is
well known that the Dirichlet problem has a unique solution u ∈ W 1,2(Ω,RN ).
Moreover, for boundary function g ∈W 1,2(Ω,RN ) it holds∫

Ω

|Du|2 dx ≤ CD
∫

Ω

|Dg|2 dx, (1.2)∫
Ω

|Du− (Du)Ω|2 dx ≤ CD
∫

Ω

|Dg − (Dg)Ω|2 dx (1.3)

where (Dg)Ω = 1
m(Ω)

∫
Ω
Dg dx, m(Ω) = mn(Ω) is the n - dimensional Lebesgue

measure of Ω and CD = n2N2(M/ν)2. The estimates (1.2) and (1.3) can be proved
by a standard technique (see [10], Remark on pg.113). For reader’s convenience the
proofs of (1.2) and (1.3) are given in Appendix to this paper.

The first regularity results for n = 2 and for nonlinear systems were established
by Morrey (see [21]) and they state that the gradient of unique solution to (1.1)
is locally Hölder continuous. If n ≥ 3, it is known that the gradient Du may be
discontinuous and unbounded (see [14, 18, 23]).

For n ≥ 3 and for the nonlinear systems many partial regularity results were
obtained, i.e., it was proved that the gradient of any weak solution to (1.1) (or more
general system) is locally Hölder continuous up to a singular set of the Hausdorff
dimension n−2 (see, e.g. [1, 9, 23]). In the last two decades some new methods for
proving the partial regularity of weak solutions to the nonlinear systems, based on
a generalization of the technique of harmonic approximation, have appeared (see,
e.g. [13, 8] and references therein). These methods extend the previous partial
regularity results in such a way that they allow to establish the optimal Hölder
exponent for the gradients of weak solutions on their regular sets.

In this place, it is worth to mention the papers [24, 25] where the authors through
examples showed that (for n = 3) the gradient of the unique minimizer of the
convex and differentiable functional F (in this case (1.1) is the Euler-Lagrange
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equation of F ) can be discontinuous or unbounded. Thus full regularity cannot be
achieved even in this special case. On the other hand, Campanato in [2] proved
that the weak solution of the system (1.1) belongs to W 2,2+ε

loc (Ω,RN ) which implies
that Du ∈ C0,γ

loc (Ω,RnN ) for n = 2 and u ∈ C0,γ
loc (Ω,RN ) for 2 ≤ n ≤ 4, γ ∈

(0, 1). Kristensen and Melcher have recently proved (using a method which avoids
employing the Gehring’s lemma) in [16] that an analogous result is true under the
strong monotonicity and the Lipschitz continuity of the coefficients. Moreover,
they have stated the value of the last mentioned ε as ε = δα/β where δ > 1/50
is a universal constant, 0 < α ≤ β are the constant of the monotonicity and the
Lipschitz continuity constant respectively.

The aim of this paper is to extend the last mentioned results and the results of
the paper [7], giving some conditions sufficient for the everywhere interior regularity
of the solutions to the systems (1.1) for n ≥ 3. In the paper [7], the first author
with John and Stará gave conditions, expressed in terms of the continuity modulus
of the first derivatives of the coefficients of (1.1), that guarantee the local Hölder
continuity of the gradients of solutions to (1.1) in Ω. More precisely, they proved
that there exists ν0 > 0 such that for every ellipticity constant ν ≥ ν0 with the ratio
M/ν ≤ P , where P > 1 is a given constant, the gradients of weak solutions to (1.1)
are locally Hölder continuous in Ω (see [5] as well). The point of the current paper
is to give conditions guaranteeing the same quality of the solutions to (1.1) when
the ratio ω∞/ν is admitted to be arbitrary and no lower bound for the constant of
ellipticity ν is needed (we remind that if the constant M is given, then ω∞ ≤ 2M).

The main results are stated in two theorems. The first of them refers that if
ω∞/ν is small enough, the solutions to (1.1) are regular. This result is not very
surprising but, moreover, an upper bound Ccr (although probably not optimal)
of ω∞/ν is designed there (see (2.2) below). If ω∞/ν > Ccr, then a sufficient
condition for regularity of solutions to the system (1.1) is given in Theorem 2.3.
A basic advantage of condition (2.4) below is that it admits (for sufficiently big
ellipticity constant ν) an arbitrary growth of the continuity modulus ω = ω(t)
when t is near by zero. Here it is needful to note that Theorem 2.3 works likewise
when ν is small but, in this case, the modulus of continuity ω has to grow slowly
enough. Many proofs of regularity results for systems like the system (1.1) are
based on a certain excess-decay estimate for the excess function Ur(x) (in our case
this function is defined by (2.1) below). The key assumption of the excess-decay
estimate is that Ur(x) has to be sufficiently small on a ball Br(x) b Ω. On the
other hand, our condition (2.4) does not suppose smallness of the excess function
Ur(x) (see Remark 2.4 below). We would like to note that more delicate estimates
and careful designing of some parameters in proofs allow us to state these results
in a much simpler form than in [7].

Various conditions, guaranteeing the regularity of weak solutions, were studied
by Giaquinta and Nečas in [11, 12] (the Liouville’s condition for regularity formu-
lated through L∞-spaces), Daněček in [4] (the Liouville’s condition for regularity
formulated through BMO-spaces), Chipot and Evans in [3] and Koshelev in [15].
Koshelev’s condition, interpreted according to the assumptions (ii) and (iii), is the
following : If it is supposed that nNM |ξ|2 ≥ Aαβij (p)ξiαξ

j
β ≥ ν|ξ|2 for every p,
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ξ ∈ RnN , Aαβij = Aβαji and

M

ν
<

1
nN

√
1 + (n−2)2

n−1 + 1√
1 + (n−2)2

n−1 − 1
,

then any solution to (1.1) has the locally Hölder continuous gradient in Ω. It is
proved in [15] that the above condition is sharp. The same result is proved, by
an another method which is based on an estimate of the gradient of solution in
a suitable weighted Morrey space, in [18]. Further results concerning the local
(and global as well) Hőlder regularity of the solutions and the dispersion of the
eigenvalues of the coefficients matrix of elliptic systems can be found in [20, 19].
On the other hand, the last mentioned condition does not cover the linear systems
with constant coefficients and the large dispersion of the eigenvalues of Aαβij , while
every linear system with constant coefficients satisfies the conditions (2.2) and (2.4)
as well. Chipot and Evans in [3] consider the variational problem and assume that
Aαβij (p) tend to a constant matrix for p tending to infinity. Thus the modulus of
continuity of Aαβij (p) approaches zero for sufficiently large p while our assumption
requires that its changes are small enough. Herein we would like to note that, as
far as we know, the above mentioned condition from the paper [3] was for the first
time employed in [4].

The methods of proving main results follow the standard procedures used in the
direct proofs of the partial regularity. The novelty is an employment of special
complementary Young functions which allows us (through a modification of the
Natanson’s Lemma - see Lemma 3.7 below) to get some key estimates. As a conse-
quence of our proof of the main result (Theorem 2.3 below) we obtain the partial
regularity result concerning the more precise identification of the singular set of the
weak solution to (1.1). As it is known (see [9, 23, 13, 8]), the singular set of the
weak solution to (1.1) is characterized as follows

Ωsing =
{
x ∈ Ω : lim inf

r→0
−
∫
Br(x)

|Du(y)− (Du)x,r|2 dy > 0
}
.

Our description of the singular set Ω \ ΩR, from Theorem 2.6 below, indicates
clearly that Ω\ΩR ( Ωsing and the constant which describes Ω\ΩR is computable.

Four examples, illustrating above mentioned results, are given at the end of the
paper. The first one presents a system which our results can be applied to. The
second and the third of them show typical samples of modulus of continuity that
our main result deals with. The fourth one indicates that the regularity of gradient
of boundary data, which is considerably weaker than the Campanato’s one, does
not admit the singularities of the weak solutions to (1.1) in a subdomain.

2. Main results

By Ω0 b Ω we will understand any bounded subdomain Ω0 which is compactly
embedded into Ω (i.e. Ω0 ⊂ Ω0 ⊂ Ω) and the boundary ∂Ω0 is smooth. For x ∈ Ω,
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r > 0 such that Br(x) = {y ∈ Rn : |y − x| < r} ⊂ Ω we set

Ur(x) =
1

m(Br(x))

∫
Br(x)

|Du(y)− (Du)x,r|2 dy

:= −
∫
Br(x)

|Du(y)− (Du)x,r|2 dy,
(2.1)

φ(x, r) =
∫
Br(x)

|Du(y)− (Du)x,r|2 dy,

where (Du)x,r = −
∫
Br(x)

Du(y) dy and κn is the n - dimensional Lebesgue measure
of the unit ball.

Theorem 2.1. Let n ≤ ϑ < n + 2, Ω0 b Ω with dist(Ω0, ∂Ω) ≥ d > 0 be given.
Let u be a weak solution to the Dirichlet problem (1.1) where g ∈W 1,2(Ω) and the
hypotheses (i), (ii), (iii), (iv) be satisfied with M , ν and the function ω for which

ω∞
ν
≤ 1√

8n2N2(2n+5L)
ϑ

n+2−ϑ

:= Ccr (2.2)

where the constant L is given in Lemma 3.10 below. Then

‖Du‖L2,ϑ(Ω0,RnN ) ≤ cd−ϑϑ ‖Dg‖L2(Ω,RnN ) (2.3)

for some 0 < dϑ ≤ d. The norm ‖Du‖L2,ϑ(Ω0,RnN ) is defined in Definition 3.1
below.

Remark 2.2. The inequality (2.3) implies that Du ∈ BMO(Ω0,RnN )) for ϑ = n
and Du ∈ C0,(ϑ−n)/2(Ω0,RnN )) for n < ϑ < n+ 2.

For the rest of this article, we always suppose that ω∞/ν > Ccr.

Theorem 2.3. Let Ω0 b Ω with dist(Ω0, ∂Ω) ≥ 2d > 0 and n ≤ ϑ < n + 2 be
given. Let u be a weak solution to the Dirichlet problem (1.1) where g ∈ W 1,2(Ω)
and the hypotheses (i), (ii), (iii), (iv) be satisfied with M , ν and the function ω.
Then the condition

1
5
Mc0

√
U2d(x) ≤ 1, ∀ x ∈ Ω0 (2.4)

where 0 < c0 ≤ 1 and

M = sup
t0<t<∞

ω2(t)
ε e(

ω2(t)
2
√
µε )2/(2µ−1)

− e( 1
2
√
µ )2/(2µ−1)

t− t0

implies that Du ∈ C0,(ϑ−n)/2(Ω0,RnN ) in the case ϑ > n and Du ∈ BMO(Ω0,RnN )
for ϑ = n. Here t0 > 0, ω(t0) =

√
ε, ε > 0 is specified in (4.8) where the constant

ε0 = 1
4(2n+5L)ϑ/(n+2−ϑ) (L is the constant from Lemma 3.10) and µ ≥ 2.

Remark 2.4. As it is visible from the condition (2.4), an appropriate choice of
the constant c0 guarantees the regularity even if the excess U2d is not assumed
to be very small in Ω0. Moreover, the term (U2d(x))1/2 in (2.4) can be replaced
with ‖Du‖L2(Ω,RnN )/(2d)n/2 or, in the case of the Dirichlet problem (1.1), with
C

1/2
D ‖Dg‖L2(Ω,RnN )/(2d)n/2 where CD is from (1.2). See Example 5.2 and 5.3 for

additional information.
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Remark 2.5. It can be seen (according to the assumption (iii)) that M is finite.
On the parameter µ we only quote that its main goal is to damp the exponential
growth. A structure of the Young functions in (3.1) and the estimates (4.3) - (4.5)
below indicate a role of µ. It is visible from these estimates that it is possible to
find a value of the parameter µ which is optimal in some measure.

The next theorem is a straightforward consequence of Theorem 2.3. It presents
the well-known partial regularity result but unlike the other partial regularity re-
sults this theorem describes the so-called singular set a little bit more precisely.

Theorem 2.6. Let n < ϑ < n + 2 be given and u ∈ W 1,2
loc (Ω,RN ) be a weak

solution to the system (1.1). Let the hypotheses (i), (ii), (iii), (iv) be satisfied
with M , ν and the function ω. Then there exists an open set ΩR ⊂ Ω such that
u ∈ C1,(ϑ−n)/2(ΩR,RN ), and Hn−2(Ω \ ΩR) = 0, where Hn−2 is the (n − 2) -
dimensional Hausdorff measure. Moreover,

Ω \ ΩR =
{
x ∈ Ω : lim inf

r→0
−
∫
Br(x)

|Du(y)− (Du)x,r|2 dy ≥ (
5
Mc0

)2
}

(2.5)

where the constants M and c0 are defined in Theorem 2.3.

3. Preliminaries

Besides the spaces C∞0 (Ω,RN ), the Hölder spaces C0,α(Ω,RN ) and the Sobolev
spaces W k,p(Ω,RN ), W k,p

0 (Ω,RN ), we use the Campanato spaces Lq,λ(Ω,RN ) (see
Definition 3.1 below). By Xloc(Ω,RN ) we denote the space of functions which
belong to X(Ω̃,RN ) for every subdomain Ω̃ b Ω with a smooth boundary.

Definition 3.1 ([17]). Let λ ∈ [0, n + q], q ∈ [1,∞). The Campanato space
Lq,λ(Ω,RN ) is the subspace of such functions u ∈ Lq(Ω,RN ) for which

[u]qLq,λ(Ω,RN )
= sup
r>0,x∈Ω

1
rλ

∫
Ωr(x)

|u(y)− ux,r|q dy <∞

where ux,r = −
∫

Ωr(x)
u(y) dy and Ωr(x) = Ω ∩ Br(x). The norm in the space

Lq,λ(Ω,RN ) is defined by ‖u‖Lq,λ(Ω,RN ) = ‖u‖Lq(Ω,RN ) + [u]Lq,λ(Ω,RN ).

Proposition 3.2 ([1, 9, 17]). For a bounded domain Ω ⊂ Rn with a Lipschitz
boundary, for q ∈ [1,∞) and 0 < λ < µ < ∞ the relation Lq,µ(Ω,RN ) ⊂
Lq,λ(Ω,RN ) holds and Lq,λ(Ω,RN ) is isomorphic to the C0,(λ−n)/q(Ω,RN ), for
n < λ ≤ n+ q.

Now, let Φ, Ψ be a pair of the complementary Young functions

Φ(u) = u lnµ+(au), Ψ(u) ≤ Ψ(u) =
1
a
ue( u

2
√
µ )2/(2µ−1)

for u ≥ 0 (3.1)

where a > 0 and µ ≥ 2 are constants,

ln+(au) =

{
0 for 0 ≤ u < 1/a,
ln(au) for u ≥ 1/a.

(3.2)

Then the Young inequality for Φ, Ψ reads

uv ≤ Φ(u) + Ψ(v), u, v ≥ 0. (3.3)
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Lemma 3.3 ([26, pg.37]). Let φ : [0,∞) → [0,∞) be a nondecreasing function
which is absolutely continuous on every closed interval of finite length, φ(0) = 0. If
w ≥ 0 is measurable and E(t) = {y ∈ Rn : w(y) > t} then∫

Rn
φ ◦ w dy =

∫ ∞
0

m
(
E(t)

)
φ′(t) dt.

The next Lemma will be employed in the proof of Theorem 2.3.

Lemma 3.4 ([5, pg.388]). Let v ∈ L2
loc(Ω,RN ), N ≥ 1, Br(x) b Ω, b > 0 and

s ∈ (1,+∞). Then∫
Br(x)

lns+(b|v|2) dy ≤ s
(s− 1

e

)s−1
b

∫
Br(x)

|v|2 dy.

The following Lemma is a small modification of [1, Lemma 1.IV].

Lemma 3.5. Let A, R0 ≤ R1 be positive numbers, n ≤ ϑ < n+ 2, η a nonnegative
and nondecreasing function on (0,∞). Then there exist ε0, c positive so that for
any nonnegative, nondecreasing function φ defined on [0, 2R1] and satisfying with
(B1 +B2η(U2R0)) ∈ [0, ε0] the inequality

φ(σ) ≤
{
A(

σ

R
)n+2 +

1
2
(
1 +A(

σ

R
)n+2

)
[B1 +B2η(U2R)]

}
φ(2R) (3.4)

for all σ, R such that 0 < σ < R ≤ R0, it holds

φ(σ) ≤ cσϑφ(2R0), ∀σ : 0 < σ ≤ R0. (3.5)

Remark 3.6. Note that we can take

ε0 =
1

2(2n+3A)
ϑ

n+2−ϑ
, c =

( (2n+3A)
1

n+2−ϑ

2R0

)ϑ
.

Proof. I. Without loss of generality we can suppose that A ≥ 1. Choose τ ∈ (0, 1)
so that 2n+3Aτn+2−ϑ = 1, i.e. τ = ( 1

2n+3A )1/(n+2−ϑ), ε0 = τϑ/2.
II. We will prove by induction that

φ(2τkR0) ≤ τkϑφ(2R0), U2τkR0 ≤ U2R0 . (3.6)

Let k = 1. Putting σ = 2τR0, R = R0 in (3.4) we obtain thanks to the assumptions
on τ , B1, B2η, ε0, that

φ(2τR0)

≤
{

2n+2Aτn+2 +
1
2

(1 +A(2τ)n+2)[B1 +B2η(U2R0)]
}
φ(2R0)

≤ τϑ
{

2n+2Aτn+2−ϑ +
1
2

(1 + 2n+2Aτn+2−ϑ)[B1 +B2η(U2R0)]τ−ϑ
}
φ(2R0)

≤ τϑ
(

2n+2Aτn+2−ϑ +
3
4
ε0τ
−ϑ
)
φ(2R0)

≤ τϑφ(2R0).

Therefore,
U2τR0 ≤ U2R0 .

Suppose (3.6) is valid for j = 1, . . . , k and put σ = 2τk+1R0, R = τkR0 into (3.4).
We obtain

φ(2τk+1R0) ≤
{

2n+2Aτn+2 +
1
2

(1 +A(2τ)n+2)[B1 +B2η(U2τkR0)]
}
φ(2τkR0).
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Using now (3.6) for j = k, choice of τ , assumptions on B1, B2η, ε0 and estimates
of φ(2τkR0) we have

φ(2τk+1R0) ≤
(

2n+2Aτn+2−ϑ +
3
4
ε0τ
−ϑ
)
τϑφ(2τkR0)

≤ τϑφ(2τkR0) = τϑ(k+1)φ(2R0).

As ϑ ≥ n it immediately implies the estimate U2τk+1R0 ≤ U2R0 and we have (3.6).
III. Now let σ be an arbitrary positive number less than R0. Then there is an

integer k such that 2τk+1R0 ≤ σ < 2τkR0. Using the monotonicity of φ, this
inequality and (3.6) we obtain

φ(σ) ≤ φ(2τkR0) ≤ τkϑφ(2R0) ≤ σϑ 1
(2τR0)ϑ

φ(2R0).

If we set c = (2τR0)−ϑ in this estimate, the proof is complete. �

In the proof of Theorem 2.3 we will use a modification of the Natanson’s Lemma
[22, pg.262]. It reads as follows.

Lemma 3.7. Let f : [a,∞) → R be a nonnegative function which is integrable on
[a, b] for all a < b <∞ and

N = sup
0<h<∞

1
h

∫ a+h

a

f(t) dt <∞

is satisfied. Let g : [a,∞) → R be an arbitrary nonnegative, non-increasing and
integrable function. Then ∫ ∞

a

f(t)g(t) dt

exists and ∫ ∞
a

f(t)g(t) dt ≤ N
∫ ∞
a

g(t) dt .

Remark 3.8. The foregoing estimate is optimal because if we put f(t) = 1, t ∈
[a,∞) then an equality will be achieved.

Proof. For a < b <∞ we put

Nb = sup
0<h≤b−a

1
h

∫ a+h

a

f(t) dt <∞ .

The integral
∫ b
a
f(t)g(t) dt exists because f(t)g(t) ≤ g(a)f(t), for almost all t ≥ a.

If we put F (t) =
∫ t
a
f(s) ds and use the integration by parts and the fact that

F (t) ≤ (t− a)Nb, we obtain∫ b

a

f(t)g(t) dt =
∫ b

a

F ′(t)g(t) dt = F (b)g(b) +
∫ b

a

F (t)(−g′(t)) dt

≤ Nb
[
(b− a)g(b) +

∫ b

a

(t− a)(−g′(t)) dt
]

= Nb
∫ b

a

g(t) dt .

For an increasing sequence {bk}∞k=1 such that bk > a and limk→∞ bk =∞ put

fk(t) =

{
f(t) for a ≤ t ≤ bk
0 for bk < t <∞

and gk(t) =

{
g(t) for a ≤ t ≤ bk
0 for bk < t <∞ .
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It is clear that if k →∞ then fkgk → fg a.e. in [a,∞) and∫ ∞
a

fk(t)gk(t) dt =
∫ bk

a

f(t)g(t) dt ≤ Nbk
∫ bk

a

g(t) dt ≤ N
∫ ∞
a

g(t) dt.

Now the Fatou’s Lemma implies the result. �

In the proof of the next proposition we employ the following form of the Cac-
ciopoli’s inequality, which is possible to derive by the difference quotient method
(see [9], pg.43-46). For the weak solution to the system (1.1) it holds∫

Bσ(x)

|D2u|2 dy ≤ CCacc
(%− σ)2

∫
B%(x)

|Du− (Du)x,%|2 dy (3.7)

where x ∈ Ω, 0 < σ < % ≤ dist(x, ∂Ω)), CCacc = 16n2N2(M/ν)2.

Proposition 3.9. Let u ∈ W 1,2(Ω,RN ) be a weak solution to the system (1.1).
Then for every ball B2R(x), x ∈ Ω and arbitrary constants b > 0, µ ≥ 2, c1, c2 ∈ R
we have∫

BR(x)

|Du(y)− (Du)BR(x)|2 lnµ+(b|Du(y)− c1|2) dy

≤ C2
PCCacc

(
Cqµb−

∫
BR(x)

|Du(y)− c1|2 dy
)1−1/q

∫
B2R(x)

|Du(y)− c2|2 dy

where 1 < q ≤ n/(n−2), Cqµ = qµκn
q−1 ( (µ−1)q+1

(q−1)e )
(µ−1)q+1
q−1 and CP (n, q) is the Sobolev

- Poincarè constant.

Proof. Let x ∈ Ω and 0 ≤ R ≤ dist(x, ∂Ω)/4. We denote BR = BR(x) for simplic-
ity. By means of the Hölder inequality with q ≤ n/(n−2), the Sobolev - Poincarè’s
and the Caccioppoli’s inequalities we obtain∫

BR

|Du− (Du)BR |2 lnµ+(b|Du− c1|2) dy

≤
(∫

BR

|Du− (Du)BR |2q dy
)1/q(∫

BR

lnqµ/(q−1)
+ (b|Du− c1|2) dy

)1−1/q

≤ C2
PR

n(−1+1/q)+2

∫
BR

|D2u|2
(∫

BR

lnqµ/(q−1)
+ (b|Du− c1|2) dy

)1−1/q

≤ C2
PCCacc

(
−
∫
BR

lnqµ/(q−1)
+ (b|Du− c1|2) dy

)1−1/q
∫
B2R

|Du− c2|2 dy

and finally, we obtain the result by means of Lemma 3.4. �

The next Lemma 3.10 is well known; see, e.g. [1, 9, 23].

Lemma 3.10. Let v ∈ W 1,2(Ω,RN ) be a weak solution to the linear system with
constant coefficients of the type (1.1) satisfying (ii) and (iii). Then there exists a
constant L = cL(n,N)(M/ν)2(n+1) such that for every x ∈ Ω and 0 < σ ≤ R ≤
dist(x, ∂Ω) the estimate∫

Bσ(x)

|Dv(y)− (Dv)x,σ|2 dy ≤ L(
σ

R
)n+2

∫
BR(x)

|Dv(y)− (Dv)x,R|2 dy

holds.
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4. Proofs of theorems

Proof of Theorem 2.1. At first we recall that we set φ(r) = φ(x0, r) =
∫
Br(x0)

|Du−
(Du)x0,r|2 dx for Br(x0) ⊂ Ω. Now let x0 be any fixed point of Ω0 ⊂ Ω, with
dist(Ω0, ∂Ω) ≥ d > 0 and let 0 < R ≤ d. Where no confusion can raise, we will
use the notation BR, φ(R) and (Du)R instead of BR(x0), φ(x0, R) and (Du)x0,R.
Denoting by Aαβij,0 = Aαβij ((Du)R),

Ãαβij =
∫ 1

0

Aαβij ((Du)R + t(Du− (Du)R)) dt

we can rewrite the system (1.1) as

−Dα

(
Aαβij,0Dβu

j
)

= −Dα

((
Aαβij,0 − Ã

αβ
ij

)(
Dβu

j − (Dβu
j)R
))
.

Split u as v + w where v is the solution to the Dirichlet problem

−Dα

(
Aαβij,0Dβv

j
)

= 0 in BR

v − u ∈W 1,2
0 (BR,RN )

and w ∈W 1,2
0 (BR,RN ) is the weak solution of the system

−Dα

(
Aαβij,0Dβw

j
)

= −Dα

((
Aαβij,0 − Ã

αβ
ij

)(
Dβu

j − (Dβu
j)R
))
.

For every 0 < σ ≤ R it follows from Lemma 3.10 that∫
Bσ

|Dv − (Dv)σ|2 dx ≤ L(
σ

R
)n+2

∫
BR

|Dv − (Dv)R|2 dx

hence ∫
Bσ

|Du− (Du)σ|2 dx

≤ 2L(
σ

R
)n+2

∫
BR

|Dv − (Dv)R|2 dx+ 2
∫
BR

|Dw|2 dx

≤ 4L(
σ

R
)n+2

∫
BR

|Du− (Du)R|2 dx+ 2(1 + 2L(
σ

R
)n+2)

∫
BR

|Dw|2 dx.

Now w ∈W 1,2
0 (BR,RN ) satisfies∫

BR

Aαβij,0Dβw
jDαϕ

i dx

≤
∫
BR

|Aαβij,0 − Ã
αβ
ij ||Dβu

j − (Dβu
j)R||Dαϕ

i| dx

≤ nN
(∫

BR

ω2(|Du− (Du)R|)|Du− (Du)R|2 dx
)1/2(∫

BR

|Dϕ|2 dx
)1/2

for any ϕ ∈W 1,2
0 (BR,RN ). Choosing ϕ = w, we obtain

ν2

∫
BR

|Dw|2 dx ≤ n2N2

∫
BR

ω2(|Du− (Du)R|)|Du− (Du)R|2 dx.
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Now

φ(σ) =
∫
Bσ

|Du− (Du)σ|2 dx

≤ 4L(
σ

R
)n+2

∫
BR

|Du− (Du)R|2 dx

+
2n2N2(1 + 2L( σR )n+2)

ν2

∫
BR

ω2(|Du− (Du)R|)|Du− (Du)R|2 dx.

(4.1)

As ω is bounded by ω∞, we can deduce from (4.1) that

φ(σ) ≤
[
4L(

σ

R
)n+2 +

1
2

(1 + 4L(
σ

R
)n+2)4n2N2(

ω∞
ν

)2
]
φ(R)

for any 0 < σ < R < d. Following Lemma 3.5 we put A = 4L, B2 = 0 and
B1 = 4n2N2(ω∞ν )2. Now the assumptions of Lemma 3.5 will be fulfilled if

4n2N2(
ω∞
ν

)2 ≤ ε0 .

Using (2.2) we can conclude (taking into account (1.2), (1.3) as well) that the result
follows in a standard way. �

Proof of Theorem 2.3. We recall again that we set φ(r) = φ(x0, r) =
∫
Br(x0)

|Du−
(Du)x0,r|2 dx and Ur = Ur(x0) = −

∫
Br(x0)

|Du(x) − (Du)x0,r|2 dx for Br(x0) ⊂ Ω.
Let x0 be any fixed point of Ω0 ⊂ Ω, dist(Ω0, ∂Ω) ≥ 2d > 0, B2R(x0) ⊂ Ω.
Following the first part of the proof of Theorem 2.1 step by step, we obtain the
estimate (4.1).

To estimate the last integral in (4.1) we use the Young inequality (3.3) (here
complementary functions are defined through (3.1)) and for any 0 < ε < ω2

∞ we
obtain∫

BR

ω2(|Du− (Du)R|)|Du− (Du)R|2 dx

≤ ε
∫
BR

|Du− (Du)R|2 lnµ+
(
aε|Du− (Du)R|2

)
dx+

∫
BR

Ψ(
ω2
R

ε
) dx

= εI1 + I2

(4.2)

where ω2
R(x) = ω2(|Du(x)− (Du)R|).

The term I1 can be estimated by means of Proposition 3.9 and we obtain

I1 ≤ C2
PCCaccC

1−1/q
qµ (2naεU2R)1−1/qφ(2R) = K(aεU2R)1−1/qφ(2R) (4.3)

where 1 < q ≤ n/(n− 2) and K = C2
PCCacc(2

nCqµ)1−1/q.
Applying Lemma 3.3 to the second integral I2 we have

I2 =
∫
BR

Ψ(
ω2
R

ε
) dx =

1
a

∫ ∞
0

d

dt
Ψ̃(
ω2(t)
ε

)mR(t) dt :=
1
a
Ĩ2 (4.4)

where

Ψ̃(
ω2(t)
ε

) =
ω2(t)
ε

e(
ω2(t)
2
√
µ ε )2/(2µ−1)

for t > 0

and mR(t) = m({y ∈ BR(x0) : |Du− (Du)R| > t}).
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Using the estimate mR(t) ≤ κnRn, κn is the Lebesgue measure of the unit ball,
we have (we use Lemma 3.7)

Ĩ2 ≤
∫ t0

0

d

dt
Ψ̃(
ω2(t)
ε

)mR(t) dt+
∫ ∞
t0

d

dt
Ψ̃(
ω2(t)
ε

)mR(t) dt

≤ κnRn
∫ t0

0

d

dt
Ψ̃(
ω2(t)
ε

) dt+ sup
t0<t<∞

( 1
t− t0

∫ t

t0

d

ds
Ψ̃(
ω2(s)
ε

) ds
)∫ ∞

t0

mR(s) ds

≤ κnΨ̃
(ω2(t0)

ε

)
Rn + sup

t0<t<∞

[ Ψ̃(ω
2(t)
ε )− Ψ̃

(ω2(t0)
ε

)
t− t0

] ∫
BR

|Du− (Du)R| dx

≤ κn
2nU2R

Ψ̃
(ω2(t0)

ε

)
φ(2R) +

M
2n/2

κ1/2
n (2R)n/2φ1/2(2R)

<
[ Ψ̃(ω

2(t0)
ε )

U2R
+
M√
U2R

]
φ(2R) (4.5)

where

M = sup
t0<t<∞

Ψ̃(ω
2(t)
ε )− Ψ̃

(ω2(t0)
ε

)
t− t0

. (4.6)

If for some R > 0 the average UR = 0 then it is clear that x0 is the regular point.
So in the next we can suppose UR is positive for all R > 0.

Inserting (4.2)–(4.5) into (4.1) yields

φ(σ) ≤ 4L(
σ

R
)n+2φ(R) + 2n2N2(1 + 2L(

σ

R
)n+2)

× [
εK

ν2
(2naεU2R)1−1/q +

1
aν2

(
Ψ̃
(ω2(t0)

ε

)
U2R

+
M√
U2R

)]φ(2R).
(4.7)

In (4.7) we can choose

a =
16en2N2

ε0ν2c0 U2R
for U2R > 0

where 0 < c0 ≤ 1 be an arbitrary constant and

ε = εα0 ν
β (4.8)

where α, β ∈ R are constants, ε0 = 1
4(2n+5L)ϑ/(n+2−ϑ) (we remind that ω2(t0) = ε).

Then for U2R > 0, we obtain

φ(σ) ≤ 4L(
σ

R
)n+2φ(R) +

1
2

(
1 + 2L(

σ

R
)n+2

)
×
[
KK1ε

α+(α−1)(1−1/q)
0 ν(β−2)(2−1/q) +

ε0
4e2

(
e +M

√
U2R

)]
φ(2R)

= 4L
( σ
R

)n+2
φ(R) +

1
2

(
1 + 2L(

σ

R
)n+2

)
×
[
KK1(εα−1

0 νβ−2)2−1/q +
c0
4

+
M
4e
c0
√
U2R

]
ε0φ(2R)

(4.9)

where K1 = 4n2N2(2n+4en2N2/c0)1−1/q.
The constants α and β can be always chosen in such a way that

KK1(εα−1
0 νβ−2)2−1/q ≤ 1

4
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and finally we have

φ(σ) ≤ 4L(
σ

R
)n+2φ(R) +

1
2
(
1 + 2L(

σ

R
)n+2

)(1
2

+
1
10
Mc0

√
U2R

)
ε0φ(2R). (4.10)

We can put

B1 =
1
2
ε0, B2 =

1
10
Mε0

and if we take into account assumption (2.4) of Theorem 2.3 we can use Lemma
3.5. �

Proof of Theorem 2.6. Let x0 ∈ ΩR and R1 > 0 be chosen in such a way that
B2R1(x0) ⊂ Ω and let 0 < R < R1. Using the same procedure as in the proof of
Theorem 2.3 gives us the estimates (4.10). As x0 ∈ ΩR, it is clear that there exists
0 < R0 < R1 such that U2R0(x0) < 25/(Mc0)2 and so (2.4) is satisfied and we can
use Lemma 3.5 in the same way as at the end of the proof of Theorem 2.3. The
claim then follows in a standard way (see, e.g. [5, Chapter VI]. �

5. Illustrating examples and comments

Example 5.1 ([6]). A class of systems where the above results can be applied is
the class of the perturbed linear elliptic systems. Suppose L = (Lαβij )ni,j,α,β=1 is
symmetric positive definite constant matrix such that

λ|ξ|2 ≤ Lαβij ξ
i
αξ
j
β

and put
Aαi (p) = Lαβij p

j
β +m(sin

√
|piα| −

√
|piα| cos

√
|piα|)

where 0 < m ≤ λ. The modulus of continuity ω from (iv) has the form

ω(t) =

{
1
2m
√
t for 0 ≤ t ≤ 4,

m for t > 4.

If m is chosen in a suitable way (with respect to λ) then our results can guarantee
the interior regularity of the gradient of weak solution to the Dirichlet problem
(1.1).

Example 5.2. To illustrate some parameters from the proof of Theorem 2.3 we
can consider the following modulus of continuity

ω(t) =


ω0(t) = (1+s)s

√
ε

(1+ln
t0es

t )s
for 0 < t ≤ t0, s > 0,

ω1(t) =
√
ε ktγ , for t0 < t ≤ t1, 0 < γ ≤ 1, k > 0

ω∞ for t > t1

where ε > 0 is from (4.8), ω0(t0) = ω1(t0) =
√
ε < ω∞.

For M from (4.6) (see (4.4) and (4.7) as well) where ω is the above function we
obtain the estimate

M = sup
t0<t<t1

Ψ̃(ω
2(t)
ε )− Ψ̃(ω

2(t0)
ε )

t− t0

= k2 sup
t0<t<t1

t2γe( k
2t2γ
2
√
µ )

2
2µ−1

− t2γ0 e( 1
2
√
µ )

2
2µ−1

t− t0
.
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Example 5.3. As an another typical sample of the function ω = ω(t) considered
in Theorem 2.3, we can take modulus of continuity

ω(t) =


ω0(t) = (1+s)s

√
ε

(1+ln
t0es

t )s
for 0 < t ≤ t0, s > 0,

ω1(t) =
√
ε ln(1 + θ(t)), for t0 < t ≤ t1,

ω∞ for t > t1

(5.1)

where ε > 0 is from (4.8), ω0(t0) = ω1(t0) =
√
ε < ω∞, θ(t) is a suitable increasing

function such that limt→t+0
θ(t) = e − 1. For M defined by (4.6), where ω is the

above function, we obtain

M = sup
t0<t<t1

Ψ̃(ω
2(t)
ε )− Ψ̃

(ω2(t0)
ε

)
t− t0

= sup
t0<t<t1

(1 + θ(t))
1

2
√
µ [ 1

2
√
µ ln(1+θ(t))]

−1+ 2
2µ−1

ln(1 + θ(t))− e( 1
2
√
µ )

2
2µ−1

t− t0
.

If we choose µ = 2, t0 ≥ 1 and θ(t) = Θ(e2 + t)ln1/3(1+t) (Θ > 0 is a constant), we
can see thatM≤ 1 for t0 < t < t1. In this case the condition ((2.4) takes the form

1
5
c0
√
U2d(x) ≤ 1 , ∀ x ∈ Ω0 .

Example 5.4. In Ω = BR(0) ⊂ Rn (the fact, that the ball BR is centered at
zero, has no importance for next considerations) we consider the Dirichlet problem
(1.1) for g ∈ W 1,2

loc (Rn,RN ) and, moreover, we assume that for 0 ≤ λ ≤ n + 2
the estimate R−λ

∫
BR(0)

|Dg − (Dg)0,R|2 dy ≤ c(λ), with c(λ) > 0 holds. Then,
choosing Ω0 = Br(0), 0 < r < R and d = (R − r)/2, the condition (2.4) will have
the form

1
5
Mc0

(
CD c(λ)κ−1

n (1− r

R
)−nRλ−n

)1/2

≤ 1, ∀ x ∈ Br(0) (5.2)

where the constant CD is from the estimate (1.3). If the function ω is defined by
(5.1) then the condition (2.4) will have the form

1
5
c0

(
CD c(λ)κ−1

n (1− r

R
)−nRλ−n

)1/2

≤ 1, ∀ x ∈ Br(0). (5.3)

The last two conditions show that a suitable choice of R and λ gives regularity of
solution in Ω0 = Br(0).

6. Appendix

Proof of the estimate (1.2). Denote by Aαβij (p) = ∂Aαi (p)/∂pβj and put

Ãαβij =
∫ 1

0

Aαβij (tDu) dt.

Then we have

0 = −Dα(Aαi (Du)) = −Dα[Aαi (Du)−Aαi (0)]

= −Dα

(∫ 1

0

d

dt
Aαi (tDu) dt

)
= −Dα

(∫ 1

0

Aαβij (tDu)Dβu
j dt
)

= −Dα(Ãαβij Dβu
j).
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Now the definition of the weak solution to (1.1) has the form

0 =
∫

Ω

Ãαβij Dβu
jDαϕ

i dx, ∀ϕ ∈W 1,2
0 (Ω,RN ).

Setting ϕ = u− g into the previous equality and using (ii), (iii) we obtain

ν

∫
Ω

|Du|2 dx ≤M
∑
i,α

∑
j,β

∫
Ω

|Dβu
j ||Dαg

i| dx.

The estimate
nN∑
k=1

|ck| ≤
(
nN

nN∑
k=1

|ck|2
)1/2

, ck ∈ R

leads to

ν

∫
Ω

|Du|2 dx ≤ nNM
(∫

Ω

|Du|2 dx
)1/2(∫

Ω

|Dg|2 dx
)1/2

.

The estimate (1.2) follows from the above inequality. �

Proof of the estimate(1.3). Denote by Aαβij (p) = ∂Aαi (p)/∂pβj and put

Ãαβij =
∫ 1

0

Aαβij ((Dg)Ω + t(Du− (Dg)Ω)) dt.

The same procedure as above gives

0 = −Dα(Aαi (Du)) = −Dα[Aαi (Du)−Aαi ((Dg)Ω)] = −Dα(Ãαβij (Dβu
j−(Dβg

j)Ω)).

Now the definition of weak solution to (1.1) is

0 =
∫

Ω

Ãαβij (Dβu
j − (Dβg

j)Ω)Dαϕ
i dx, ∀ϕ ∈W 1,2

0 (Ω,RN ).

Setting ϕi = [(ui − (Dαg
i)Ωxα)− (gi − (Dαg

i)Ωxα)] we have

0 =
∫

Ω

Ãαβij (Dβu
j − (Dβg

j)Ω)[(Dαu
i − (Dαg

i)Ω)− (Dαg
i − (Dαg

i)Ω)] dx

and finally (as in the proof of the estimate (1.2)) we obtain∫
Ω

|Du− (Dg)Ω|2 dx ≤ n2N2(
M

ν
)2

∫
Ω

|Dg − (Dg)Ω|2 dx.

Now the estimate∫
Ω

|Du− (Du)Ω|2 dx ≤
∫

Ω

|Du− c|2 dx, ∀c ∈ R

gives the result. �
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16 J. DANĚČEK, E. VISZUS EJDE-2013/121

References

[1] S. Campanato; Sistemi ellittici in forma divergenza. Regolarita all’interno, Quaderni Scuola
Norm. Sup. Pisa, Pisa, (1980).

[2] S. Campanato; A Maximum principle for Non-linear Elliptic Systems: Boundary Funda-

mental Estimates, Advances Math. 66 (1987), pp. 291–317.
[3] M. Chipot M. and L. C. Evans; Linearisation at infinity and Lipschitz estimates for certain

problems in the calculus of variations, Proc. Roy. Soc. Edinburgh 102A (1986), pp. 291–303.
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