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EXISTENCE OF MULTIPLE SOLUTIONS FOR A MIXED
BOUNDARY-VALUE PROBLEM

SHAPOUR HEIDARKHANI, GHASEM ALIZADEH AFROUZI, ARMIN HADJIAN

Abstract. Using three critical points theorems, we prove the existence of at

least three solutions for a second-order mixed boundary-value problem.

1. Introduction

In this article, we show the existence of at least three weak solutions for the
mixed boundary-value problem

−(pu′)′ + qu = λf(x, u) + g(u) in (0, 1),

u(0) = 0, u′(1) = 0,
(1.1)

where p, q ∈ L∞([0, 1]) are such that

p0 := ess infx∈[0,1] p(x) > 0, q0 := ess infx∈[0,1] q(x) ≥ 0,

λ is a positive parameter, f : [0, 1] × R → R is an L1-Carathéodory function and
g : R→ R is a Lipschitz continuous function with Lipschitz constant L > 0; i.e.,

|g(t1)− g(t2)| ≤ L|t1 − t2|
for every t1, t2 ∈ R, and g(0) = 0.

Motivated by the fact that such problems are used to describe a large class of
physical phenomena, many authors looked for existence and multiplicity of solutions
for second-order ordinary differential nonlinear equations, with mixed conditions at
the ends. For an overview on this subject, we cite the papers [3, 4, 5, 9, 10, 15]. For
instance, in [9], Bonanno and Tornatore, using Ricceri’s Variational Principle [13],
established the existence of infinitely many weak solutions for the mixed boundary-
value problem

−(pu′)′ + qu = λf(x, u) in (a, b),

u(a) = u′(b) = 0,

where p, q ∈ L∞([a, b]) such that

p0 := ess infx∈[a,b] p(x) > 0, q0 := ess infx∈[a,b] q(x) ≥ 0,

f : [a, b]× R→ R is a Carathéodory function and λ is a positive real parameter.
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We also refer the reader to [12] which, by means of an abstract critical point
result of Ricceri [14], shows the existence of at least three solutions for the two-
point boundary-value problem

u′′ + (λf(t, u) + g(u))h(t, u′) = µp(t, u)h(t, u′) in (a, b),

u(a) = u(b) = 0,

where λ and µ are positive parameters, f : [a, b]×R→ R is continuous, g : R→ R
is Lipschitz continuous with g(0) = 0, h : [a, b] × R → R is bounded, continuous,
with m := inf h > 0, and p : [a, b]× R→ R is L1-Carathéodory function.

The goal of the present paper is to establish some new criteria for (1.1) to have
at least three weak solutions (Theorems 3.1-3.3). Our analysis is mainly based on
three recent critical point theorems that are contained in Theorems 2.1-2.3 below.
In fact, employing rather different three critical points theorems, under different
assumptions on the nonlinear term f , we obtain the exact collections of λ for whihc
(1.1) admits at least three weak solutions in the space {u ∈W 1,2([0, 1]) : u(0) = 0}.

A special case of our main results is the following theorem.

Theorem 1.1. Let p, q ∈ L∞([a, b]) such that

p0 := ess infx∈[a,b] p(x) > 0, q0 := ess infx∈[a,b] q(x) ≥ 0,

g : R → R be a Lipschitz continuous function with the Lipschitz constant L > 0
and g(0) = 0 such that L < p0. Let f : R → R be a continuous function and
put F (t) =

∫ t
0
f(ξ)dξ for each t ∈ R. Assume that F (d) > 0 for some d > 0 and

F (ξ) ≥ 0 in [0, d] and

lim inf
ξ→0

F (ξ)
ξ2

= 0, lim sup
|ξ|→+∞

F (ξ)
ξ2

= 0.

Then, there is λ∗ > 0 such that for each λ > λ∗ the problem

−(pu′)′ + qu = λf(u) + g(u) in (0, 1),

u(0) = 0, u′(1) = 0,

admits at least three weak solutions.

2. Preliminaries

First we here recall for the reader’s convenience our main tools to prove the
results; in the first one and the second one the coercivity of the functional Φ− λΨ
is required, while in the third one a suitable sign hypothesis is assumed. The first
result has been obtained in [6], the second one in [8] and the third one in [2]. We
recall the third as given in [7].

Theorem 2.1 ([6, Theorem 3.1]). Let X be a separable and reflexive real Banach
space, Φ : X → R a nonnegative continuously Gâteaux differentiable and sequen-
tially weakly lower semicontinuous functional whose Gâteaux derivative admits a
continuous inverse on X∗, Ψ : X → R a continuously Gâteaux differentiable func-
tional whose Gâteaux derivative is compact. Assume that there exists x0 ∈ X such
that Φ(x0) = Ψ(x0) = 0 and that

lim
‖x‖→+∞

(Φ(x)− λΨ(x)) = +∞ for all λ ∈ [0,+∞[.
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Further, assume that there are r > 0, x1 ∈ X such that r < Φ(x1) and

sup
x∈Φ−1(]−∞,r[)w

Ψ(x) <
r

r + Φ(x1)
Ψ(x1);

here Φ−1(]−∞, r[)
w

denotes the closure of Φ−1(] − ∞, r[) in the weak topology.
Then, for each

λ ∈ Λ1 :=
] Φ(x1)

Ψ(x1)− sup
x∈Φ−1(]−∞,r[)w Ψ(x)

,
r

sup
x∈Φ−1(]−∞,r[)w Ψ(x)

[
,

the equation
Φ′(u)− λΨ′(u) = 0 (2.1)

has at least three solutions in X and, moreover, for each h > 1, there exist an open
interval

Λ2 ⊆
[
0,

hr

rΨ(x1)
Φ(x1) − sup

x∈Φ−1(−∞,r[)w Ψ(x)

]
and a positive real number σ such that, for each λ ∈ Λ2, equation (2.1) has at least
three solutions in X whose norms are less than σ.

Theorem 2.2. [8, Theorem 3.6] Let X be a reflexive real Banach space, let Φ :
X → R be a sequentially weakly lower semicontinuous, coercive and continuously
Gâteaux differentiable whose Gâteaux derivative admits a continuous inverse on X∗,
and let Ψ : X → R be a sequentially weakly upper semicontinuous and continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that
there exist r ∈ R and u1 ∈ X with 0 < r < Φ(u1), such that

(A1) supu∈Φ−1(]−∞,r]) Ψ(u) < rΨ(u1)
Φ(u1) ;

(A2) for each λ ∈ Λr :=] Φ(u1)
Ψ(u1) ,

r
supu∈Φ−1(]−∞,r]) Ψ(u) [ the functional Φ − λΨ is

coercive.
Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical
points in X.

Theorem 2.3 ([7, Corollary 3.1]). Let X be a reflexive real Banach space, Φ :
X → R be a convex, coercive and continuously Gâteaux differentiable functional
whose derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously
Gâteaux differentiable functional whose derivative is compact, such that

(1) infX Φ = Φ(0) = Ψ(0) = 0;
(2) for each λ > 0 and for every u1, u2 which are local minima for the func-

tional Φ− λΨ and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are two positive constants r1, r2 and v ∈ X, with 2r1 < Φ(v) <
r2
2 , such that

(B1)
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
< 2Ψ(v)

3Φ(v) ;

(B2)
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
< 1

3
Ψ(v)
Φ(v) .

Then, for each λ in]3
2

Φ(v)
Ψ(v)

,min{ r1

supu∈Φ−1(]−∞,r1[) Ψ(u)
,

r2
2

supu∈Φ−1(]−∞,r2[) Ψ(u)
}
[
,
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the functional Φ−λΨ has at least three distinct critical points which lie in Φ−1(]−
∞, r2[).

Let f : [0, 1] × R → R be an L1-Carathéodory function and g : R → R be a
Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

|g(t1)− g(t2)| ≤ L|t1 − t2|
for every t1, t2 ∈ R, and g(0) = 0.

Put

F (x, t) :=
∫ t

0

f(x, ξ)dξ, G(t) := −
∫ t

0

g(ξ)dξ

for all x ∈ [0, 1] and t ∈ R. Denote

X :=
{
u ∈W 1,2([0, 1]) : u(0) = 0

}
;

the usual norm in X is defined by

‖u‖X :=
(∫ 1

0

(u(x))2dx+
∫ 1

0

(u′(x))2dx
)1/2

.

For every u, v ∈ X, we define

(u, v) :=
∫ 1

0

p(x)u′(x)v′(x)dx+
∫ 1

0

q(x)u(x)v(x)dx. (2.2)

Clearly, (2.2) defines an inner product on X whose corresponding norm is

‖u‖ :=
(∫ 1

0

p(x)(u′(x))2dx+
∫ 1

0

q(x)(u(x))2dx
)1/2

.

Then, it is easy to see that the norm ‖ · ‖ on X is equivalent to ‖ · ‖X . In the
following, we will use ‖ ·‖ instead of ‖ ·‖X . Note that X is a separable and reflexive
real Banach space.

We say that a function u ∈ X is a weak solution of problem (1.1) if∫ 1

0

p(x)u′(x)v′(x)dx+
∫ 1

0

q(x)u(x)v(x)dx

− λ
∫ 1

0

f(x, u(x))v(x)dx−
∫ 1

0

g(u(x))v(x)dx = 0

for all v ∈ X.
By standard regularity results, if f is a continuous function, p ∈ C1([0, 1]) and

q ∈ C0([0, 1]), then weak solutions of the problem (1.1) belong to C2([0, 1]), thus
they are classical solutions.

It is well known that (X, ‖ · ‖) is compactly embedded in (C0([0, 1]), ‖ · ‖∞) and

‖u‖∞ ≤
1
√
p0
‖u‖ (2.3)

for all u ∈ X (see, e.g., [16]).
Also, we use the following notation:

‖p‖∞ := ess supx∈[0,1] p(x), ‖q‖∞ := ess supx∈[0,1] q(x).

Suppose that the Lipschitz constant L > 0 of the function g satisfies L < p0.
Finally, put

k :=
3p0

6‖p‖∞ + 2‖q‖∞
, τ :=

p0 − L
p0 + L

.
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For other basic notations and definitions, we refer the reader to [11, 17].

3. Main results

Our main results are the following theorems.

Theorem 3.1. Assume that there exist a function w ∈ X, a positive function
a ∈ L1 and two positive constants r and γ with γ < 2 such that

(A1) ‖w‖2 > 2p0 r
p0−L ;

(A2)
∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx < r
R 1
0 F (x,w(x))dx

r+
p0+L
2p0
‖w‖2

;

(A3) F (x, t) ≤ a(x)(1 + |t|γ) for almost every x ∈ [0, 1] and for all t ∈ R.
Then, for each λ in

Λ1 :=
] p0+L

2p0
‖w‖2∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx
,

r∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

[
,

problem (1.1) admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

Λ2 ⊆
[
0,

hr
2p0 r

(p0+L)‖w‖2
∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

]
and a positive real number σ such that, for each λ ∈ Λ2, the problem (1.1) admits
at least three weak solutions in X whose norms are less than σ.

Theorem 3.2. Assume that there exist a function w ∈ X and a positive constant
r such that

(B1) ‖w‖2 > 2p0 r
p0−L ;

(B2)

R 1
0 sup

|t|≤
√

2r
p0−L

F (x,t)dx

r < 2p0
p0+L

R 1
0 F (x,w(x))dx

‖w‖2 ;

(B3) 2
p0−L lim sup|t|→+∞

F (x,t)
t2 <

R 1
0 sup

|t|≤
√

2r
p0−L

F (x,t)dx

r .
Then, for each

λ ∈
]p0 + L

2p0

‖w‖2∫ 1

0
F (x,w(x))dx

,
r∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

[
,

problem (1.1) admits at least three weak solutions.

Theorem 3.3. Suppose that f : [0, 1] × R → R satisfies the condition f(x, t) ≥ 0
for all x ∈ [0, 1] and t ∈ R. Assume that there exist a function w ∈ X and two
positive constants r1 and r2 with 4p0 r1

p0−L < ‖w‖2 < p0 r2
p0+L such that

(C1) ∫ 1

0
sup
|t|≤

q
2r1

p0−L

F (x, t)dx

r1
<

4p0

3(p0 + L)

∫ 1

0
F (x,w(x))dx
‖w‖2

;

(C2) ∫ 1

0
sup
|t|≤

q
2r2

p0−L

F (x, t)dx

r2
<

2p0

3(p0 + L)

∫ 1

0
F (x,w(x))dx
‖w‖2

.
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Then, for each

λ ∈
]3(p0 + L)

4p0

‖w‖2∫ 1

0
F (x,w(x))dx

, Θ1

[
,

where

Θ1 := min
{ r1∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx
,

r2
2∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

}
,

problem (1.1) admits at least three nonnegative weak solutions v1, v2, v3 such that

|vj(x)| <
√

2r2

p0 − L
for each x ∈ [0, 1] and j = 1, 2, 3.

Let us give particular consequences of Theorems 3.1-3.3 for a fixed test function
w.

Corollary 3.4. Assume that there exist a positive function a ∈ L1 and three pos-
itive constants c, d and γ with c <

√
2d and γ < 2 such that Assumption (A3) in

Theorem 3.1 holds. Furthermore, suppose that
(A4) F (x, t) ≥ 0 for all (x, t) ∈ [0, 1

2 ]× [0, d];

(A5)
∫ 1

0
supt∈[−c,c] F (x, t)dx < (kτc2)

R 1
1/2 F (x,d)dx

kτc2+d2 .
Then, for each λ in

Λ′1 :=
] p0+L

2k d2∫ 1

1/2
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

,
(p0 − L)c2

2
∫ 1

0
supt∈[−c,c] F (x, t)dx

[
,

problem (1.1) admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

Λ′2 ⊆
[
0,

(p0 − L)hc2/2
2kτc2

d2

∫ 1

1/2
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

]
and a positive real number σ such that, for each λ ∈ Λ′2, problem (1.1) admits at
least three weak solutions in X whose norms are less than σ.

Proof. We claim that all the assumptions of Theorem 3.1 are fulfilled with w given
by

w(x) :=

{
2d2x, x ∈ [0, 1/2[,
d, x ∈ [1/2, 1].

(3.1)

and r := (p0 − L)c2/2. It is easy to verify that w ∈ X and, in particular, one has

2p0d
2 ≤ ‖w‖2 ≤ p0d

2

k
.

Hence, taking into account that c <
√

2d, we have

‖w‖2 > 2p0 r

p0 − L
.

Thus, (A1) holds. Since 0 ≤ w(x) ≤ d for each x ∈ [0, 1], the condition (A4) ensures
that ∫ 1/2

0

F (x,w(x))dx ≥ 0,
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so from (A5),∫ 1

0

sup
t∈[−c,c]

F (x, t)dx < (kτc2)

∫ 1

1/2
F (x, d)dx

kτc2 + d2

=
(p0 − L)kc2

(p0 − L)kc2 + (p0 + L)d2

∫ 1

1/2

F (x, d)dx

=
(p0 − L)c2

2

∫ 1

1/2
F (x, d)dx

(p0−L)c2

2 + (p0+L)d2

2k

≤ r
∫ 1

0
F (x,w(x))dx

r + p0+L
2p0
‖w‖2

,

and thus (A2) holds. Next notice that
p0+L
2p0
‖w‖2∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

≤
p0+L

2k d2∫ 1

1/2
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

and
r∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx
=

(p0 − L)c2

2
∫ 1

0
supt∈[−c,c] F (x, t)dx

.

In addition note
p0+L

2k d2∫ 1

1/2
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

<
p0+L

2k d2( (p0−L)c2

2 +
(p0+L)d2

2k
(p0−L)c2

2

− 1
) ∫ 1

0
supt∈[−c,c] F (x, t)dx

=
(p0 − L)c2

2
∫ 1

0
supt∈[−c,c] F (x, t)dx

.

Finally note that
hr

2p0 r
(p0+L)‖w‖2

∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

≤ (p0 − L)hc2/2
2kτc2

d2

∫ 1

1/2
F (x, d)dx−

∫ 1

0
supt∈[−c,c] F (x, t)dx

,

and taking into account that Λ′1 ⊆ Λ1 and Λ2 ⊆ Λ′2, we have the desired conclusion
directly from Theorem 3.1. �

Corollary 3.5. Assume that there exist two positive constants c and d with c < d
such that the assumption (A4) in Corollary 3.4 holds. Furthermore, suppose that

(B4)
∫ 1

0
supt∈[−c,c] F (x, t)dx < kτc2

d2

∫ 1

1/2
F (x, d)dx;

(B5) lim sup|t|→+∞
F (x,t)
t2 <

R 1
0 supt∈[−c,c] F (x,t)dx

c2 .
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Then, for each

λ ∈
]p0 + L

2k
d2∫ 1

1/2
F (x, d)dx

,
(p0 − L)c2

2
∫ 1

0
supt∈[−c,c] F (x, t)dx

[
,

problem (1.1) admits at least three weak solutions.

Proof. All the assumptions of Theorem 3.2 are fulfilled by choosing w as given in
(3.1) and r := (p0 − L)c2/2, and bearing in mind that

2p0d
2 ≤ ‖w‖2 ≤ p0d

2

k
.

and recalling ∫ 1/2

0

F (x,w(x))dx ≥ 0.

Hence, by applying Theorem 3.2 we have the conclusion. �

Proof of Theorem 1.1. Fix λ > λ∗ := (p0+L)d2

kF (d) for some d > 0. Since

lim inf
ξ→0

F (ξ)
ξ2

= 0,

there is {cm}m∈N ⊆]0,+∞[ such that limm→+∞ cm = 0 and

lim
m→+∞

sup|ξ|≤cm
F (ξ)

cm
= 0.

In fact, one has

lim
m→+∞

sup|ξ|≤cm
F (ξ)

cm
= lim
m→+∞

F (ξcm
)

ξ2
cm

.
ξ2
cm

cm
= 0,

where F (ξcm) = sup|ξ|≤cm
F (ξ). Hence, there is c > 0 such that

sup|ξ|≤c F (ξ)

c2
< min

{kτF (d)
2d2

;
p0 − L

2λ

}
and c < d. From Corollary 3.5 we have the desired conclusion. �

Corollary 3.6. Suppose that f : [0, 1] × R → R satisfies the condition f(x, t) ≥ 0
for all x ∈ [0, 1] and t ∈ R. Assume that there exist three positive constants c1, c2
and d with c1 < d and

√
2
kτ d < c2 such that

(C3)
∫ 1

0
supt∈[−c1,c1] F (x, t)dx < 2kτc21

3d2

∫ 1

1/2
F (x, d)dx;

(C4)
∫ 1

0
supt∈[−c2,c2] F (x, t)dx < τc22

3d2

∫ 1

1/2
F (x, d)dx.

Then, for each

λ ∈
]3(p0 + L)

4k
d2∫ 1

1/2
F (x, d)dx

, Θ2

[
,

where

Θ2 := min
{ (p0 − L)c21

2
∫ 1

0
supt∈[−c1,c1] F (x, t)dx

,
(p0 − L)c22

4
∫ 1

0
supt∈[−c2,c2] F (x, t)dx

}
,

problem (1.1) admits at least three nonnegative weak solutions v1, v2, v3 such that
|vj(x)| < c2 for each x ∈ [0, 1] and j = 1, 2, 3.
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Proof. Following the same way as in the proof of Corollary 3.5, we achieve the stated
assertion by applying Theorem 3.3 with w as given in (3.1), r1 := (p0−L)c21/2 and
r2 := (p0 − L)c22/2. �

We point out that, applying Theorems 3.1-3.3, we have the relevant results of
Corollaries 3.4-3.6 for the following mixed boundary value problem with a complete
equation

−(p̄u′)′ + r̄u′ + q̄u = λf(x, u) + g(u) in (a, b),

u(0) = 0, u′(1) = 0,
(3.2)

where f : [0, 1]×R→ R is a continuous function, g : R→ R is a Lipschitz continuous
function with the Lipschitz constant L > 0 and g(0) = 0, p̄ ∈ C1([0, 1]), q̄, r̄ ∈
C0([0, 1]) and λ is a positive parameter. Moreover, p̄ is nonnegative and R is a
primitive of r̄/p̄.

If fact, since the solutions of problem (3.2) are solutions of the problem

−(e−Rp̄u′)′ + e−Rq̄u =
(
λf(x, u) + g(u)

)
e−R in (0, 1),

u(0) = 0, u′(1) = 0,

assuming the Lipschitz constant L > 0 of the function g satisfies

L < min
x∈[0,1]

e−R(x)p̄(x),

and setting

k′ :=
3 minx∈[0,1] e

−R(x)p̄(x)
6‖e−Rp̄‖∞ + 2‖e−Rq̄‖∞

, τ ′ :=
minx∈[0,1] e

−R(x)p̄(x)− L
minx∈[0,1] e−R(x)p̄(x) + L

,

under the assumptions of Corollary 3.4 but with (A5) replaced by the assumption∫ 1

0

sup
t∈[−c,c]

e−R(x)F (x, t)dx < (k′τ ′c2)

∫ 1

1/2
e−R(x)F (x, d)dx

k′τ ′c2 + d2
,

by the same reasoning as in the proof of Corollary 3.4, using Theorem 3.1, for each
λ in

Λ′′1 :=
] minx∈[0,1] e

−R(x)p̄(x)+L

2k′ d2∫ 1

1/2
e−R(x)F (x, d)dx−

∫ 1

0
supt∈[−c,c] e

−R(x)F (x, t)dx
,

(minx∈[0,1] e
−R(x)p̄(x)− L)c2

2
∫ 1

0
supt∈[−c,c] e

−R(x)F (x, t)dx

[
,

problem (3.2) admits at least three classical solutions in X; moreover, for each
h > 1, there exist an open interval

Λ′′2 ⊆
[
0,

(minx∈[0,1] e
−R(x)p̄(x)− L)hc2/2

2k′τ ′c2

d2

∫ 1

1/2
e−R(x)F (x, d)dx−

∫ 1

0
supt∈[−c,c] e

−R(x)F (x, t)dx

]
and a positive real number σ such that, for each λ ∈ Λ′′2 , problem (3.2) admits at
least three classical solutions in X whose norms are less than σ. Moreover, under
the assumptions of Corollary 3.5, but replacing Assumptions (B4) and (B5) by the
assumptions ∫ 1

0

sup
t∈[−c,c]

e−R(x)F (x, t)dx <
k′τ ′c2

d2

∫ 1

1/2

e−R(x)F (x, d)dx
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and

lim sup
|t|→+∞

e−R(x)F (x, t)
t2

<

∫ 1

0
supt∈[−c,c] e

−R(x)F (x, t)dx
c2

,

respectively, by the same reasoning as given in the proof of Corollary 3.5, using
Theorem 3.2, for each λ in]minx∈[0,1] e

−R(x)p̄(x) + L

2k′
d2∫ 1

1/2
e−R(x)F (x, d)dx

,
(minx∈[0,1] e

−R(x)p̄(x)− L)c2

2
∫ 1

0
supt∈[−c,c] e

−R(x)F (x, t)dx

[
,

problem (3.2) admits at least three classical solutions. Also, under the assumptions

of Corollary 3.6, but replacing the condition
√

2
kτ d < c2, Assumptions (C3) and

(C4) by the condition
√

2
k′τ ′ d < c2, the assumptions∫ 1

0

sup
t∈[−c1,c1]

e−R(x)F (x, t)dx <
2k′τ ′c21

3d2

∫ 1

1/2

e−R(x)F (x, d)dx

and ∫ 1

0

sup
t∈[−c2,c2]

e−R(x)F (x, t)dx <
τ ′c22
3d2

∫ 1

1/2

e−R(x)F (x, d)dx,

respectively, by the same reasoning as in the proof of Corollary 3.6, using Theorem
3.3, for each

λ ∈
]3(minx∈[0,1] e

−R(x)p̄(x) + L)
4k′

d2∫ 1

1/2
e−R(x)F (x, d)dx

, Θ3

[
,

where

Θ3 := min
{ (minx∈[0,1] e

−R(x)p̄(x)− L)c21
2
∫ 1

0
supt∈[−c1,c1] e

−R(x)F (x, t)dx
,

(minx∈[0,1] e
−R(x)p̄(x)− L)c22

4
∫ 1

0
supt∈[−c2,c2] e

−R(x)F (x, t)dx

}
,

problem (3.2) admits at least three nonnegative classical solutions v1, v2, v3 such
that |vj(x)| < c2 for each x ∈ [0, 1] and j = 1, 2, 3.

4. Proofs

Proof of Theorem 3.1. Our aim is to apply Theorem 2.1 to our problem. To this
end, for each u ∈ X, we let the functionals Φ,Ψ : X → R be defined by

Φ(u) :=
1
2
‖u‖2 +

∫ 1

0

G(u(x))dx, Ψ(u) :=
∫ 1

0

F (x, u(x))dx,

and put
Iλ(u) := Φ(u)− λΨ(u) ∀ u ∈ X.

The functionals Φ and Ψ satisfy the regularity assumptions of Theorem 2.1. Indeed,
by standard arguments, we have that Φ is Gâteaux differentiable and sequentially
weakly lower semicontinuous and its Gâteaux derivative at the point u ∈ X is the
functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫ 1

0

p(x)u′(x)v′(x)dx+
∫ 1

0

q(x)u(x)v(x)dx−
∫ 1

0

g(u(x))v(x)dx
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for every v ∈ X. Furthermore, the differential Φ′ : X → X∗ is a Lipschitzian
operator. Indeed, for any u, v ∈ X, there holds

‖Φ′(u)− Φ′(v)‖X∗
= sup
‖w‖≤1

|(Φ′(u)− Φ′(v), w)|

≤ sup
‖w‖≤1

|(u− v, w)|+ sup
‖w‖≤1

∫ 1

0

|g(u(x))− g(v(x))| |w(x)|dx

≤ sup
‖w‖≤1

‖u− v‖ ‖w‖+ sup
‖w‖≤1

(∫ 1

0

|g(u(x))− g(v(x))|2
)1/2(∫ 1

0

|w(x)|2
)1/2

.

Recalling that g is Lipschitz continuous and the embedding X ↪→ L2([0, 1]) is com-
pact, the claim is true. In particular, we derive that Φ is continuously differentiable.
The inequality (2.3) yields for any u, v ∈ X the estimate

(Φ′(u)− Φ′(v), u− v) = (u− v, u− v)−
∫ 1

0

(
g(u(x))− g(v(x))

)(
u(x)− v(x)

)
dx

≥ p0 − L
p0

‖u− v‖2.

By the assumption L < p0, it turns out that Φ′ is a strongly monotone operator.
So, by applying Minty-Browder theorem [17, Theorem 26.A]), Φ′ : X → X∗ admits
a Lipschitz continuous inverse. On the other hand, the fact that X is compactly
embedded into C0([0, 1]) implies that the functional Ψ is well defined, continuously
Gâteaux differentiable and with compact derivative, whose Gateaux derivative at
the point u ∈ X is given by

Ψ′(u)(v) =
∫ 1

0

f(x, u(x))v(x)dx

for every v ∈ X. Note that the weak solutions of (1.1) are exactly the critical
points of Iλ. Also, since g is Lipschitz continuous and satisfies g(0) = 0, we have
from (2.3) that

p0 − L
2p0

‖u‖2 ≤ Φ(u) ≤ p0 + L

2p0
‖u‖2, (4.1)

for all u ∈ X, and so Φ is coercive.
Furthermore from (A3) for any fixed λ ∈ [0,+∞[, using (4.1), taking (2.3) into

account, we have

Φ(u)− λΨ(u) =
1
2
‖u‖2 +

∫ 1

0

G(u(x))dx− λ
∫ 1

0

F (x, u(x))dx

≥ p0 − L
2p0

‖u‖2 − λ
∫ 1

0

(a(x)(1 + |u(x)|γ)dx

≥ p0 − L
2p0

‖u‖2 − λ‖a‖L1([0,1])(1 +
1

p
γ/2
0

‖u‖γ),

and so

lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞.
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Also according to (A1) we achieve Φ(w) > r. From the definition of Φ and by using
(4.1) we have

Φ−1(]−∞, r[) =
{
u ∈ X : Φ(u) < r

}
⊆
{
u ∈ X : ‖u‖ <

√
2p0r

p0 − L

}
⊆
{
u ∈ X : |u(x)| <

√
2r

p0 − L
for all x ∈ [0, 1]

}
.

So, we obtain

sup
u∈Φ−1(]−∞,r[)w

Ψ(u) ≤
∫ 1

0

sup
|t|≤

q
2r

p0−L

F (x, t)dx.

Therefore, from (A2) and (4.1), we have

sup
u∈Φ−1(]−∞,r[)w

Ψ(u) ≤
∫ 1

0

sup
|t|≤

q
2r

p0−L

F (x, t)dx

<
r

r + p0+L
2p0
‖w‖2

∫ 1

0

F (x,w(x))dx

<
r

r + Φ(w)
Ψ(w).

Now, we can apply Theorem 2.1. Note for each x ∈ [0, 1],

Φ(w)
Ψ(w)− sup

u∈Φ−1(]−∞,r[)w Ψ(u)
≤

p0+L
2p0
‖w‖2∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

and
r

sup
u∈Φ−1(]−∞,r[)w Ψ(u)

≥ r∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx
.

Note also that (A2) implies
p0+L
2p0
‖w‖2∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

<

p0+L
2p0
‖w‖2

(
r+

p0+L
2p0
‖w‖2

r − 1)
∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

=
r∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx
.

Also,
hr

rΨ(w)
Φ(w) − sup

u∈Φ−1(−∞,r[)w Ψ(u)

≤ hr
2p0r

(p0+L)‖w‖2
∫ 1

0
F (x,w(x))dx−

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx
= ρ.



EJDE-2013/125 MULTIPLE SOLUTIONS 13

From (A2) it follows that

2p0r

(p0 + L)‖w‖2

∫ 1

0

F (x,w(x))dx−
∫ 1

0

sup
|t|≤

q
2r

p0−L

F (x, t)dx

>
( 2p0r

(p0 + L)‖w‖2
− r

r + p0+L
2p0
‖w‖2

)∫ 1

0

F (x,w(x))dx

≥
( 2p0r

(p0 + L)‖w‖2
− 2p0r

(p0 + L)‖w‖2
)∫ 1

0

F (x,w(x))dx = 0,

since
∫ 1

0
F (x,w(x))dx ≥ 0 (note F (x, 0) = 0 so

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx ≥ 0 and

now apply (A2)). Now with x0 = 0 and x1 = w from Theorem 2.1 (note Ψ(0) = 0)
it follows that, for each λ ∈ Λ1, the problem (1.1) admits at least three weak
solutions and there exist an open interval Λ2 ⊆ [0, ρ] and a real positive number σ
such that, for each λ ∈ Λ2, the problem (1.1) admits at least three weak solutions
whose norms in X are less than σ. Thus, the conclusion is achieved. �

Proof of Theorem 3.2. To apply Theorem 2.2 to our problem, we take the func-
tionals Φ,Ψ : X → R as given in the proof of Theorem 3.1. Let us prove that the
functionals Φ and Ψ satisfy the conditions required in Theorem 2.2. The regularity
assumptions on Φ and Ψ, as requested in Theorem 2.2 hold. According to (B1) we
deduce Φ(w) > r. From the definition of Φ we have

Φ−1(]−∞, r[) ⊆
{
u ∈ X : |u(x)| <

√
2r

p0 − L
for all x ∈ [0, 1]

}
,

and it follows that

sup
u∈Φ−1(]−∞,r[)

Ψ(u) ≤
∫ 1

0

sup
|t|≤

q
2r

p0−L

F (x, t)dx.

Therefore, due to assumption (B2), we have

supu∈Φ−1(]−∞,r[) Ψ(u)
r

≤

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

r

<
2p0

p0 + L

∫ 1

0
F (x,w(x))dx
‖w‖2

≤ Ψ(w)
Φ(w)

.

Furthermore, from (B3) there exist two constants η, ϑ ∈ R with

η <

∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

r

such that
2

p0 − L
F (x, t) ≤ ηt2 + ϑ

for all x ∈ [0, 1] and all t ∈ R. Fix u ∈ X. Then

F (x, u(x)) ≤ p0 − L
2

(η|u(x)|2 + ϑ) (4.2)
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for all x ∈ [0, 1]. Now, to prove the coercivity of the functional Φ − λΨ, first we
assume that η > 0. So, for any fixed

λ ∈
]p0 + L

2p0

‖w‖2∫ 1

0
F (x,w(x))dx

,
r∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

[
,

using (4.2), we have

Φ(u)− λΨ(u) =
1
2
‖u‖2 +

∫ 1

0

G(u(x))dx− λ
∫ 1

0

F (x, u(x))dx

≥ p0 − L
2p0

‖u‖2 − λ(p0 − L)
2

(
η

∫ 1

0

|u(x)|2dx+ ϑ
)

≥ p0 − L
2p0

(
1− η r∫ 1

0
sup|t|≤

q
2r

p0−L

F (x, t)dx

)
‖u‖2 − λ(p0 − L)

2
ϑ,

and thus
lim

‖u‖→+∞
(Φ(u)− λΨ(u)) = +∞.

On the other hand, if η ≤ 0, clearly we obtain lim‖u‖→+∞(Φ(u) − λΨ(u)) = +∞.
Both cases lead to the coercivity of functional Φ− λΨ.

So, the assumptions (A1) and (A2) in Theorem 2.2 are satisfied. Hence, by
using Theorem 2.2, the problem (1.1) admits at least three distinct weak solutions
in X. �

Proof of Theorem 3.3. Let Φ and Ψ be as in the proof of Theorem 3.1. Let us apply
Theorem 2.3 to our functionals. Obviously, Φ and Ψ satisfy the condition (1) of
Theorem 2.3.

Now, we show that the functional Φ−λΨ satisfies the assumption (2) of Theorem
2.3. Let u∗ and u∗∗ be two local minima for Φ− λΨ. Then u∗ and u∗∗ are critical
points for Φ − λΨ, and so, they are weak solutions for the problem (1.1), and
in particular they are nonnegative. Indeed, by the similar reasoning as given in
[10, Theorem 3.1], let u0 be a weak solution of the problem (1.1). Arguing by a
contradiction, assume that the set A =

{
x ∈]0, 1] : u0(x) < 0

}
is nonempty and of

positive measure. Put v̄(x) = min{0, u0(x)} for all x ∈ [0, 1]. Clearly, v̄ ∈ X and,
taking into account that u0 is a weak solution and by choosing v = v̄, one has∫ 1

0

p(x)u′0(x)v̄′(x)dx+
∫ 1

0

q(x)u0(x)v̄(x)dx

− λ
∫ 1

0

f(x, u0(x))v̄(x)dx−
∫ 1

0

g(u0(x))v̄(x)dx = 0 .

Thus, from our sign assumptions on the data, we have∫
A

p(x)|u′0(x)|2dx+
∫
A

q(x)|u0(x)|2dx−
∫
A

g(u0(x))u0(x)dx ≤ 0 .

On the other hand,

p0 − L(m(A))2

p0
‖u0‖2W 1,2(A)

≤
∫
A

p(x)|u′0(x)|2dx+
∫
A

q(x)|u0(x)|2dx−
∫
A

g(u0(x))u0(x)dx,



EJDE-2013/125 MULTIPLE SOLUTIONS 15

where m(A) is the Lebesgue measure of the set A. Hence, u0 ≡ 0 on A which is
absurd. Then, u∗(x) ≥ 0 and u∗∗(x) ≥ 0 for every x ∈ [0, 1]. Thus, it follows that
su∗ + (1− s)u∗∗ ≥ 0 for all s ∈ [0, 1], and that

f(x, su∗ + (1− s)u∗∗) ≥ 0,

and consequently, Ψ(su∗ + (1− s)u∗∗) ≥ 0, for every s ∈ [0, 1].
Moreover, from the condition 4p0 r1

p0−L < ‖w‖2 < p0 r2
p0+L , we observe 2r1 < Φ(w) <

r2
2 . From the definition of Φ we have

Φ−1(]−∞, r[) ⊆
{
u ∈ X : |u(x)| <

√
2r

p0 − L
for all x ∈ [0, 1]

}
,

and it follows that

sup
u∈Φ−1(]−∞,r[)

Ψ(u) ≤
∫ 1

0

sup
|t|≤

q
2r

p0−L

F (x, t)dx.

Therefore, due to the assumption (C1), we infer that

supu∈Φ−1(]−∞,r1[) Ψ(u)
r1

≤

∫ 1

0
sup
|t|≤

q
2r1

p0−L

F (x, t)dx

r1

<
4p0

3(p0 + L)

∫ 1

0
F (x,w(x))dx
‖w‖2

≤ 2
3

Ψ(w)
Φ(w)

.

As above, from assumption (C2), we deduce that

supu∈Φ−1(]−∞,r2[) Ψ(u)
r2

≤

∫ 1

0
sup
|t|≤

q
2r2

p0−L

F (x, t)dx

r2

<
2p0

3(p0 + L)

∫ 1

0
F (x,w(x))dx
‖w‖2

≤ 1
3

Ψ(w)
Φ(w)

.

So, the assumptions (B1) and (B2) in Theorem 2.3 are satisfied. Hence, by using
Theorem 2.3, the problem (1.1) admits at least three distinct weak solutions in X.
This completes the proof. �
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