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EXISTENCE OF MULTIPLE SOLUTIONS FOR A MIXED
BOUNDARY-VALUE PROBLEM

SHAPOUR HEIDARKHANI, GHASEM ALIZADEH AFROUZI, ARMIN HADJIAN

ABSTRACT. Using three critical points theorems, we prove the existence of at
least three solutions for a second-order mixed boundary-value problem.

1. INTRODUCTION

In this article, we show the existence of at least three weak solutions for the
mixed boundary-value problem

—(pu') + qu=Af(z,u) + g(u) in(0,1),
u(0) =0, /(1) =0,
where p, ¢ € L*°([0,1]) are such that

(1.1)

po = essinfyepo 1y p(x) >0, qo := essinf,¢cjo 1) q(z) >0,

A is a positive parameter, f : [0,1] x R — R is an L!-Carathéodory function and
g : R — R is a Lipschitz continuous function with Lipschitz constant L > 0; i.e.,

lg(t1) — g(t2)| < Llt1 — o

for every t1,t2 € R, and ¢(0) = 0.

Motivated by the fact that such problems are used to describe a large class of
physical phenomena, many authors looked for existence and multiplicity of solutions
for second-order ordinary differential nonlinear equations, with mixed conditions at
the ends. For an overview on this subject, we cite the papers [3], [4, Bl [0l 10, 15]. For
instance, in [9], Bonanno and Tornatore, using Ricceri’s Variational Principle [13],
established the existence of infinitely many weak solutions for the mixed boundary-
value problem

_(pu/)l +qu = )\f(w,u) in (aa b),
u(a) = u'(b) =0,
where p, ¢ € L*°([a, b]) such that
po = essinf (o p(7) >0, qo:=essinf,cpq 4 q(x) >0,
f:a,b] x R — R is a Carathéodory function and X is a positive real parameter.
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We also refer the reader to [I2] which, by means of an abstract critical point
result of Ricceri [I4], shows the existence of at least three solutions for the two-
point boundary-value problem

u” 4+ (Af(t,u) + g(u)h(t, o) = pp(t,u)h(t,u’)  in (a,b),
u(a) = u(b) =0,

where A and p are positive parameters, f : [a,b] x R — R is continuous, g : R — R
is Lipschitz continuous with g(0) = 0, & : [a,b] x R — R is bounded, continuous,
with m :=infh > 0, and p : [a,b] x R — R is L'-Carathéodory function.

The goal of the present paper is to establish some new criteria for to have
at least three weak solutions (Theorems [3.143.3). Our analysis is mainly based on
three recent critical point theorems that are contained in Theorems below.
In fact, employing rather different three critical points theorems, under different
assumptions on the nonlinear term f, we obtain the exact collections of A for whihc
admits at least three weak solutions in the space {u € W12([0,1]) : u(0) = 0}.

A special case of our main results is the following theorem.

Theorem 1.1. Let p,q € L*([a,b]) such that
po = essinfyepq 5 p(x) >0, qo :=essinf g q(x) >0,

g : R — R be a Lipschitz continuous function with the Lipschitz constant L > 0
and g(0) = 0 such that L < pg. Let f : R — R be a continuous function and
put F(t) = fg f(&)d¢ for each t € R. Assume that F(d) > 0 for some d > 0 and
F(&) > 04n [0,d] and

lim inf Fe) =0, limsup @ =0.
£-0 &2 €l —too €7
Then, there is \* > 0 such that for each X > X* the problem
—(pu)' + qu = Af(u) + g(u) in (0,1),
u(0) =0, w/(1)=0,

admits at least three weak solutions.

2. PRELIMINARIES

First we here recall for the reader’s convenience our main tools to prove the
results; in the first one and the second one the coercivity of the functional & — AW
is required, while in the third one a suitable sign hypothesis is assumed. The first
result has been obtained in [6], the second one in [8] and the third one in [2]. We
recall the third as given in [7].

Theorem 2.1 ([0, Theorem 3.1]). Let X be a separable and reflexive real Banach
space, ® : X — R a nonnegative continuously Gateaux differentiable and sequen-
tially weakly lower semicontinuous functional whose Gdteauz derivative admits a
continuous inverse on X*, ¥ : X — R a continuously Gateaux differentiable func-
tional whose Gateaur derivative is compact. Assume that there exists xg € X such
that ®(xz9) = V(xg) = 0 and that

lim (®(z) — A¥(z)) = +oo for all X € [0, +00].

llzll—+o0



EJDE-2013/125 MULTIPLE SOLUTIONS 3

Further, assume that there are v > 0, x1 € X such that r < ®(x1) and

sup U(x) < W(z1);

r
x€7¢_1(]—oo,r[)w 7“+(I)(£L'1)

here ®—1(] — oo,r[)w denotes the closure of ®~1(] — oo, r[) in the weak topology.
Then, for each

D(xq) r

Ae A, ::}

U(z1) — sup w W(x)’ sup U(z) [’

zed—1(]—oco,r[) zed—1(]—oo,r[)"
the equation

O (u) — AV (u) =0 (2.1)
has at least three solutions in X and, moreover, for each h > 1, there exist an open

interval
hr

v(x
et — sup, s (@)

and a positive real number o such that, for each A € Ao, equation (2.1)) has at least
three solutions in X whose norms are less than o.

Az C [0,

Theorem 2.2. [8, Theorem 3.6] Let X be a reflexive real Banach space, let @ :
X — R be a sequentially weakly lower semicontinuous, coercive and continuously
Gateauz differentiable whose Gateaur derivative admits a continuous inverse on X*,
and let U : X — R be a sequentially weakly upper semicontinuous and continuously
Gateauz differentiable functional whose Gdteaux derivative is compact. Assume that
there exist r € R and uy € X with 0 < r < ®(uy), such that

(A1) SUP,q1(—oo) ¥(u) < T30

D (uy r . .
(A2) for each A € A, :=] \szlg, supueq,q(],oo,r])‘l’(@[ the functional ® — AW is

coercive.

Then, for each X\ € A, the functional ® — AV has at least three distinct critical
points in X.

Theorem 2.3 ([7, Corollary 3.1]). Let X be a reflexive real Banach space, ® :
X — R be a convex, coercive and continuously Gateaux differentiable functional
whose derivative admits a continuous inverse on X*, W : X — R be a continuously
Gateauz differentiable functional whose derivative is compact, such that
(2) for each X\ > 0 and for every uy, us which are local minima for the func-
tional ® — AV and such that U(uy) > 0 and ¥(uz) > 0, one has
inf W(suj + (1—s)uz) >0.
s€(0,1]
Assume that there are two positive constants r1,ry and v € X, with 2r; < ®(v) <
=, such that
SUP a1 (—o0,r ) Y(W) 20(7) |
(B1) £e . < 33()
SUP e —1(]—oo,ro[) ‘I’(“)
(B2) P 3T(0)

Then, for each A in
} 3 (I)(E) . 1 %
——— min ,
2 \II(U) SupuE{)*l(]—oo,rl[) \IJ(’LL) Supuééfl(]—oo,rg[) \I/(U)

H
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the functional ® — AV has at least three distinct critical points which lie in ®~1(] —
00, r2[).

Let f : [0,1] x R — R be an L!'-Carathéodory function and g : R — R be a
Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

lg(t1) — g(t2)| < Lit1 — o

for every t1,t2 € R, and ¢(0) = 0.
Put

)= [ rwode 6o = [ g
for all z € [0,1] and ¢ € R. Denote
X = {ueW"([0,1]) : u(0) = 0};

the usual norm in X is defined by

Jullx = ( / (ul@)de + / (W)

For every u,v € X, we define

(u,v) ::/0 p(ac)u’(x)v'(x)dm—i—/o q(x)u(z)v(z)ds. (2.2)

Clearly, (2.2)) defines an inner product on X whose corresponding norm is

1 1 1/2

Jull = ( [ o) @)+ [ ale)ue) )
Then, it is easy to see that the norm || - || on X is equivalent to || - ||x. In the
following, we will use || - || instead of || -||x. Note that X is a separable and reflexive

real Banach space.
We say that a function u € X is a weak solution of problem ([1.1)) if

[ oo + / @)l (x)d

— )\/ fz,u(z))v(z)de — /01 g(u(x))v(x)dx =0

for all v € X.

By standard regularity results, if f is a continuous function, p € C1(]0,1]) and
q € C°([0,1]), then weak solutions of the problem belong to C2([0,1]), thus
they are classical solutions.

It is well known that (X, || - ||) is compactly embedded in (C°([0,1]), ]| - [|) and

[ulloe < —=lull (2.3)
\/»
for all u € X (see, e.g., [10]).
Also, we use the following notation:
[Plloc = esssup,e(o11 (%),  |lglloo = esssup,ejo.17 9(2).

Suppose that the Lipschitz constant L > 0 of the function g satisfies L < pyg.
Finally, put
_ 3po L. P~ L
6]1plloc + 2llgllc” po+L
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For other basic notations and definitions, we refer the reader to [I1, [I7].

3. MAIN RESULTS
Our main results are the following theorems.

Theorem 3.1. Assume that there exist a function w € X, a positive function
a € L' and two positive constants r and v with v < 2 such that

(A1) fJwl® > 2o
fol F(z,w(z))dz
e LI

(A3) F(x,t) <a(z)(1+|t|7) for almost every x € [0,1] and for all t € R.
Then, for each A in

1
(A2) [, sup|tl<\/% F(x,t)dx <r

po+L
2po

_}fol F(z,w(z fo Sup|t|<\/7 F(x,t) dz’ fo sup|tl<\/7L F(x,t)dx [v

lw]|? r

problem (1.1)) admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

hr

2po T :|
pOJL"’)”wHQ fo fo SUp|, /e F(z,t)dz

Ay C [0,

and a positive real number o such that, for each \ € Ay, the pmblem (1.1) admits
at least three weak solutions in X whose norms are less than o.

Theorem 3.2. Assume that there exist a function w € X and a positive constant
r such that

(B1) [lw]? > 22of;

—L7
1
B2y 2 Rlas O e
(B2) v ShotL T el
fol sup 5— F(z,t)dz
2 S F(x,t 1t1SA/ po—T
(B3) =7 limsupy ;o (tQ ) < £o .

Then, for each
re]mrl_ IIwH2 -

2po fo w(z))dz’ fo buplt\<\/7 F(z, t)dx[

problem (1.1)) admits at least three weak solutions.

Theorem 3.3. Suppose that f : [0,1] x R — R satisfies the condition f(xz,t) > 0
for all x € [0,1] and t € R. Assume that there exist a function w € X and two
positive constants 1 and ro with % < Jlw|? < Lot such that

(C1)

1
fo Suplt\ﬁy/pf)% Flz,t)dz _ 4pq fol F(z,w(z))dz
= ot D) P
(2)
1
F
Jo swpy s Fatide o 1 R w(@)ds

<
T2 3(po+ L) [[wl|?
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Then, for each

3(po+ L wl|?
A LS
dpo [ F(z,w(z))dx
where
©1 :=min{ — n 2 }’

S
In suplt‘g\/EF(m,t)da? In Suplt\g\/E F(x,t)dx
problem (1.1]) admits at least three nonnegative weak solutions v',v? v® such that

2’/‘2

vjx<
V@) <2

for each x € [0,1] and j = 1,2,3.

Let us give particular consequences of Theorems for a fixed test function
w.

Corollary 3.4. Assume that there exist a positive function a € L* and three pos-
itive constants ¢, d and vy with ¢ < v/2d and v < 2 such that Assumption (A3) in
Theorem [3.1] holds. Furthermore, suppose that

(A4) F(z,t) >0 for all (z,t) € [0, 1] x [0,d];
A 1 9 f11/2 F(z,d)dz
( 5) fo SUPte[—c,d] F(xvt)dx < (kTC ) kTc2+d2
Then, for each A in
I %dQ (po — L) [
1-— ’ )
f11/2 F(x,d)dx — fol SUPse (e, (2, t)dx 2 fol SUDse(—c,q F(2, t)da

problem (L.1) admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

(po — L)he? /2 }
%dZC? f11/2 F(z,d)dz — fol SUPse[_c,q F(@,t)dx

and a positive real number o such that, for each X € A}, problem (L.1)) admits at
least three weak solutions in X whose norms are less than o.

Ay C {0

Proof. We claim that all the assumptions of Theorem are fulfilled with w given

by
2d%x, x€10,1/2],
wiz) = § 207 v € 0.1/2] (3.1)
d, x € [1/2,1].
and r := (pg — L)c?/2. Tt is easy to verify that w € X and, in particular, one has
d2
2p0d” < [Ju” < P
Hence, taking into account that ¢ < v/2d, we have
2po 1
2
ol > =P

Thus, (A1) holds. Since 0 < w(z) < d for each = € [0, 1], the condition (A4) ensures
that

/1/2 F(z,w(x))dz >0,
0
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so from (A5),

1 f F(x,d)dz
1/2
F(x, t)dx < —_—
/0 tes[ulc)c] (@,)de < (kr krc? 4+ d?
(po — L)ke? !

= F .T,d dl‘
(o — L)kc + (po + L)d?* Jy 5 (=:d)

o -1)E_ fip Pl d)da
2 (Po 2L)02 + (1)0-&2-]1;4)112
fol F(z,w(z))dz
N ATINT
r+ 5L ful
and thus (A2) holds. Next notice that

B )

)

T 1
fo F(x,w(z))dz — fo supltlg\/p::rLF(x,t)dx

pot+L g2
2k d

<
=3 1
f1/2 F(x,d)dz — fo SUDe [, q F(z,t)dx

and
T _ (po — L)c?

1 = o1 :
Jo sup‘t|<m F(z,t)dr 2 [ supye(_c F(z,t)de
<V/3Er

In addition note

po+L ;2
2k d

1 1
f1/2 F(x,d)dx — fo SUDse [, F(x,t)dx
po+L a2
2k

(po—L)c? | (pg+L)d?
i S———) — 1
( eI N 1) fO SUDte[—c,d F(z,t)dx
2

_ (po — L)c?
= — .
2 [y supse_c,q Flz, t)dzx
Finally note that

hr

2po T 1 .
po+LC3|\w|\ fo dr — fo bqug\/EF(x’t)dx

(po — L)hc? /2
h 2’“”2 f1/2 z,d)dx — fol SUD;e (e, ] F(x,t)dx’

and taking into account that A} C A; and Ay C A), we have the desired conclusion
directly from Theorem O

Corollary 3.5. Assume that there exist two positive constants ¢ and d with ¢ < d
such that the assumption (A4) in Corollary- holds. Furthermore, suppose that
(B4) fol SUDse[—c ] F(z,t)dr < k” f1/2 x,d)dx;

(B5) limsupy, Fa) o Jo S“pfd RACILLY

— 400 12 2
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Then, for each

po+ L d? (po — L)c? [
1 ) 1 s
2k f1/2 F(z,d)dz 2 fo SUD¢e[—c,¢] F(x,t)dx
problem (1.1)) admits at least three weak solutions.

xe|

Proof. All the assumptions of Theorem [3.2] are fulfilled by choosing w as given in
(3.1) and 7 := (po — L)c?/2, and bearing in mind that

d2
2p0d” < [Jw]]® < -
and recalling

/1/2 F(z,w(x))dz > 0.

Hence, by applying Theorem we have the conclusion. O

Proof of Theorem[1.1, Fix A > A\*: (p,‘;;(Ld)d for some d > 0. Since

lign_}(r)lf Fé_(f )

:O’

there is {¢n tmen €0, +00[ such that lim,,— 4o ¢ = 0 and

SuPj¢|<epm F(f)

lim =0.
m—+00 Cm,
In fact, one has
_ supjg<., F . F 2
hm [€]<cm (g) — hm (gcm) Cm __ O,
m—+0o Cm m—-+00 Cm

Cm,

where F/(&,,) = sup¢|<,, £'(§). Hence, there is ¢ > 0 such that

su  F kTF(d —L
P|5|§2, (&) <min{ TF( ); Do }
c 2d? 2\
and ¢ < d. From Corollary we have the desired conclusion. O
Corollary 3.6. Suppose that f :]0,1] x R — R satisfies the condition f(xz,t) >0

for all x € [0,1] and t € R. Assume that there exist three positive constants c1, ca

and d with ¢c; < d and ,/kld < ¢g such that
1 2ktc?
(C3) [y SuDte[—cy,e) Fla, t)da < 3d21 f1/2 x,d)dx;

1 T2
(C4) fo SUPte[—cy,c2] F(z,t)de < 33 f1/2
Then, for each

3(po+ L d?
A E} (p(llk ! T 2 [
f1/2 F(x,d)dz
where
_ 2 _ 2
Oy = min{ (po — L)cq (po — L)c3 }

1 s
2 [y SUDe—cy o] Fl, t)da 4 [ supye(_, o, F(2,t)de

problem (L.1]) admits at least three nonnegative weak solutions v', v?, v® such that

|0 (z)| < ca for each x € [0,1] and j =1,2,3.
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Proof. Following the same way as in the proof of Corollary[3.5 we achieve the stated
assertion by applying Theorem [3.3| with w as given in (3.1)), 71 := (po — L)c?/2 and
ry = (po — L)c3/2. O

We point out that, applying Theorems we have the relevant results of
Corollaries [3:413.6] for the following mixed boundary value problem with a complete
equation

—(pu') + 7'+ qu= Af(x,u) + g(u) in (a,b),
uw(0) =0, u(1)=0,

where f : [0,1] xR — R is a continuous function, g : R — R is a Lipschitz continuous
function with the Lipschitz constant L > 0 and ¢g(0) = 0, p € C*([0,1]), q,7 €
C°([0,1]) and X is a positive parameter. Moreover, p is nonnegative and R is a
primitive of 7/p.

If fact, since the solutions of problem ([3.2)) are solutions of the problem

—(e Fpu') + e qu = ()\f(x,u) + g(u))e_R in (0,1),
uw(0) =0, /(1) =0,

assuming the Lipschitz constant L > 0 of the function g satisfies

(3.2)

L < min e ®@p(2),
iy

and setting

_ 3minge,q) e Rp(x) , Milgepo) e B@p(x) — L

6l Fhlloo +2e R’ T T mingep e "Op(@) + L

under the assumptions of Corollary but with (A5) replaced by the assumption

K

1
“R@ Pz, t)de < (K'7'c?
/o tes[l—llc),c] ‘ (@, )dw < (K'7'e") k'r'c? + d? ’
by the same reasoning as in the proof of Corollary using Theorem for each
Ain
ming o, e~ @ () +L

} — d?

1 1 )

f1/2 e B@ F(x,d)dx — [y supse|_ q e B@ F(z,t)dx

"o._
A =

(mingepo,1] e F@)p(z) — L)c?

2 fol SUPie[—,q € O F (2, )dw [’

problem (3.2) admits at least three classical solutions in X; moreover, for each
h > 1, there exist an open interval

(mingepo,1) e @ p(x) — L)hc? /2 }
) zk/dzzcz f11/2 e~ R@) F(z,d)dx — fol SUDse(o e~ R@) F(z, t)dx
and a positive real number o such that, for each A € AJ, problem (3.2)) admits at
least three classical solutions in X whose norms are less than ¢. Moreover, under

the assumptions of Corollary but replacing Assumptions (B4) and (B5) by the
assumptions

Al C [o

1 R k'/T/CQ 1 _R(=)
sup e F(z,t)dx < pE e F(x,d)dx
0 1/2

te[—c,c]
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and
6*R(I)F(g;’ t) fol SUD¢e(—c,q] e B Py, t)dx
< ,
12 c? ’

lim sup
[t|——+o0

respectively, by the same reasoning as given in the proof of Corollary [3.5 using
Theorem [3.2] for each X in

} minge(o,1) e R@p(z) + L d? (mingep, 1) € e R@)p(z) — L)c? {
2k f1/2 R@) F(z,d)dz’ 2f0 SUD (e, € F@ F(x,t)dx ’

problem (3.2)) admits at least three classical solutions. Also, under the assumptions
of Corollary but replacing the condition 1/%d < ¢g, Assumptions (C3) and

(C4) by the condition y/%d < cz, the assumptions

' —R(z) 2k'7’ C1 ! —R(z)
sup e F(z,t)dz < e e F(z,d)dx
0 te] 1

—ci1,c1] /2
and
1 1.2 1
/ sup e @ P, t)de < 7'7022/ e @ p(g, d)de,
0 t€[—ca,ca] 3d 1/2

respectively, by the same reasoning as in the proof of Corollary [3.6] using Theorem

for each

e } 3(mingepo) e M p(x) + 1) d2 3 {
Ak’ [y e RO F(z, d)da’
where
05 = min{ (mingcjoq) e p(x) — L)e] (mingepoq) ¢ p(x) — L)} }

1 s
2 [ SUDye(—cy e € @O F (2, t)dz 4 [ sup;e e~ B@) F(x, t)dx

c2,c2]

problem ([3.2)) admits at least three nonnegative classical solutions v!,v?% v3 such

that |07 (z)] < cg for each z € [0,1] and j = 1,2,3.

4. PROOFS

Proof of Theorem[3.1. Our aim is to apply Theorem [2.I] to our problem. To this
end, for each u € X, we let the functionals ®, ¥ : X — R be defined by

O(u) := %HuHQ—i—/O G(u(x))dz, Y(u) ::/O F(z,u(x))dz,

and put

I(u) :=®(u) — A\V(u) YVuelX.
The functionals ® and ¥ satisfy the regularity assumptions of Theorem[2.1] Indeed,
by standard arguments, we have that ® is Gateaux differentiable and sequentially

weakly lower semicontinuous and its Gateaux derivative at the point u € X is the
functional ®'(u) € X*, given by

&' () (v) = / p(a)u (@)’ ()de + / g(@)u(z)o(z)dz / o(u(x))v(z)dz
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for every v € X. Furthermore, the differential ® : X — X* is a Lipschitzian
operator. Indeed, for any u,v € X, there holds

19/u) - #'(0)lx-
= sup |(<I>’(u) _@'('U)JU)‘

lwl<1
< wpuu—vw|+bm>/|g — g(0(@))] |w(@)|dx
Jlw|| <1 lw] <1

1/2 1 1/2
< sup = o] Juw] + sup A ww@»g@uwﬁ)/(ﬂ|w@nﬂ/-

Recalling that g is Lipschitz continuous and the embedding X < L?([0, 1]) is com-
pact, the claim is true. In particular, we derive that ® is continuously differentiable.
The inequality (2.3) yields for any u,v € X the estimate

(®'(u) = ®'(v),u—v) = (u—v,u—v) - /O (9(u(x)) — g(v(@))) (u(@) — v(z))dz

—L
> P02y )2,
Do

By the assumption L < pg, it turns out that ®’ is a strongly monotone operator.
So, by applying Minty-Browder theorem [I7, Theorem 26.A]), ' : X — X* admits
a Lipschitz continuous inverse. On the other hand, the fact that X is compactly
embedded into C°([0, 1]) implies that the functional ¥ is well defined, continuously
Gateaux differentiable and with compact derivative, whose Gateaux derivative at

the point u € X is given by
1
0= [ feu)e()ds
0

for every v € X. Note that the weak solutions of ([L.1)) are exactly the critical
points of Iy. Also, since g is Lipschitz continuous and satisfies g(0) = 0, we have

from (2.3) that

Do po+L

2pg

for all u € X, and so ® is coercive.
Furthermore from (A3) for any fixed A € [0, +oo], using (4.1)), taking (2.3)) into

account, we have
||u||2 / G(u(x))dx — )\/ (x,u(z

Po — oy
- MW—AA(()(+W(M)

pQ—L 2 1 v
> B Il = Ml oap (1 + ")

E 2 < o) < 2 (4.1)

O(u) — AU (u)

v

and so
lim (®(u) — A¥(u)) = +o0.

llull—+o0
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Also according to (A1) we achieve ®(w) > r. From the definition of ® and by using

(4.1) we have

3~1(] - 0o, r[) = {u €X:d(u) < r}

2por
Q{UGX: ul| < 7}
Jull < /2

2r
Po —

Q{ueX:|u(w)\< for alle[O,I]}.

So, we obtain

1
sup U (u) S/ sup  F(z,t)dz.
u€d 1 (J—o0,r[) " O Jtl<y/525¢

Therefore, from (A2) and (4.1]), we have

1
sup U (u) S/ sup F(z,t)dx
D 0 |¢<

—-1(1— w 2r
u€P—1(]—o0,r < /p()iL

1
,
< 7L/ F(z,w(z))ds
r+ B wlP Jo

r
—— U (w).
< r+ ®(w) (w)
Now, we can apply Theorem Note for each x € [0, 1],
®(w) %Ilwll2
_g [ =71
U(w) SUD e d=T(—oo,r]) U (u) fo F(z,w(z))d fo sup‘t|<\/7LF(x ,t)dx
and , ,
w - 1 ’
SUP,ed=T (=00, U(u) In SUp|, < =, F(z,t)dx

Note also that (A2) implies

L
EEL ]2

i 1
Jo Flz,w(z))dz — [, sup‘tlé\/p[f::LF(x,t)dx

L
L |2

2 ) 1
(2P+ — 1)f0 sup, T)QIL F(x,t)dx

r

fl Sup|t\<ﬁF(x’t)dx'

Also,
hr

Y(w)
%J) T SUP e T (=0, U(u)
hr

2por 1
CTES AT fo dr — [, Suplt‘ng(x,t)dm

:p.
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From (A2) it follows that

2por / /1
D T F(z,w dx — sup Fx,tdx
(o + DTul? RO S

2p0’]" r /1
= - F(z,w(z))dx
<(pO+L)H’w||2 7-_,_198;-0L||w”2> 0 ( ()

( 2por _ 2por ) /1 F(z,w(z))dr =0,
w(

(po+ D)llwl*  (po + L)|w]?
x))dz > 0 (note F'(z,0) =0 so fo sup F(z,t)dr > 0 and
<\ etz ’

now apply (A2)) Now with 2o = 0 and 1 = w from Theorem (note ¥(0) =0)
it follows that, for each A € Ay, the problem admits at least three weak
solutions and there exist an open interval A2 [0, p] and a real positive number o
such that, for each A € Ag, the problem (|1.1]) admits at least three weak solutions
whose norms in X are less than o. Thus, the conclusion is achieved. O

since fol

Proof of Theorem[3.3 To apply Theorem to our problem, we take the func-
tionals @, ¥ : X — R as given in the proof of Theorem Let us prove that the
functionals ® and ¥ satisfy the conditions required in Theorem The regularity
assumptions on ® and ¥, as requested in Theorem hold. According to (B1) we
deduce ®(w) > r. From the definition of ® we have

2r
po— L

(] — 00, 7]) C {ueX u(z)| < foralle[O,l]},

and it follows that

1
sup U (u) §/ sup F(z,t)dx.
D 0 je<

u€P—1(]—o0,r
\V B 0 Do-T

Therefore, due to assumption (B2), we have

1
F(x,t)d
supuequ(],oo’r[) \I/(u) < fO SUP|t\S\/pO2:IL (CE, ) X

fol F(z,w(z))d
po+L I
Y(w)
~ Q(w)

Furthermore, from (B3) there exist two constants 1,9 € R with

1
In buplt‘g\/EF(a:,t)dx

r

n <

such that

F(z,t) <nt>+9
po—L< )<n

for all x € [0,1] and all t € R. Fix u € X. Then

Pl u(@)) < P lu@)? + ) (42)
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for all € [0,1]. Now, to prove the coercivity of the functional ® — AU, first we
assume that n > 0. So, for any fixed

Aol Il r

2po fol F(z, w(l‘))dm" fol SU'p\t|<\/I F(z,t)dx [7
using , we have
1
D(u) = \ (:MQ/G mf/ﬂme

2y /”|u )Pz +9)

” H2 )‘(pO _L)
2

S Po— L (1 - )
— 1
2pg I sup|, = F(x,t)dx

lim  (®(u) — AV(u)) = +oo.

flull—+o0
On the other hand, if n < 0, clearly we obtain limjj,|j— 400 (®(u) — A¥(u)) = +o0.
Both cases lead to the coercivity of functional ® — AW,
So, the assumptions (A1) and (A2) in Theorem are satisfied. Hence, by
using Theorem the problem admits at least three distinct weak solutions
in X. d

Proof of Theorem[3.3. Let ® and ¥ be as in the proof of Theorem[3.1] Let us apply
Theorem to our functionals. Obviously, ® and ¥ satisfy the condition (1) of
Theorem 2.3

Now, we show that the functional ® — AW satisfies the assumption (2) of Theorem
B3] Let w* and v** be two local minima for ® — A\¥. Then «* and u** are critical
points for ® — AW, and so, they are weak solutions for the problem , and
in particular they are nonnegative. Indeed, by the similar reasoning as given in
[10, Theorem 3.1], let uy be a weak solution of the problem . Arguing by a
contradiction, assume that the set A = {z €]0,1] : ug(x) < 0} is nonempty and of
positive measure. Put 9(z) = min{0, uo(x)} for all € [0,1]. Clearly, o € X and,
taking into account that ug is a weak solution and by choosing v = ¥, one has

/ p(a)uh ()7 UM+Aq@w@W®M

v,

and thus

- )\/ f(z up(x))v(x)dx — /01 g(ug(x))o(z)dz = 0.

Thus, from our sign assumptions on the data, we have

LAM@WM@W”+[*@WM@RM—[ﬁmamn&mwSO-

On the other hand,
po — L(m(A))?

Po

SAﬂ@%wwﬂ+Aﬂ@%@WW*Aﬂ%@WWM%

HUOH%/VL?(A)
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where m(A) is the Lebesgue measure of the set A. Hence, ug = 0 on A which is
absurd. Then, u*(z) > 0 and v**(z) > 0 for every x € [0,1]. Thus, it follows that
su* + (1 —s)u* >0 for all s € [0,1], and that

fl@,su™ + (1 = s)u™) =0,

and consequently, U(su* + (1 — s)u**) > 0, for every s € [0, 1].
Moreover, from the condition % < |wl|? < Lor2, we observe 2r; < ®(w) <
. From the definition of ® we have

O (] —o0,r]) C {u € X :|u(z)| < ”p02—rL for all z € [0, 1]}7

and it follows that

1
sup U (u) §/ sup  F(z,t)dx.
D 0 jei<

u€P—1(]—o0,r 27
po—L

Therefore, due to the assumption (C1), we infer that

1
— F(z,t)d
SUPyed—1(]—oco,r[) \I/(’LL) < fO Suplt\S\/pi%L (x ) o

- 4pq fol F(z,w(z))dz
3(po + L) [[wl[?
2 U(w)

= gm.

As above, from assumption (C2), we deduce that

1
S — F(z,t)d
SUPyued—1(]—o0,rs) \Ij(u) < fo uP|t\§\/p(2)iL (‘T ) L

- 2pg fol F(z,w(zx))dx
3(po+ L) [[wll?
1 U(w)

= gw.

So, the assumptions (B1) and (B2) in Theorem are satisfied. Hence, by using
Theorem [2.3] the problem (L.I)) admits at least three distinct weak solutions in X.
This completes the proof. O
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