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EXISTENCE OF SOLUTIONS TO SECOND-ORDER
BOUNDARY-VALUE PROBLEMS WITH SMALL

PERTURBATIONS OF IMPULSES

GABRIELE BONANNO, BEATRICE DI BELLA, JOHNNY HENDERSON

Abstract. In this article we study second-order impulsive differential equa-
tions with Dirichlet boundary conditions, depending on two real parameters.

We show that an appropriate growth condition of the nonlinear term, under

small perturbations of impulsive terms, ensures the existence of three solutions.
The approach is based on variational methods.

1. Introduction

Impulsive differential equations are recognized as adequate models to study the
evolution of processes that are subject to sudden changes in their states. Pro-
cesses with such a character arise naturally and often, especially in engineering and
physics. In fact, it is known that many biological phenomena involving thresholds,
optimal control models in economics, pharmacokinetics and frequency modulated
systems, do exhibit impulse effects. For this reason, the theory of impulsive differ-
ential equations has become an important area of investigation in recent years. For
an introduction of the basic theory of impulsive differential equations in Rn, see [7]
and [2]. Some classical tools have been used to study such problems in the litera-
ture, such as the coincidence degree theory of Mawhin, the method of upper and
lower solutions with the monotone iterative technique, and some fixed point theo-
rems in cones (see [5, 11, 9]). Recently, some researchers have begun to study the
existence of solutions for impulsive boundary value problems by using variational
methods (see for instance [10]–[14]).

In this article we consider the nonlinear Dirichlet boundary-value problem

−u′′(t) + a(t)u′(t) + b(t)u(t) = λg(t, u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T ) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, . . . , n

(1.1)

where λ ∈]0,+∞[, µ ∈]0,+∞[, g : [0, T ] × R → R, a, b ∈ L∞([0, T ]) satisfy the
conditions ess inft∈[0,T ] a(t) ≥ 0, ess inft∈[0,T ] b(t) ≥ 0, 0 = t0 < t1 < t2 < · · · <
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tn < tn+1 = T , ∆u′(tj) = u′(t+j ) − u′(t−j ) = limt→t+j
u′(t) − limt→t−j

u′(t), and
Ij : R→ R are continuous for every j = 1, 2, . . . , n.

By a classical solution of (1.1), we mean a function

u ∈
{
w ∈ C([0, T ] : w|[tj ,tj+1] ∈ H2([tj , tj+1])

}
that satisfies the equation in (1.1) a.e. on [0, T ] \ {t1, . . . , tn}, the limits u′(t+j ),
u′(t−j ), j = 1, . . . , n, exist, satisfy the impulsive conditions ∆u′(tj) = µIj(u(tj))m
and the boundary condition u(0) = u(T ) = 0. Clearly, if a, b, g are continuous, then
the classical solution u ∈ C2([tj , tj+1]), j = 0, 1, . . . , n, and satisfies the equation in
(1.1) for all t ∈ [0, T ] \ {t1, . . . , tn}.

By using variational methods, we show the existence of three solutions for this
problem. More precisely, by choosing µ in a suitable way and under a growth
condition on the nonlinear term we prove that (1.1) has at least three solutions for
every λ lying in a precise interval. In particular, we obtain two main theorems. In
the first one (Theorem 3.8) we require on the antiderivative of g both a growth more
then quadratic in a suitable interval and a growth less then quadratic at infinity,
and at the same time, on the impulse Ij , an asymptotic condition is required. In
the second one (Theorem 3.9) we establish the existence of at least three positive
solutions uniformly bounded without asymptotic conditions on g and Ij .

As an example, we present a particular case of Theorem 3.9.

Theorem 1.1. Let g : R→ R be a nonnegative continuous and non-zero function
such that

lim
u→0+

g(u)
u

= lim
u→+∞

g(u)
u

= 0 . (1.2)

Then, for every

λ >
(12 + T 2)e2T

2T (eT − 1)(e3T/4 − eT/4)
inf
d>0

d2∫ d
0
g(x) dx

and for every negative continuous function Ij : R → R, j = 1, . . . , n, there exists
δ∗ > 0 such that, for each µ ∈]0, δ∗[, the problem

−u′′(t) + u′(t) + u(t) = λg(u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T ) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, . . . , n

(1.3)

has at least three non-zero solutions.

We wish to stress that in many papers, as for instance in [16, 17, 8], under
assumptions similar to those of our results, the authors ensure the existence of at
least only one solution for (1.1) and, moreover, do not give an estimate of λ and µ
and an explicit upper bound, uniformly with respect to parameters, of the solutions.

The remainder of the paper is organized as follows. In Section 2, some prelimi-
nary results will be given. In Section 3, we will state and prove the main results of
the paper, as well as give some applications to (1.1).
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2. Preliminaries

We consider the following problem, which is slightly different form (1.1),

−(p(t)u′(t))′ + q(t)u(t) = λf(t, u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T ) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, . . . , n

(2.1)

where p ∈ C1([0, T ], [0,+∞[), q ∈ L∞([0, T ]) with ess inft∈[0,T ] q(t) ≥ 0.
It is easy to see that the solutions of (2.1) are solutions of (1.1) if

p(t) = e−
R t
0 a(τ) dτ , q(t) = b(t)e−

R t
0 a(τ) dτ , f(t, u) = g(t, u)e−

R t
0 a(τ) dτ .

Let us introduce some notation. In the Sobolev space H1
0 (0, T ), consider the inner

product

(u, v) =
∫ T

0

p(t)u′(t)v′(t) dt+
∫ T

0

q(t)u(t)v(t) dt ,

which induces the norm

‖u‖ =
(∫ T

0

p(t)(u′(t))2 dt+
∫ T

0

q(t)(u(t))2 dt
)1/2

.

Let us recall the Poincarè type inequality[ ∫ T

0

u2(t) dt
]1/2

≤ T

π

[ ∫ T

0

(u′)2(t) dt
]1/2

. (2.2)

Proposition 2.1. Let u ∈ H1
0 (0, T ). Then

‖u‖∞ ≤
1
2

√
T

p∗
‖u‖ (2.3)

where p∗ := mint∈[0,T ] p(t)

Proof. In view of Hölder’s inequality one has

‖u‖∞ ≤
√
T

2
‖u′‖L2([0,T ]) ≤

1
2

√
T

p∗
‖u‖ .

�

Here and in the sequel f : [0, T ] × R → R is an L1-Carathéodory function,
namely:

(F1) (a) t→ f(t, x) is measurable for every x ∈ R;
(b) x→ f(t, x) is continuous for almost every t ∈ [0, T ];
(c) for every ρ > 0 there exists a function lρ ∈ L1([0, T ]) such that

sup
|x|≤ρ

|f(t, x)| ≤ lρ(t)

for almost every t ∈ [0, T ];
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Definition 2.2. A function u ∈ H1
0 (0, T ) is said to be a weak solution of (2.1), if

u satisfies ∫ T

0

p(t)u′(t)v′(t) dt+
∫ T

0

q(t)u(t)v(t)dt

− λ
∫ T

0

f(t, u(t))v(t) dt+ µ

n∑
j=1

p(tj)Ij(u(tj))v(tj) = 0,
(2.4)

for any v ∈ H1
0 (0, T ).

Lemma 2.3. u ∈ H1
0 (0, T ) is a weak solution of (2.1) if and only if u is a classical

solution of (2.1).

Proof. Let u ∈ H1
0 (0, T ) be a weak solution of (2.1). Then (2.4) holds for any

v ∈ H1
0 (0, T ). Fix j ∈ {0, 1, 2, . . . , n} and let v̄ ∈ H1

0 (0, T ) such that v̄(t) = 0 for
all t ∈ [0, tj ] ∪ [tj+1, T ]. Thus by (2.4) we obtain∫ tj+1

tj

[−(p(t)u′(t))′v̄(t) + q(t)u(t)v̄(t)] dt− λ
∫ tj+1

tj

f(t, u(t))v̄(t) dt = 0 .

This implies that
−(p(t)u′(t))′ + q(t)u(t) = λf(t, u(t))

for almost every t ∈ [tj , tj+1]. Hence, u ∈ H2(tj , tj+1) and satisfies the equation

− (pu′)′ + qu = λf(t, u) almost every t ∈ [0, T ] . (2.5)

Now multiplying by v ∈ H1
0 (0, T ) and integrating on [0, T ], we obtain that

−
n∑
j=1

∆u′(tj)p(tj)v(tj) +
∫ T

0

[−(p(t)u′(t))′ + q(t)u(t)− λf(t, u(t))] v(t) dt = 0 .

Taking again (2.4) into account, we obtain
n∑
j=1

∆u′(tj)p(tj)v(tj) = µ

n∑
j=1

Ij(u(tj))p(tj)v(tj) .

Hence ∆u′(tj) = µIj(u(tj), for every j = 1, 2, . . . , n, and the impulsive condition
in (2.1) is satisfied. �

Now, we define the functionals Φ,Ψ : H1
0 (0, T )→ R by

Φ(u) =
1
2
‖u‖2 Ψ(u) =

∫ T

0

F (t, u(t)) dt− µ

λ

n∑
j=1

p(tj)
∫ u(tj)

0

Ij(x) dx, (2.6)

for each u ∈ H1
0 (0, T ), where F (t, ξ) =

∫ ξ
0
f(t, x) dx for each (t, ξ) ∈ [0, T ] × R.

Using the property of f and the continuity of Ij , j = 1, 2, . . . , n, we have that
Φ,Ψ ∈ C1(H1

0 (0, T ),R) and for any v ∈ H1
0 (0, T ), we have

Φ′(u)(v) =
∫ T

0

p(t)u′(t)v′(t) dt+
∫ T

0

q(t)u(t)v(t) dt

and

Ψ′(u)(v) =
∫ T

0

f(t, u(t))v(t) dt− µ

λ

n∑
j=1

p(tj)Ij(u(tj))v(tj).
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So, arguing in a standard way, it is possible to prove that the critical points of the
functional Eλ,µ(u) := Φ(u)− λΨ(u) are the weak solutions of problem (2.1) and so
they are classical.

We now state two critical point theorems which are the main tools for the proofs
of our results. The following statement comes easily by the results contained in [4]
and in [3].

Theorem 2.4 ([4, Theorem 2.6]). Let X be a reflexive real Banach space; Φ :
X → R be a sequentially weakly lower semicontinuous, coercive and continuously
Gâteaux differentiable functional whose Gâteaux derivative admits a continuous in-
verse on X∗, Ψ : X → R be a sequentially weakly upper semicontinuous, continu-
ously Gâteaux differentiable functional whose Gâteaux derivative is compact, such
that

Φ(0) = Ψ(0) = 0 .

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄) such that

(i) supΦ(x)≤r Ψ(x) < rΨ(x̄)/Φ(x̄),
(ii) for each λ in

Λr :=
]Φ(x̄)

Ψ(x̄)
,

r

supΦ(x)≤r Ψ(x)

[
,

the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical
points in X.

Theorem 2.5 ([3, Theorem 3.2]). Let X be a reflexive real Banach space; Φ :
X → R be a convex, coercive and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact,
such that

inf
X

Φ = Φ(0) = Ψ(0) = 0 .

Assume that there exist two positive constants r1, r2 > 0 and x̄ ∈ X, with 2r1 <
Φ(x̄) < r2

2 , such that

(j)
supΦ(x)≤r1 Ψ(x)

r1
< 2

3
Ψ(x̄)
Φ(x̄) ,

(jj)
supΦ(x)≤r2 Ψ(x)

r2
< 1

3
Ψ(x̄)
Φ(x̄) ,

(jjj) for each λ in

Λ∗r1,r2 :=
]3

2
Φ(x̄)
Ψ(x̄)

,min
{ r1

supΦ(x)≤r1 Ψ(x)
,

r2

2 supΦ(x)≤r2 Ψ(x)
}[

and for every x1, x2 ∈ X, which are local minima for the functional Φ−λΨ,
and such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has inft∈[0,1] Ψ(tx1 + (1 −
t)x2) ≥ 0.

Then, for each λ ∈ Λ∗r1,r2 the functional Φ− λΨ has at least three distinct critical
points which lie in Φ−1(]−∞, r2[).
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3. Main results

First, we give the following lemma which we will use in the proof of our main
result.

Lemma 3.1. Assume that
(H1) there exist constants α, β > 0 and σ ∈ [0, 1[ such that

|Ij(x)| ≤ α+ β|x|σ for all x ∈ R, j = 1, 2, . . . , n .

Then, for any u ∈ H1
0 (0, T ), one has∣∣ n∑

j=1

p(tj)
∫ u(tj)

0

Ij(x) dx
∣∣ ≤ n∑

j=1

p(tj)
(
α‖u‖∞ +

β

σ + 1
‖u‖σ+1
∞

)
. (3.1)

Proof. Thanks to condition (H1), one has∣∣ ∫ u(tj)

0

Ij(x) dx
∣∣ ≤ α|u(tj)|+

β

σ + 1
|u(tj)|σ+1.

Thus, (3.1) is obtained. �

Remark 3.2. It is easy to verify that the condition
(H1’) There exist constants γj , βj > 0 and σj ∈ [0, 1[ , (j = 1, 2, . . . , n), such that

|Ij(x)| ≤ γj + βj |x|σj for all x ∈ R, j = 1, 2, . . . , n .

is equivalent to (H1). In fact, it is sufficient to put β := max1≤j≤n βj , γ :=
max1≤j≤n γj , α = γ + β and σ := max1≤j≤n σj .

Now, put

p̃ :=
n∑
j=1

p(tj), k :=
6p∗

12‖p‖∞ + T 2‖q‖∞
, Γc :=

α

c
+
( β

σ + 1
)
cσ−1,

where α, β, σ are given by (h1) and c is a positive constant.

Theorem 3.3. Suppose that (F1), (H1) are satisfied. Furthermore, assume that
there exist two positive constants c, d, with c < d, such that

(A1) F (t, ξ) ≥ 0 for all (t, ξ) ∈
(
[0, T4 ] ∪ [ 3T

4 , T ]
)
× [0, d];

(A2) ∫ T
0

max|ξ|≤c F (t, ξ) dt
c2

< k

∫ 3T/4

T/4
F (t, d) dt

d2
;

(A3)

lim sup
|ξ|→+∞

supt∈[0,T ] F (t, ξ)
ξ2

≤ π2

4T

∫ T
0

max|ξ|≤c F (t, ξ) dt
c2

.

Then, for every λ in

Λ :=
]2p∗

kT

d2∫ 3T/4

T/4
F (t, d) dt

,
2p∗

T

c2∫ T
0

max|ξ|≤c F (t, ξ) dt

[
,

there exists

δ :=
1
T p̃

min
{2p∗c2 − λT

∫ T
0

max|ξ|≤c F (t, ξ) dt
c2Γc

,
kλT

∫ 3T/4

T/4
F (t, d) dt− 2p∗d2

d2Γ(d/
√
k)

}
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such that, for each µ ∈ [0, δ[ the problem (2.1) has at least three distinct classical
solutions.

Proof. First, we observe that due to (A2) the interval Λ is non-empty and, con-
sequently, one has δ > 0. Now, fix λ and µ as in the conclusion. Our aim is to
apply Theorem 2.4. For this end, take X = H1

0 (0, T ) and Φ,Ψ as in (2.6). Put
r = 2c2p∗/T . Taking (2.3) into account, for every u ∈ X such that Φ(u) ≤ r, one
has maxt∈[0,T ] |u(t)| ≤ c. Consequently, from Lemma 3.1 it follows that

sup
Φ(u)≤r

Ψ(u) ≤
∫ T

0

max
|ξ|≤c

F (t, ξ) dt+
µ

λ
p̃
(
αc+

β

σ + 1
cσ+1

)
;

that is,
supΦ(u)≤r Ψ(u)

r
≤ T

2p∗
[∫ T

0
max|ξ|≤c F (t, ξ) dt

c2
+
µ

λ
p̃Γc
]
.

Hence, bearing in mind that µ < δ, one has

supΦ(u)≤r Ψ(u)
r

<
1
λ
. (3.2)

Put

v̄(t) =


4d
T t, t ∈ [0, T/4],
d, t ∈]T/4, 3T/4],
4d
T (T − t), t ∈]3T/4, T ].

Clearly v̄ ∈ X. Moreover, one has

8p∗

T
d2 ≤ ‖v̄‖2 ≤ 2d2(12‖p‖∞ + T 2‖q‖∞)

3T
=

4d2p∗

kT
. (3.3)

So, from c <
√

2d we obtain r < Φ(v̄). Moreover, again from the previous inequality,
we have

Φ(v̄) <
2p∗d2

kT
.

Now, due to Lemma 3.1, (A1), (2.3) and (3.3) one has

Ψ(v̄) ≥
∫ 3T/4

T/4

F (t, d) dt− µ

λ
p̃
(
α‖v̄‖∞ +

β

σ + 1
‖v̄‖σ+1
∞

)
≥
∫ 3T/4

T/4

F (t, d) dt− µ

λ

p̃ d2

k
Γ(d/

√
k).

So, we obtain

Ψ(v̄)
Φ(v̄)

≥
kT
∫ 3T/4

T/4
F (t, d) dt− µ

λ p̃Td
2Γ(d/

√
k)

2p∗d2
.

Since µ < δ, one has
Ψ(v̄)
Φ(v̄)

>
1
λ
. (3.4)

Therefore, from (3.2) and (3.4), condition (i) of Theorem 2.4 is fulfilled.
Now, to prove the coercivity of the functional Φ− λΨ, due to (A3), we have

lim sup
|ξ|→+∞

supt∈[0,T ] F (t, ξ)
ξ2

<
(π2p∗

2T 2

) 1
λ
.
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So, we can fix ε > 0 satisfying

lim sup
|ξ|→+∞

supt∈[0,T ] F (t, ξ)
ξ2

< ε <
(π2p∗

2T 2

) 1
λ
.

Then, there exists a positive constant h such that

F (t, ξ) ≤ ε|ξ|2 + h ∀t ∈ [0, T ], ∀ξ ∈ R .

Taking into account Lemma 3.1, Proposition 2.1 and (2.2), it follows that

Φ(u)− λΨ(u)

≥ 1
2
‖u‖2 − λε‖u‖2L2[0,T ] − λhT − µp̃

[
α

1
2

√
T

p∗
‖u‖+

β

σ + 1

(1
2

√
T

p∗

)σ+1

‖u‖σ+1
]

≥
(1

2
− λε T 2

π2p∗

)
‖u‖2 − λhT − µp̃

[
α

1
2

√
T

p∗
‖u‖+

β

σ + 1

(1
2

√
T

p∗

)σ+1

‖u‖σ+1
]
,

for all u ∈ H1
0 (0, T ). So, the functional Φ− λΨ is coercive. Now, the conclusion of

Theorem 2.4 can be used. It follows that, for every

λ ∈
]2k
T

d2∫ 3T/4

T/4
F (t, d) dt

,
2
T

c2∫ 1

0
max|ξ|≤c F (t, ξ) dt

[
,

the functional Φ−λΨ has at least three distinct critical points in X, which are the
weak solutions of the problem (2.1). This completes the proof. �

Corollary 3.4. Suppose that (H1) holds. Let h ∈ L1([0, T ]) be a nonnegative
and non-zero function and let g : R → R be a continuous function. Put h0 :=∫ 3T/4

T/4
h(t)dt and G(ξ) =

∫ ξ
0
g(x)dx for all ξ ∈ R, and assume that there exist two

positive constants c, d, with c < d, such that
(A1’) G(ξ) ≥ 0 for all ξ ∈ [0, d];
(A2’)

max|ξ|≤cG(ξ)
c2

<
1
2
h0

‖h‖1
G(d)
d2

;

(A3’) lim sup|ξ|→+∞G(ξ)/ξ2 ≤ 0.
Then, for every λ in

Λ :=
] 4
Th0

d2

G(d)
,

2
T‖h‖1

c2

max|ξ|≤cG(ξ)

[
,

there exists

δ :=
1
Tn

min
{2c2 − λT‖h‖1 max|ξ|≤cG(ξ)

c2Γc
,
λTh0

2 G(d)− 2d2

d2Γ(
√

2d)

}
such that, for each µ ∈ [0, δ[ the problem

−u′′(t) = λh(t)g(u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T ) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, . . . , n

(3.5)

has at least three classical solutions.
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The proof of the above corollary follows from Theorem 3.3 by choosing f(t, x) =
h(t)g(x) for all (t, x) ∈ [0, T ]× R and taking into account that k = 1/2.

Remark 3.5. Clearly, if g is nonnegative then assumption (A1’) is verified and
(A2’) becomes

G(c)
c2

<
1
2
h0

‖h‖1
G(d)
d2

.

Now, we state a result without asymptotic conditions on Ij . The following lemma
will be crucial in our arguments.

Lemma 3.6. Suppose that (F1) is satisfied. Moreover, assume that f(t, x) ≥ 0 for
all (t, x) ∈ [0, T ] × R and Ij(x) ≤ 0 for all x ∈ R, j = 1, . . . , n. If u is a classical
solution of (2.1), then u(t) ≥ 0 for all t ∈ [0, T ].

Proof. If u is a classical solution of(2.1), then∫ T

0

(p(t)u′(t))′v(t) dt−
∫ T

0

q(t)u(t)v(t) dt+ λ

∫ T

0

f(t, u(t))v(t) dt = 0

for all v ∈ X. Let v(t) = max{−u(t), 0} for all t ∈ [0, T ]; clearly v ∈ X and we
have

0 =
n∑
j=0

∫ tj+1

tj

(p(t)u′(t))′v(t) dt−
∫ T

0

q(t)u(t)v(t) dt+ λ

∫ T

0

f(t, u(t))v(t) dt

=
n∑
j=0

p(t)u′(t)v(t)
∣∣tj+1

tj
−
∫ T

0

p(t)u′(t)v′(t) dt−
∫ T

0

q(t)u(t)v(t) dt

+ λ

∫ T

0

f(t, u(t))v(t) dt

= −
n∑
j=1

∆u′(tj)p(tj)v(tj)−
∫ T

0

p(t)u′(t)v′(t) dt−
∫ T

0

q(t)u(t)v(t) dt

+ λ

∫ T

0

f(t, u(t))v(t) dt

= −µ
n∑
j=1

Ij(u(tj))p(tj)v(tj) +
∫ T

0

p(t)(v′(t))2 dt+
∫ T

0

q(t)(v(t))2 dt

+ λ

∫ T

0

f(t, u(t))v(t) dt

≥ ‖v‖2 .

So v(t) = 0 for t ∈ [0, T ]. �

Put

=c :=
n∑
j=1

min
|ξ|≤c

∫ ξ

0

Ij(x) dx, for all c > 0 .

Our other main result is as follows.

Theorem 3.7. Suppose that (F1) is satisfied. Furthermore, assume that there exist

three positive constants c1, c2, d, with c1 < d <
√

k
2 c2, such that
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(B1) f(t, ξ) ≥ 0 for all (t, ξ) ∈ [0, T ]× [0, c2];
(B2) ∫ T

0
F (t, c1) dt
c21

<
2
3
k

∫ 3T/4

T/4
F (t, d) dt

d2
;

(B3) ∫ T
0
F (t, c2) dt
c22

<
k

3

∫ 3T/4

T/4
F (t, d) dt

d2
.

Let

Λ′ :=
]3p∗

kT

d2∫ 3T/4

T/4
F (t, d) dt

,
p∗

T
min

{ 2c21∫ T
0
F (t, c1) dt

,
c22∫ T

0
F (t, c2) dt

}[
.

Then, for every λ ∈ Λ′ and for every negative continuous function Ij, j = 1, . . . , n,
there exists

δ∗ :=
1

T‖p‖∞
min

{λT ∫ T
0
F (t, c1) dt− 2p∗c21
=c1

,
λT
∫ T

0
F (t, c2) dt− p∗c22
=c2

}
such that, for each µ ∈]0, δ∗[ the problem (2.1) has at least three classical solutions
ui, i = 1, 2, 3, such that 0 < ‖ui‖∞ ≤ c2.

Proof. Without loss of generality, we can assume f(t, x) ≥ 0 for all (t, x) ∈ [0, T ]×R.
Fix λ, Ij and µ as in the conclusion and take X,Φ and Ψ as in the proof of Theorem
3.3. Put v̄ as in Theorem 3.3, r1 = 2p∗c21

T and r2 = 2p∗c22
T . Therefore, one has

2r1 < Φ(v̄) < r2
2 and since µ < δ∗, one has

1
r1

sup
Φ(u)<r1

Ψ(u) ≤ T

2p∗c21

(∫ T

0

F (t, c1) dt− µ

λ
‖p‖∞=c1

)

<
1
λ
<

T

3k

∫ 3T/4

T/4
F (t, d) dt

d2

≤ 2
3

Ψ(v̄)
Φ(v̄)

,

and

2
r2

sup
Φ(u)<r2

Ψ(u) ≤ T

p∗c22

(∫ T

0

F (t, c2) dt− µ

λ
‖p‖∞=c2

)

<
1
λ
<

T

3k

∫ 3T/4

T/4
F (t, d) dt

d2

≤ 2
3

Ψ(v̄)
Φ(v̄)

.

Therefore, conditions (j) and (jj) of Theorem 2.5 are satisfied. Finally, let u1 and u2

be two local minima for Φ−λΨ. Then, u1 and u2 are critical points for Φ−λΨ, and
so, they are weak solutions for the problem (2.1). Hence, owing to Lemma 3.6, we
obtain u1(t) ≥ 0 and u2(t) ≥ 0 for all t ∈ [0, T ]. So, one has Ψ(su1 + (1− s)u2) ≥ 0
for all s ∈ [0, 1]. From Theorem 2.5 the functional Φ−λΨ has at least three distinct
critical points which are weak solutions of (2.1). This complete the proof. �
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Let A(t) a primitive of a(t), g : [0, T ]×R→ R an L1-Carathéodory function and
put

G(t, ξ) =
∫ ξ

0

g(t, x) dx, k̃ :=
6e−A(T )

12 + T 2‖be−A‖∞
.

By Theorems 3.3 and 3.7, we obtain the following results for problem (1.1).

Theorem 3.8. Suppose that (H1) holds. Furthermore, assume that there exist two
positive constants c, d, with c < d, such that

(I1) G(t, ξ) ≥ 0 for all (t, ξ) ∈
(
[0, T4 ] ∪ [ 3T

4 , T ]
)
× [0, d];

(I2) ∫ T
0
e−A(t) max|ξ|≤cG(t, ξ) dt

c2
< k̃

∫ 3T/4

T/4
e−A(t)G(t, d) dt

d2
;

(I3) lim sup|ξ|→+∞
supt∈[0,T ] e

−A(t)G(t,ξ)

ξ2 ≤ π2

4T

R T
0 e−A(t) max|ξ|≤cG(t,ξ) dt

c2 .
Let

Λ :=
] 2
k̃T e‖a‖1

d2∫ 3T/4

T/4
e−A(t)G(t, d) dt

,
2

Te‖a‖1
c2∫ T

0
e−A(t) max|ξ|≤cG(t, ξ) dt

[
.

Then, for every λ ∈ Λ, there exists

δ :=
1
ẽT

min
{2c2e−‖a‖1 − λT

∫ T
0
e−A(t) max|ξ|≤cG(t, ξ) dt
c2Γc

,

k̃λT
∫ 3T/4

T/4
e−A(t)G(t, d) dt− 2e−‖a‖1d2

d2Γ(d/
√
k)

}
such that, for each µ ∈ [0, δ[ the problem (1.1) has at least three distinct classical
solutions.

The above theorem follows immediately from Theorem 3.3 taking into account
Section 2.

Theorem 3.9. Assume that there exist three positive constants c1, c2, d, with c1 <

d <

√
k̃
2 c2, such that

(J1) g(t, ξ) ≥ 0 for all (t, ξ) ∈ [0, T ]× [0, c2];
(J2) ∫ T

0
e−A(t)G(t, c1) dt

c21
<

2
3
k̃

∫ 3T/4

T/4
e−A(t)G(t, d) dt

d2
;

(J3) ∫ T
0
e−A(t)G(t, c2) dt

c22
<
k̃

3

∫ 3T/4

T/4
e−A(t)G(t, d) dt

d2
.

Then, for every λ in

Λ′ :=
]3e−‖a‖1

k̃T

d2∫ 3T/4

T/4
e−A(t)G((t, d) dt

,

e−‖a‖1

T
min

{ 2c21∫ T
0
e−A(t)G(t, c1) dt

,
c22∫ T

0
e−A(t)G(t, c2) dt

}[
,
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and for every negative continuous function Ij, j = 1, . . . , n, there exists

δ∗ :=
1
T

min
{λT ∫ T

0
e−A(t)G(t, c1) dt− 2e−‖a‖1c21

=c1
,

λT
∫ T

0
e−A(t)G(t, c2) dt− e−‖a‖1c22

=c2

}
such that, for each µ ∈]0, δ∗[, problem (1.1) has at least three classical solutions ui,
i = 1, 2, 3, such that 0 < ‖ui‖∞ ≤ c2.

The above theorem follows from Theorem 3.7 when taking into account Section
2.

We want to point out that the function a(t) can be taken of any sign, provided
changes are made to the constant k̃. When g : R→ R is a nonnegative continuous
function, the assumptions in Theorem 3.9 take a simpler form:

Theorem 3.10. Put

θ :=

∫ 3T/4

T/4
e−A(t) dt

‖e−A‖1
, k∗ :=

2
3
k̃θ, L :=

e−‖a‖1

T‖e−A‖1
.

Assume that there exist three positive constants c1, c2, d, with c1 < d < 1
2

√
3k∗

θ c2,
such that

(J2”) G(c1)/c21 < k∗G(d)/d2;
(J3”) G(c2)/c22 <

k∗

2 G(d)/d2.
Then, for every λ in

Λ′′ :=
]2L
k∗

d2

G(d)
, Lmin

{ 2c21
G(c1)

,
c22

G(c2)
}[
,

and for every negative continuous function Ij, j = 1, . . . , n, there exists

δ∗ := ‖e−A‖1 min
{λG(c1)− 2Lc21

=c1
,
λG(c2)− Lc22

=c2

}
such that, for each µ ∈]0, δ∗[, problem (1.1) has at least three classical solutions ui,
i = 1, 2, 3, such that 0 < ‖ui‖∞ ≤ c2.

Now using Theorem 3.10, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix λ > λ1, put G(ξ) =
∫ ξ

0
g(x) dx for all ξ ∈ R, and let

d > 0 such that G(d) > 0 and

λ >
(12 + T 2)e2T

2T (eT − 1)(e3T/4 − eT/4)
d2

G(d)
.

From (1.2) there is c1 > 0 such that c1 < d and G(c1)/c21 < 2/(T (eT − 1)λ), and
there is c2 > 0 such that

d <

√
3e−T

12 + T 2
c2,

G(c2)
c22

<
1

T (eT − 1)λ
.

Therefore, Theorem 3.10 ensures the conclusion. �

Finally, we give two applications of the results above.
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Example 3.11. The problem

−u′′(t) + (
t

π
− 1)2u(t) = λu2(3− 4u) sin t a.e. in [0, π]

u(0) = u(π) = 0

∆u′(t1) = u′(t+1 )− u′(t−1 ) = µ(1− 3
√
u(t1))

(3.6)

admits at least three non-trivial solutions for each λ ∈ [7, 20] and for each 0 < µ <
1

38π (1− 63λπ
4096 ).

Indeed, it is sufficient to apply Theorem 3.3 by choosing, for instance, c = 1/64
and d = 1/2.

We remark that although [17, Theorem 3.2] can be applied, it guarantees the
existence of at least one solution, only. Our results go further than [1, Theorem 1],
we have precise values of the parameter λ for which the problem admits solutions.

Example 3.12. Let g : (t, x) ∈ (0, 1]× R→ R, be defined as

g(t, x) =


10−4et

2
/ 4
√
t if x ≤ 10−2

x2et
2
/ 4
√
t if 10−2 < x ≤ 1

et
2
/(x2 4
√
t) if x > 1.

By Theorem 3.9, for each λ ∈ [33, 55] and each µ ∈]0, 3.4× 10−4[ the problem

−u′′(t) + 2tu′(t) + (1− t)u(t) = λg(t, u(t)) a.e. in [0, 1]

u(0) = u(1) = 0

∆u′(t1) = u′(t+1 )− u′(t−1 ) = µ(−1− |u(t1)|3)

admits at least three non-trivial solutions ui, such that 0 < |ui(t)| < 102 for all
t ∈ [0, 1], i = 1, 2, 3.

It suffices to choose, for instance, c1 = 10−2, c2 = 102, d = 1.

We observe that in Example 3.11 we do not have the negativity of the impulsive
term, so we cannot apply Theorem 3.9. On the other hand, in Example 3.12 the
function is negative, but it does not have the sublinear growth.
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