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SELFADJOINT EXTENSIONS OF A SINGULAR MULTIPOINT
DIFFERENTIAL OPERATOR OF FIRST ORDER

ZAMEDDIN I. ISMAILOV, RUKIYE ÖZTÜRK MERT

Abstract. In this work, we describe all selfadjoint extensions of the mini-

mal operator generated by linear singular multipoint symmetric differential
expression l = (l1, l2, l3), lk = i d

dt
+ Ak with selfadjoint operator coefficients

Ak, k = 1, 2, 3 in a Hilbert space. This is done as a direct sum of Hilbert

spaces of vector-functions

L2(H, (−∞, a1))⊕ L2(H, (a2, b2))⊕ L2(H, (a3, +∞))

where −∞ < a1 < a2 < b2 < a3 < +∞. Also, we study the structure of the
spectrum of these extensions.

1. Introduction

Many problems arising in modeling processes in multi-particle quantum mechan-
ics, in quantum field theory, in multipoint boundary value problems for differential
equations, and in the physics of rigid bodies use selfadjoint extensions of symmetric
differential operators as a direct sum of Hilbert spaces [1, 11, 12].

The general theory of selfadjoint extensions of symmetric operators in Hilbert
spaces and their spectral theory have deeply been investigated by many mathe-
maticians; see for example [3, 6, 8, 9]. Applications of this theory to two-point
differential operators in Hilbert space of functions have been even continued up to
date.

It is well-known that for the existence of selfadjoint extension of any linear
closed densely defined symmetric operator B in a Hilbert space H, necessary and
sufficient condition is a equality of deficiency indices m(B) = n(B), where m(B) =
dim ker(B∗ + i), n(B) = dim ker(B∗ − i).

However multipoint situations may occur in different tables in the following sense.
Let B1 and B2 be minimal operators generated by the linear differential expression
i ddt in the Hilbert space of functions L2(−∞, a) and L2(b,+∞), a < b, respectively.
In this case, it is known that

(m(B1), n(B1)) = (0, 1), (m(B2), n(B2)) = (1, 0).

Consequently, B1 and B2 are maximal symmetric operators, but they are not
selfadjoint. However, direct sum B = B1 ⊕ B2 of operators in the direct sum
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H = L2(−∞, a)⊕L2(b,+∞) spaces have equal defect numbers (1, 1). Then by the
general theory [8] it has a selfadjoint extension. On the other hand, it can be easily
shown that

u2(b) = eiϕu1(a), ϕ ∈ [0, 2π), u = (u1, u2), u1 ∈ D(B∗1), u2 ∈ D(B∗2).

In the singular cases, there has been no investigation so far. However, in physical
and technical processes, many of the problems resulting from the examination of
the solution is of great importance in singular cases.

The selfadjoint extension theory for ode’s is known for any number of intervals,
finite or infinite, and any order expressions, see [4]. This theory is based on the
GKN (Glazmann-Krein-Naimark) Theory [7].

In this work in section 2, by the method of Calkin-Gorbachuk (see [2, 6, 9]),
we describe all selfadjoint extensions of the minimal operator generated by singular
multipoint symmetric differential operator of first order in the direct sum of Hilbert
space

L2(H, (−∞, a1))⊕ L2(H, (a2, b2))⊕ L2(H, (a3,+∞)),

where −∞ < a1 < a2 < b2 < a3 < +∞ in terms of boundary values.In section 3,
the spectrum of such extensions is studied.

2. Description of selfadjoint extensions

Let H be a separable Hilbert space and a1, a2, b2, a3 ∈ R, a1 < a2 < b2 < a3. In
the Hilbert space L2(H, (−∞, a1)) ⊕ L2(H, (a2, b2)) ⊕ L2(H, (a3,+∞)) of vector-
functions let us consider the linear multipoint differential expression

l(u) = (l1(u1), l2(u2), l3(u3)) = (iu′1 +A1u1, iu
′
2 +A2u2, iu

′
3 +A3u3),

where u = (u1, u2, u3), Ak : D(Ak) ⊂ H → H, k = 1, 2, 3 are linear selfadjoint
operators in H. In the linear manifold D(Ak) ⊂ H introduce the inner product

(f, g)k,+ := (AkfAk, g)H + (f, g)H , f, g ∈ D(Ak), k = 1, 2, 3.

For k = 1, 2, 3, D(Ak) is a Hilbert space under the positive norm ‖ · ‖k,+ with
respect to the Hilbert space H. It is denoted by Hk,+. Denote Hk,− a Hilbert
space with the negative norm. It is clear that an operator Ak is continuous from
Hk,+ to H and that its adjoint operator Ãk : H → Hk,− is a extension of the
operator Ak. On the other hand, Ãk : D(Ãk) = H ⊂ Hk,−1 → Hk,−1 is a linear
selfadjoint operator.

In the direct sum, L2(H, (−∞, a1)) ⊕ L2(H, (a2, b2)) ⊕ L2(H, (a3,+∞)) define
by

l̃(u) = (l̃1(u1), l̃2(u2), l̃3(u3)), (2.1)

where u = (u1, u2, u3) and l̃1(u1) = iu′1 + Ã1u1, l̃2(u2) = iu′2 + Ã2u2, l̃3(u3) =
iu′3 + Ã3u3.

The minimal L10 (L20 and L30) and maximal L1 (L2 and L3) operators generated
by differential expression l̃1 (l̃2 and l̃3) in L2(H, (−∞, a1)) (L2(H, (a2, b2)) and
L2(H, (b,+∞))) have been investigation in [5].

The operators L0 = L10 ⊕ L20 ⊕ L30 and L = L1 ⊕ L2 ⊕ L3 in the space
L2 = L2(H, (−∞, a1))⊕ L2(H, (a2, b2))⊕ L2(H, (a3,+∞)) are called minimal and
maximal (multipoint) operators generated by the differential expression (2.1), re-
spectively. Note that the operator L0 is symmetric and L∗0 = L in L2. On the
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other hand, it is clear that, m(L10) = 0, n(L10) = dimH, m(L20) = dimH,
n(L20) = dimH, m(L30) = dimH, n(L30) = 0.

Consequently, m(L0) = n(L0) = 2 dimH > 0. Hence, the minimal operator L0

has a selfadjoint extension [8]. For example, the differential expression l̃(u) with the
boundary condition u(a1) = u(a3), u(a2) = u(b2) generates a selfadjoint operator
in L2.

All selfadjoint extensions of the minimal operator L0 in L2 in terms of the bound-
ary values are described.

Note that space of boundary values has an important role in the theory of self-
adjoint extensions of linear symmetric differential operators [6, 9].

Let B : D(B) ⊂ H → H be a closed densely defined symmetric operator in
the Hilbert space H, having equal finite or infinite deficiency indices. A triplet
(H, γ1, γ2), where H is a Hilbert space, γ1 and γ2 are linear mappings of D(B∗) into
H, is called a space of boundary values for the operator B if for any f, g ∈ D(B∗)

(B∗f, g)H − (f,B∗g)H = (γ1(f), γ2(g))H − (γ2(f), γ1(g))H,

while for any F,G ∈ H, there exists an element f ∈ D(B∗), such that γ1(f) = F and
γ2(f) = G.

Note that any symmetric operator with equal deficiency indices has at least one
space of boundary values [6].

Firstly, note that the following proposition which validity of this claim can be
easily proved.

Lemma 2.1. The triplet (H, γ1, γ2), where

γ1 : D((L10 ⊕ 0⊕ L30)∗)→ H, γ1(u) =
1

i
√

2
(u1(a1) + u3(a3)),

γ2 : D((L10 ⊕ 0⊕ L30)∗)→ H, γ2(u) =
1√
2

(u1(a1)− u3(a3)),

u = (u1, u2, u3) ∈ D((L10 ⊕ 0⊕ L30)∗)

is a space of boundary values of the minimal operator L10 ⊕ 0 ⊕ L30 in the direct
sum L2(H, (−∞, a1))⊕ 0⊕ L2(H, (a3,+∞)).

Proof. For arbitrary u = (u1, u2, u3) and v = (v1, v2, v3) from D((L10 ⊕ 0⊕ L30)∗)
the validity of the equality

(Lu, v)L2(H,(−∞,a1))⊕0⊕L2(H,(a3,+∞)) − (u, Lv)L2(H,(−∞,a1))⊕0⊕L2(H,(a3,+∞))

= (γ1(u), γ2(v))H − (γ2(u), γ1(v))H
can be easily verified. Now for any given elements f, g ∈ H, we will find the function
u = (u1, u2, u3) ∈ D((L10 ⊕ 0⊕ L30)∗) such that

γ1(u) =
1

i
√

2
(u1(a1) + u3(a3)) = f and γ2(u) =

1√
2

(u1(a1)− u3(a3)) = g;

that is,
u1(a1) = (if + g)/

√
2 and u3(a3) = (if − g)/

√
2.

If we choose the functions u1(t), u3(t) in the form

u1(t) =
∫ t

−∞
es−a1ds(if + g)/

√
2 with t < a1;

u2(t) = 0, with a2 < t < b2;
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u3(t) =
∫ ∞
t

ea3−tds(if − g)/
√

2 with t > a3

then it is clear that (u1, u2, u3) ∈ D((L10⊕0⊕L30)∗) and γ1(u) = f , γ2(u) = g. �

Furthermore, using the result which is obtained in [5] the next assertion is proved.

Lemma 2.2. The triplet (H,Γ1,Γ2),

Γ1 : D((0⊕ L20 ⊕ 0)∗)→ H, Γ1(u) =
1
i
√

2
(u2(a2) + u2(b2)),

Γ2 : D((0⊕ L20 ⊕ 0)∗)→ H, Γ2(u) =
1√
2

(u2(a2)− u2(b2)),

u = (u1, u2, u3) ∈ D((0⊕ L20 ⊕ 0)∗)

is a space of boundary values of the minimal operator 0⊕ L0 ⊕ 0 in the direct sum
0⊕ L2(H, (a2, b2))⊕ 0.

The following result can be easily established.

Lemma 2.3. Every selfadjoint extension of L0 in

L2 = L2(H, (−∞, a1))⊕ L2(H, (a2, b2))⊕ L2(H, (a3,+∞))

is a direct sum of selfadjoint extensions of the minimal operator L10 ⊕ 0 ⊕ L30

in L2(H, (−∞, a1)) ⊕ 0 ⊕ L2(H, (a3,+∞)) and minimal operator 0 ⊕ L0 ⊕ 0 in
0⊕ L2(H, (a2, b2))⊕ 0.

Finally, using the method in [6] the following result can be deduced.

Theorem 2.4. If L̃ is a selfadjoint extension of the minimal operator L0 in L2,
then it generates by differential expression (2.1) and boundary conditions

u3(a3) = W1u1(a1),

u2(b2) = W2u2(a2),

where W1,W2 : H → H are a unitary operators. Moreover, the unitary operators
W1,W2 in H are determined uniquely by the extension L̃; i.e. L̃ = LW1W2 and vice
versa.

3. The spectrum of the selfadjoint extensions

In this section the structure of the spectrum of the selfadjoint extension LW1W2

in L2 will be investigated. In this case by the Lemma 2.3 it is clear that

LW1W2 = LW1 ⊕ LW2 ,

where LW1 and LW2 are selfadjoint extensions of the minimal operators L0(1, 0, 1) =
L10 ⊕ 0 ⊕ L30 and L0(0, 1, 0) = 0 ⊕ L0 ⊕ 0 in the Hilbert spaces L2(1, 0, 1) =
L2(H, (−∞, a1)) ⊕ 0 ⊕ L2(H, (a3,+∞)) and L2(0, 1, 0) = 0 ⊕ L2(H, (a2, b2)) ⊕ 0,
respectively.

First, we have to prove the following result.

Theorem 3.1. The point spectrum of any selfadjoint extension LW1 in the Hilbert
space L2(1, 0, 1) is empty; i.e.,

σp(LW1) = ∅.
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Proof. Let us consider the following problem for the spectrum of the selfadjoint
extension LW1 of the minimal operator L0(1, 0, 1) in the Hilbert space L2(1, 0, 1),

LW1u = λu, u = (u1, 0, u3) ∈ L2(1, 0, 1);

that is,

l̃1(u1) = iu′1 + Ã1u1 = λu1, u1 ∈ L2(H, (−∞, a1)),

l̃3(u3) = iu′3 + Ã3u3 = λu3, u3 ∈ L2(H, (a3,+∞)), λ ∈ R,
u3(a3) = W1u1(a1).

The general solution of this problem is

u1(λ; t) = ei(Ã1−λ)(t−a1)f∗1 , t < a1,

u3(λ; t) = ei(Ã3−λ)(t−a3)f∗3 , t > a3,

f∗3 = W1f
∗
1 , f∗1 , f

∗
3 ∈ H.

It is clear that for the f∗1 6= 0, f∗3 6= 0 the functions u1(λ; .) /∈ L2(H, (−∞, a1)),
u2(λ; .) /∈ L2(H, (a3,+∞)). So for every unitary operator W1 we have σp(LW1) =
∅. �

Since residual spectrum of any selfadjoint operator in any Hilbert space is empty,
it is sufficient to investigate the continuous spectrum of the selfadjoint extensions
LW1 of the minimal operator L0(1, 0, 1) in the Hilbert space L2(1, 0, 1).

Theorem 3.2. The continuous spectrum of any selfadjoint extension LW1 of the
minimal operator L0(1, 0, 1) in the Hilbert space L2(1, 0, 1) is σc(LW1) = R.

Proof. Firstly, we search for the resolvent operator of the extension LW1 generated
by the differential expression (l̃1, 0, l̃3) and the boundary condition

u3(a3) = W1u1(a1)

in the Hilbert space L2(1, 0, 1); i.e.

l̃1(u1) = iu′1 + Ã1u1 = λu1 + f1, u1, f1 ∈ L2(H, (−∞, a1)),

l̃3(u3) = iu′3 + Ã3u3 = λu3 + f3, u3, f3 ∈ L2(H, (a3,+∞)),
λ ∈ C, λi = Imλ > 0

u3(a3) = W1u1(a1)

(3.1)

Now, we will show that the function

u(λ; t) = (u1(λ; t), 0, u3(λ; t)),

where

u1(λ; t) = ei(Ã1−λ)(t−a1)f∗1 + i

∫ a1

t

ei(Ã1−λ)(t−s)f1(s)ds, t < a1,

u3(λ; t) = i

∫ ∞
t

ei(Ã3−λ)(t−s)f3(s)ds, t > a3,

f∗1 = W ∗
(
i

∫ ∞
a3

ei(Ã3−λ)(t−s)(b−s)f3(s)ds
)

is a solution of the boundary value problem (3.1) in the Hilbert space L2(1, 0, 1).
It is sufficient to show that

u1(λ; t) ∈ L2(H, (−∞, a1)),
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u3(λ; t) ∈ L2(H, (a3,+∞))

for λi > 0. Indeed, in this case

‖f∗1 ‖2H =
∥∥∥∫ ∞

a3

ei(Ã3−λ)(a3−s)f(s)ds
∥∥∥2

H
≤
(∫ ∞

a3

eλi(a3−s)‖f(s)‖Hds
)2

≤
(∫ ∞

a3

e2λi(a3−s)ds
)(∫ ∞

a3

‖f(s)‖2Hds
)

=
1

2λi
‖f‖2L2(H,(a3,+∞)) <∞,

‖ei(Ã1−λ)(t−a1)f∗1 ‖2L2(H,(−∞,a1)) = ‖e−iλ(t−a1)f∗1 ‖2L2(H,(−∞,a1))

=
∫ a1

−∞
‖e−iλ(t−a1)f∗1 ‖2Hdt

=
∫ a1

−∞
e2λi(t−a1)dt‖f∗1 ‖2H

=
1

2λi
‖f∗1 ‖2H <∞

and∥∥∥i∫ a1

t

ei(Ã1−λ)(t−s)f1(s)ds
∥∥∥2

L2(H,(−∞,a1))

≤
∫ a1

−∞

(∫ a1

t

eλi(t−s)‖f1(s)‖Hds
)2

dt

≤
∫ a1

−∞

(∫ a1

t

eλi(t−s)ds
)(∫ a1

t

eλi(t−s)‖f1(s)‖2ds
)
dt

=
1
λi

∫ a1

−∞

∫ a1

t

eλi(t−s)‖f1(s)‖2dsdt =
1
λi

∫ a1

−∞

(∫ s

−∞
eλi(t−s)‖f1(s)‖2dt

)
ds

=
1
λi

∫ a1

−∞

(∫ s

−∞
eλi(t−s)dt

)
‖f1(s)‖2ds

=
1
λ2
i

∫ a1

−∞
‖f1(s)‖2ds

=
1
λ2
i

‖f1‖2L2(H,(−∞,a1)) <∞.

Furthermore, ∥∥∥i ∫ ∞
t

ei(Ã3−λ)(t−s)f3(s)ds
∥∥∥2

L2(H,(a3,+∞))

≤
∫ ∞
a3

(∫ ∞
t

eλi(t−s)‖f3(s)‖Hds
)2

dt

≤
∫ ∞
a3

(∫ ∞
t

eλi(t−s)ds
)(∫ ∞

t

eλi(t−s)‖f3(s)‖2ds
)
dt

=
1
λi

∫ ∞
a3

(∫ ∞
t

eλi(t−s)‖f3(s)‖2ds
)
dt

=
1
λi

∫ ∞
a3

(∫ s

a3

eλi(t−s)‖f3(s)‖2dt
)
ds

=
1
λi

∫ ∞
a3

(∫ s

a3

eλi(t−s)dt
)
‖f3(s)‖2ds



EJDE-2013/129 SELFADJOINT EXTENSIONS 7

=
1
λ2
i

∫ ∞
a3

(1− eλi(a3−s))‖f3(s)‖2ds

≤ 1
λ2
i

‖f3‖2L2(H,(a3,+∞)) <∞.

The above calculations imply that u1(λ; t) ∈ L2(H, (−∞, a1)), and that u3(λ; t) ∈
L2(H, (a3,+∞)) for λ ∈ C, λi = Imλ > 0. On the other hand, one can easily verify
that u(λ; t) = (u1(λ; t), 0, u3(λ; t)) is a solution of boundary-value problem (3.1).

When λ ∈ C, λi = Imλ < 0 is true solution of the boundary-value problem

LW1u = λu+ f, u = (u1, 0, u3), f = (f1, 0, f3) ∈ L2(1, 0, 1)

u3(a3) = W1u1(a1),

where W1 is a unitary operator in H, is in the form u(λ; t) = (u1(λ; t), 0, u3(λ; t)),

u1(λ; t) = −i
∫ t

−∞
ei(Ã1−λ)(t−s)f1(s)ds, t < a1

u3(λ; t) = ei(Ã3−λ)(t−a3)f∗3 − i
∫ t

a3

ei(Ã3−λ)(t−s)f3(s)ds, t > a3,

where

f∗3 = W
(
− i
∫ a1

−∞
ei(Ã1−λ)(a1−s)f1(s)ds

)
.

First, we prove that u(λ; t) ∈ L2(1, 0, 1). In this case,

‖u1(λ; t)‖2L2(H,(−∞,a1)) =
∫ a1

−∞

∥∥∥− i ∫ t

−∞
ei(Ã1−λ)(t−s)f1(s)ds

∥∥∥2

H
dt

≤
∫ a1

−∞

(∫ t

−∞
eλi(t−s)ds

)(∫ t

−∞
eλi(t−s)‖f1(s)‖2Hds

)
dt

=
1
|λi|

∫ a1

−∞

∫ t

−∞
eλi(t−s)‖f1(s)‖2H ds dt

=
1
|λi|

∫ a1

−∞

(∫ a1

s

eλi(t−s)‖f1(s)‖2Hdt
)
ds

=
1
|λi|

∫ a1

−∞

(
eλi(t−s)

)
dt‖f1(s)‖2Hds

=
1
|λi|2

∫ a1

−∞
(1− eλi(a1−s))‖f1(s)‖2Hds

≤ 1
|λi|2

‖f1‖2L2(H,(−∞,a1)) <∞,

‖f∗3 ‖2H =
∥∥∥ ∫ a1

−∞
ei(Ã1−λ)(a1−s)f1(s)ds

∥∥∥2

H

≤
(∫ a1

−∞
eλi(a1−s)‖f1(s)‖Hds

)2

≤
(∫ a1

−∞
e2λi(a1−s)ds

)(∫ a1

−∞
‖f1(s)‖2Hds

)
=

1
2|λi|

‖f1‖2L2(H,(−∞,a1)) <∞,
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‖ei(Ã3−λ)(t−a3)f∗3 ‖2L2(H,(a3,+∞)) ≤
∫ ∞
a3

e2λi(t−a3)dt‖f∗3 ‖2H

=
1

2|λi|
‖f∗3 ‖2H

≤ 1
4|λi|2

‖f‖2L2(H,(a3,+∞)) <∞

and ∥∥∥∫ t

a3

ei(Ã3−λ)(t−s)f3(s)ds
∥∥∥2

L2(H,(a3,+∞))

≤
∫ ∞
a3

(∫ t

a3

eλi(t−s)‖f3(s)‖Hds
)2

dt

≤
∫ ∞
a3

(∫ t

a3

eλi(t−s)ds
)(∫ t

a3

eλi(t−s)‖f3(s)‖2Hds
)
dt

=
∫ ∞
a3

( 1
λi

(1− eλi(t−a3))
)(∫ t

a3

eλi(t−s)‖f3(s)‖2Hds
)
dt

≤ 1
|λi|

∫ ∞
a3

(∫ t

a3

eλi(t−a3)‖f3(s)‖2Hds
)
dt

=
1
|λi|

∫ ∞
a3

(∫ ∞
s

eλi(t−s)‖f3(s)‖2Hdt
)
ds

=
1
|λi|

∫ ∞
a3

(∫ a3

s

eλi(t−s)dt
)
‖f3(s)‖2Hds

=
1
|λi|2

‖f3‖2L2(H,(a3,+∞)) <∞.

The above calculations show that u1(λ; ·) ∈ L2(H, (−∞, a1)), and that u3(λ; ·) ∈
L2(H, (a3,+∞)); i.e., u(λ; ·) = (u1(λ; ·), 0, u3(λ, ·)) ∈ L2(1, 0, 1) in case λ ∈ C,
λi = Imλ < 0. On the other hand it can be verified that the function u(λ; ·)
satisfies the equation LW1u = λu(λ; ·) + f and u3(a3) = W1u1(a1).

Therefore, the following result has been proved that for the resolvent set ρ(LW1)

ρ(LW1) ⊃ {λ ∈ C : Imλ 6= 0}.

Now, we will study continuous spectrum σc(LW1) of the extension LW1 . For λ ∈ C,
λi = Imλ > 0, norm of the resolvent operator Rλ(LW1) of the LW1 is of the form

‖Rλ(LW1)f(t)‖2L2
=
∥∥∥ei(Ã1−λ)(t−a1)f∗1 + i

∫ a1

t

ei(Ã1−λ)(t−s)f1(s)ds
∥∥∥2

L2(H,(−∞,a1))

+
∥∥∥i∫ ∞

t

ei(Ã3−λ)(t−s)f3(s)ds
∥∥∥2

L2(H,(a3,+∞))
,

where f = (f1, 0, f3) ∈ L2(1, 0, 1). Then, it is clear that for any f = (f1, 0, f3) in
L2(1, 0, 1) the following inequality is true.

‖Rλ(LW1)f(t)‖2L2
≥
∥∥∥i ∫ ∞

t

ei(Ã3−λ)(t−s)f3(s)ds
∥∥∥2

L2(H,(a3,+∞))
.
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The vector functions f∗(λ; t) which is of the form f∗(λ; t) = (0, 0, ei(Ã3−λ̄)tf3),
λ ∈ C, λi = Imλ > 0, f3 ∈ H belong to L2(1, 0, 1). Indeed,

‖f∗(λ; t)‖2L2
=
∫ ∞
a3

‖ei(Ã3−λ̄)tf3‖2Hdt =
∫ ∞
a3

e−2λitdt‖f3‖2H

=
1

2λi
e−2λia3‖f3‖2H <∞.

For such functions f∗(λ; ·), we have

‖Rλ(LW1)f∗(λ; t)‖2L2(H,(a3+∞))

≥
∥∥∥i ∫ ∞

t

ei(Ã3−λ)(t−s)ei(Ã3−λ̄)sf3ds
∥∥∥2

L2(H,(a3,+∞))

=
∥∥∥∫ ∞

t

e−iλte−2λiseiÃ3tf3ds
∥∥∥2

L2(H,(a3,+∞))

=
∥∥∥e−iλteiÃ3t

∫ ∞
t

e−2λisf3ds
∥∥∥2

L2(H,(a3,+∞))

=
∥∥∥e−iλt ∫ ∞

t

e−2λisds
∥∥∥2

L2(H,(a3,+∞))
‖f3‖2H

=
1

4λ2
i

∫ ∞
a3

e−2λitdt‖f3‖2H

=
1

8λ3
i

e−2λia3‖f3‖2H .

From this we obtain

‖Rλ(LW1)f∗(λ; ·)‖L2 ≥
e−λia3

2
√

2λi
√
λi
‖f‖H =

1
2λi
‖f∗(λ; ·)‖L2 ;

i.e., for λi = Imλ > 0 and f 6= 0,

‖Rλ(LW1)f∗(λ; ·)‖L2

‖f∗(λ; ·)‖L2

≥ 1
2λi

.

is valid. On the other hand, it is clear that

‖Rλ(LW1)‖ ≥ ‖Rλ(LW1)f∗(λ; ·)‖L2

‖f∗(λ; ·)‖L2

, f3 6= 0.

Consequently,

‖Rλ(LW1)‖ ≥ 1
2λi

for λ ∈ C, λi = Imλ > 0.

�

The spectrum of selfadjoint extensions of the minimal operator L0(0, 1, 0) will
be investigated next.

Theorem 3.3. The spectrum of the selfadjoint extension LW2 of the minimal
operator L0(0, 1, 0) in the Hilbert space L2(0, 1, 0) is of the form

σ(LW2 ) =
{
λ ∈ R: λ =

1
b2 − a2

argµ+
2nπ

b2 − a2
, n ∈ Z,

µ ∈ σ(W ∗2 e
iÃ2(b2−a2)), 0 ≤ argµ < 2π

}
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Proof. The general solution of the following problem to spectrum of the selfadjoint
extension LW2 ,

l̃2(u2) = iu′2 + Ã2u2 = λu2 + f2, u2, f2 ∈ L2(H, (a2, b2))

u2(b2) = W2u2(a2), λ ∈ R

is of the form

u2(t) = ei(Ã2−λ)(t−a2)f∗2 +
∫ t

a2

ei(Ã2−λ)(t−s) f2(s)ds,

a2 < t < b2,

(eiλ(b2−a2) −W ∗2 eiÃ2(b2−a2))f∗2 = W ∗2 e
iλ(b2−a2)

∫ b2

a2

ei(Ã2−λ)(b2−s)f2(s)ds

This implies that λ ∈ σ(LW2) if and only if λ is a solution of the equation
eiλ(b2−a2) = µ, where µ ∈ σ(W ∗2 e

iÃ2(b2−a2)). We obtain that

λ =
1

b2 − a2
argµ+

2nπ
b2 − a2

, n ∈ Z, µ ∈ σ(W ∗2 e
iÃ2(b2−a2)).

�

Theorem 3.4. Spectrum σ(LW1W2) of any selfadjoint extension LW1W2 = LW1 ⊕
LW2 coincides with R.

Proof. Validity of this assertion is a simple result of the following claim that a proof
of which it is clear. If S1 and S2 are linear closed operators in any Hilbert spaces
H1 and H2 respectively, then we have

σp(S1 ⊕ S2) = σp(S1) ∪ σp(S2),

σc(S1 ⊕ S2) = (σp(S1) ∪ σp(S2))c ∩ (σr(S1) ∪ σr(S2))c ∩ (σc(S1) ∪ σc(S2)).

�

Note that for the singular differential operators for n-th order in scalar case in
the finite interval has been studied in [10].

Example 3.5. By the last theorem the spectrum of following boundary-value prob-
lem

i
∂u(t, x)
∂t

+ sgn t
∂2u(t, x)
∂x2

= f(t, x), |t| > 1, x ∈ [0, 1],

i
∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

= f(t, x), |t| < 1/2, x ∈ [0, 1],

u(1/2, x) = eiψu(−1/2, x), ψ ∈ [0, 2π),

u(1, x) = eiϕu(−1, x), ϕ ∈ [0, 2π),

ux(t, 0) = ux(t, 1) = 0, |t| > 1, |t| < 1/2

in the space L2((−∞,−1)× (0, 1))⊕ L2((−1/2, 1/2)× (0, 1))⊕ L2((1,∞)× (0, 1))
coincides with R.
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