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EXISTENCE OF SOLUTIONS FOR QUASILINEAR PARABOLIC
EQUATIONS AT RESONANCE

GAO JIA, XTAO-JUAN ZHANG, LI-NA HUANG

ABSTRACT. In this article, we show the existence of nontrivial solutions for a
class of quasilinear parabolic differential equations. To obtain the solution in
a weighted Sobolev space, we use the Galerkin method, Brouwer’s theorem,
and a compact Sobolev-type embedding theorem proved by Shapiro.

1. INTRODUCTION

Many results on the existence of solutions of the quasilinear parabolic resonance
problems have been presented in [3] [ 7, [8 ] and their references cited therein.
Shapiro [9] considered a weak solution of the following problem, in the Hilbert space
H(Q,T),

pDiu+ Qu = [Nju+ f(z,u) + gz, t,u)lp, (z,t) € Q,

we HQ,T), 1)

where
N

Qu = — Z D; [p;m(x)Ai(x, u, Du)| + ¢Bo(x,u, Du)u.
i=1
Kuo [5] also discussed the existence of a nontrivial solution for a quasilinear para-
bolic equation in the Hilbert space Hy":

Dyu+ Qu — Mu+ f(z,t,u) = h(z, 1), (2,1) € 9Q,

_ (1.2)
u=0, (x,t)€0Q,

where

OIOEDS /Q An(z, £(u)) D%,

laf<m

and \p is the first eigenvalue of é
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Motivated by Shapiro [9], in this paper, we show the existence of solutions for
the quasilinear parabolic equation in the weighted Sobolev space H (2, T):

pDyu+ Mu = [Njyu+ f(z,u) + g(z,tu)lp— G, (,1) € Q,

uwe HQ,T), (13)

where

N

Mu = =" Dilp;*(@)p;? (x)o* (w)o}* (w)bij (@) Dju] + bo()o0(w)qu, (1.4)
i,j=1

and J\j, is an eigenvalue of L.

In fact, is one of the most useful sets of Navier-Stokes equations which
describe the motion of viscous fluid substances. They are widely used in the design
of aircrafts and cars, the study of blood flow and the design of power stations, etc.
Furthermore, coupled with Maxwell’s equations, the Navier-Stokes equations can
also be used to model and study magnetohydrodynamics.

The method of this paper is based on the Galerkin method [6], the general-
ized Brouwer’s theorem [4] and a weighted compact Sobolev-type embedding the-
orem [9] established by Shapiro. The nonlinearity in satisfies the generalized
Landesman-Lazer type conditions [6]. Compared with the problem in [9], the

operator M in (1.3) has an extensive presentation format and wider applications.
Now, we give the assumptions and definitions which are needed for the proof of

Theorem [LL5
Let Q ¢ RN, N > 1, be an open (possibly unbounded) set and let p(z), p;(x) €
C°(2) be positive functions with the property that

/ p(x)dr < oo, /plv(:c)d:z:< oo, 1=1,2,...,N. (1.5)
Q Q

Let g(x) € C°(Q2) be a nonnegative function and I' C 99 be a fixed closed set. Note
that ' may be an empty set and ¢(x) may be zero. On the other hand, g(x) will
satisfy: There exists K > 0, such that

0 <gq(x) < Kp(x), forallxeN. (1.6)
Here A is a set of real-valued functions defined as
A={uecC%QxR):u(x,t+27) = u(x,t), for all (x,t) € Q x R}.
Setting Q=0 xT,T=(-m,m),p=(p1,...,pn) and D; = %’i =1,2,...,N, we
consider the following pre-Hilbert spaces (see [9]):
52((2) ={ue Q) : /ﬁ lu(z, t)*p(z) dz dt < oo},

with the inner product

(woly = [ ulw (o Op(z) duat
Q
and the space
Cl Q1) = {u e ANCYQ x R) - u(x,t) = 0, for all (z,£) € T x R;

N

/JZ |Diulpi + (u? + | Dyul?)p] < oo}

i=1
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with inner product
N
(u,v) 7 = /~ [ZpiDiuDiv + (uwv + DyuDyw)p| dz dt. (1.7)
2 21

Let E,Q) = ng)(ﬁ) denote the Hilbert space obtained from the completion of 5’0 with
the norm [lufl, = ((u,u)y )1/2 by using Cauchy sequences, and H = H(€,T) denote

the completion of the space C’;} with the norm |jul|z = (u,u>}l/2

have E%i, (1=1,2,---,N) and Zg
It is assumed throughout this paper that o;(u)(i =0,1,..., N) meets:

. Similarly, we

(S1) oi(u) : H — R is weakly sequentially continuous;
(S2) there are 19,m1 > 0, such that 7y < o;(u) < 11, and o;(u) is measurable,
foru € H.

The functions a;;(¢,j = 1,2,...,N) and ao(z) satisfy (also b;;(z) and by(z)):
ao(z),a;5(r) € CO(Q) NLX(Q), i,j=1,2,...,N;
a;j(z) = aj;(x), YexeQ, i,j=1,2,...,N;
ao(z) = o >0 (bo(z) > 1 >0), forx €

there is a co > 0 (¢; > 0) for z € Q, £ € RY | such that (1.8)
N
D ai ()€ > colél? Z bij(2)6&; > e1l¢]?).
i,j=1 t,5=1

The function g(x,t, s) meets the following conditions:
(G1) g(z,t,s) satisfies the Caratheodory assumptions;
(G2) for any € > 0, there is a g.(z,t) € Z,%, such that |g(z,t, s)| < e|s| + ge(z, t),
for a.e. (z,t) € Q, and all s € R.

Definition 1.1. For the quasilinear differential operator M , the two-form is
1 1 1
u v) Z / p? piol( ?(u)biijuDiv} +/~q00(u)bouv, (1.9)

3,j=1 @

for u,v € H(Q,T).

Defining
Lu= = Di[p;p; aiDju] + aoqu, (1.10)
ij=1
for u e Hy 4, = Hpq,(Q,T) (as described in [9]), and
~ al 11 o
Lu=— )" D;[p?pZa;Dju] +apqu, u€ H(Q,T),
i,j=1

then the two-form of £ is

L(u,v) Z/ 1/2 1/2a” )DjuDZ-v—&—/aouvq, u,v € Hyq,(Q,T), (1.11)

i,j=1 Q
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and the two- form of L is

0= Y [ a@Dunas [awe woe BED. (1)

1,7=1 Q

Definition 1.2. We say that M is #FI-related to £ if the following condition
holds: N _
[M(u7 U) — ‘C(ua U)]

1m
llull gz —o00 l|lull 5

Definition 1.3. The pair (Q,T') is a V(Q,T") if

(VL1) there is a complete orthonormal system {(, };2; in L2. Also ¢, € Hy 4,
C? for all n;

(VL2) there is a sequence of eigenvalues {\,}52; with 0 < A\; < Ag < A3 < -+ <
A, — 00 such that L(¢n,v) = A\y(pn,v), for all v € H,,,(Q,T'). Also
w1 >0in Q.

=0, uniformly for |[v] 7 < 1.

We set
Y= <)‘jo+j1 - )‘jo)/2a (1-13)
where Aj, is an eigenvalue of £ of multiplicity ji. So Aj,4+j, is the next eigenvalue
strictly greater than A;,. Also, we set

FE(z) = lirililolff(x’S)/S’ Fi(x) =liminf f(z,s)/s. (1.14)

s—+oo

For f(z,s), we have:

(F1) f(x,s) satisfies the Caratheodory conditions;

(F2) |f(x,5) —vs] < ls| + fo(x) for all s € R, ae. & € Q, where fo € L;

(F3)

/ ()\j()“l‘jl - >‘jo - ‘7:+)U2p +/ ()‘j0+j1 - /\jo - fﬁ)v2p >0, (115)
QN (v>0) QN (v<0)

for every nontrivial Aj,4;,-eigenfunction v of £, and

/ Fiw?p +/ F_w?p >0, (1.16)
QN (w>0) QN (w<0)

for every nontrivial Aj,-eigenfunction w of L .

Remark 1.4. If M, as defined by (T-4), satisfies (S1)~(S2), then
M(v,Dw) =0, YoeCl ={veCl, :DweC}}. (1.17)
Now, we state the main result of this article.
Theorem 1.5. Let Q C RN(N > 1), T = (—m,7), Q= QX T, p= (p1,...,pn), p
and p;i(i =1,...,N) be positive functions in C°(Q) satisfying (LF), ¢ € C°(2) be

a nonnegative function satisfying ., and T C 99 be a closed set. Let £ and M

be given by (1.9) and ( . satisfying ., (S1), (S2) respectively and L satzsﬁes
the condztzons of Ve(Q,T). If Aj, is an ezgenvalue of L of multiplicity ji, M is

#H- related to £, and (F1)—(F3), (G1)-(G2) hold, then problem (1.3) has at least
one weak solution; i.e., there exits u* € H such that

(Dyu™, ), + ./T/l/(u*,v) = Njo(u, )7 + (f(2,u*) + g(z,t,u”),v); — G(v). (1.18)
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The rest of this article is arranged as follows. In section 2, we will give some
preliminary lemmas; In section 3, we will prove the main results on the quasilinear
parabolic differential equations.

2. PRELIMINARY LEMMAS

In this section, we introduce some lemmas, and concepts which will be used later.
If both (1.8) and the conditions of V7, (€2,T') hold, we have

{&]k)}j 1,k=0 U {<p]k}] 1,k= lls a CONS for sz (21)
where
e w;(x)/V2m k=0,7=12,...,
@jk(xat) = . . _
pil@)cos(k) [VF Gk =1,2,...., (22)
Fonle,t) = o5(@) sin(k)/VE Gk =1,2,....
Obviously, both &5, and ¢7, are in IA{T(Q, I'). Define
Ly (u,v) = L(u,v) + (u, v),, Yu,ve€ H. (2.3)

It is clear that £;(u,v) is an inner product on H and from (T.6)-(T.8), (T.12) and
(2.3), there are K1, Ko > 0 such that

Ki|v|% < Li(v,v) + | Dl < Ks|v|%, Yo e H. (2.4)
For v € Eg, setting
05, k) = (v, GG s 070 R) = (0, G5r)p s (2.5)
and from (VL2), and , we see that for v € IA{T,
Ly(v, @5k) = (N + 100G k),  La(v, §5) = (A + 1), k). (2.6)

Lemma 2.1. If {@§, } 7275 U{@5k o1 k= is a CONS forLz( ) defined by ([2.2)),
setting

Zi)\c ja @]0 + Z Z go]k + v (.]7 k)(ﬁjk]? (27)

j=1 Jj=1k=1
we have _
lim ||7,(v) —v||z =0, forallveH. (2.8)
n—oo
Lemma 2.2. (i) Ifv € H, then
Ly (v,v) + || Delf}
=& ) (29)
:ZI N AD+ DD G RI 4 B GRPIOy + 1+ K.
j=1 j=1k=1
(i) If v € L2(Q) and Ly(v,v) + || Dyl < oo, then v € H.
Lemma 2.3. Let ,P,D,q, and L be as in the hypothesis of Theorem |1 . and
assume that (0, T) is a VL (L, T). Then H is compactly imbedded in LQ(Q)
The proofs of Lemmas can be found in [9]. We define

n n n
Sp = {U €EH:v= 277;'0%5;0 + Z ank%k + M5k Piks ks Mk € R}- (2.10)
=1 J=1 k=1
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Remark 2.4. Ifu, € S,, then M(un,Dtun) =0.

3. PROOF OF MAIN RESULTS

In this section, we will give the proof of Theorem To do this, we divide the
proof into three parts. In part 1, we construct approximation solutions in a finite
dimension space S,,. That is,

Lemma 3.1. Assume that all the conditions in the hypothesis of Theorem[1.5 hold
except for (F3). Let S, be the subspace of H defined by (2.10). Taking ng = jo+Jj1,
then for n > ng, there is a u, € S, with the property that

(Dyun,v), + Mv(un, v)

= (Njo + 907 N un, )y + (L= f(2,un) + g(a,t,up),0); = G(v), Yo €S,

(3.1)
Proof. First observe that from ([2.10)),
(1) veS,=DweS,, (3.2)
(2)  (Di(a@fy + BL5), a@fy + 85, =0, for jk>1,a,8 €R. '
Let {wi}ﬁgi” be an enumeration of {&5, 177 o U{@5 171 4—;, and set
n" = (jo+j1—1)(2n+1). (3.3)
So {1;}7, is an enumeration of {&;k}gfﬁc;é" U {G;k}jf?,;:", where n > ng.
For a = (a1,...,q0n24,), setting
2n2+n 2n2+n
u = Z Ozﬂﬁi, u= Z 5iaiwi, (34)
i=1 i=1
where
-1, 1<i<n*
=4 0 Tt (3.5)
1, n*4+1<1<2n°+n,

we define
Fi(or) = (Dyu, 051y + M(u, 0ibi) — (Ao + ") (u, 0iabi)y
— (1 =n" ) (f(,u) + g(a, t,u), 8is)y + G(S:¢00).

It is clear from the orthogonality that (Dju,u); = 0. From (3.4) and (3.6), we
obtain

(3.6)

2n2+n

Y Fi@a; = M(u, @) = (g, + 0 ) u, )5
i=1

— (1 =n"H{f(z,u) + g(w,t,u),u); + G(u).
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From (3.3)—(3.5)), we have
= 26 (5,035 + Y Y 60, k), + T (4, k)5,

j=1k
n
U—Zu 3:00%50+ >
Jj=1

§: = _17 ISJSJO'i'.]l_la
L, Jjotji<j<n

Il
—

M:

=~
Il

1

Consequently, we obtain
) = 8;7[a(j,0)] ZZ B[+ (@ (. F)1).
j=1 j=1k=1

Adding and subtracting —v(u, @)% + £ (u, ) to the right-hand side of (3.7), we see

P
that
2n2+n n
~c/ - 2
> F()ai =Y 6;(0 — Ajy — NI, 0)]
i=1 j=1
+ 303760 = Ny = DG, R + [, k) (3.9)
j=1k=1

— (1 =0 (f(z,u) —yu, @)y — (1= n" gz, t,u),a);
+ G(@) + M(u, @) — L(u, ).
By it is obvious that §;(A; — Ajy —7) >, for j =1,...,n. From (F2), (2.1)
(3-9)

and (3.9) there exists is a K > 0, such that
g 11,112 1
; Fi(a)ai Z yn™ ull; = (1 =n""){g(z, t,u),u); (3.10)
— K||ull, + G(@) + M(u, @) — L(u, @).
Now from (G2), it follows that
lim  |(g(z,t,u) |/||u|\p 0. (3.11)

llullp—o0

For a fixed n , it follows from (2.4), (2.9), and (3.8]) that there is a K > 0, such
that

lull 7 < Kllullp, € Sn, (3.12)
and since M is #f[— related to E,
lim  [M(u, @) — L(u,@)|/[[ul]? =0, u€S,. (3.13)

llully— o0

From ||ul|? = |a]* and G € (H)', we conclude from (3:10)—(3-13) that there is an
so > 0 such that

2n2+n |2
Z Fi(a)a; > 7‘%, for || > so. (3.14)

i=1
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From the generalized Brouwer’s theorem [4], there exists a* = (af,...,a3.,)
2
satisfying Fj(a*) = 0. Thus, setting u,, = Z?ZlJrn af1;, and from (3.6), we have

(Dot i)y + M, )

= (Ajo + ryn_l)<un?¢2>; + (1 - n_1)<f(m, un) + g(xatvun)7w7,>p~ - G(wz)y
for i = 1,...,2n% + n. The proof of Lemma is completed by the definition of
Sh. (]

Lemma 3.2. Assume that the conditions in Lemma hold. If (F3) holds, then

the sequence {u,} obtained in Lemma is uniformly bounded in H with respect

to the norm ||luy| 5 = (un,un>g2.

Proof. We assume that \j,y;, is an eigenvalue of £ of multiplicity j». By Lemma
for u,, € S,,, we have

(Dyun,v); + M(un,v)
= (Njo + 07 N un, v) + 1 =07 {(f (2, un) + g(2,t,un), v); = G(v),
forallv € S,, n > ny = jo+j1 +j2. We claim that there is a constant K such that
lun|lg < K, foralln >njy. (3.16)

Suppose that (3.16) fails. For ease of notation and without loss of generality, we
assume

(3.15)

lim |y, |z = oo. (3.17)

n—oo

Taking v = u,, in (3.15), from (3.11), (3-2)(1), (F2), (G2), G € (H)' and Schwarz’s

inequality, there exists a K > 0 such that

M(tn,un) < Kllun|% + K |upll,,  for n > ny. (3.18)
We observe from (3.2))(1) and Remark [2.4] that
Mv(un, Diuy,) =0, forn>n;. (3.19)

Thus, replacing v by Dyu, in (3.15), from (F2), (G2) and G € (H)', there is a
K > 0 such that
[1Dsunlp < Kllunll, + K. (3.20)

From (1.8) and (S2), there is a K > 0 such that

N
K(;/ﬁpdDiunz—l-/ﬁqui) < M (tun, ). (3.21)

Therefore, from (1.7)), (3.18]), (3.20) and (3.21)), it is easy to obtain from (3.17) that
lim |juy,||, = oo, (3.22)

n—oo

and there exist ny > 0 and K > 0 such that
”un”ﬁ < KHun”pa for n > ns. (323)

Set
Up = Unl + Up2 + Up3 + Ung, (324)
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where
Jo—1 jo—1 n
Un1 = Z ,77 90]0 + Z Z @]k + 1 (.77k)()5;k]7
j=1 j=1 k=1
Jo+ji—1 Jjo+ji—1 n
Un2 = Z ]7 SDJO + Z Z Sajk‘ + u (ja k)@]sk]a
J=Jjo Jj=jo k=1
Jo+ji+j2—1 Jot+ji+j2—1 n
ung = Y, GGHOF+ Y Y AL, RS + U5, k)P,
J=Jjo+i1 Jj=jo+j1 k=1
n
Ung = Z Uy, (7,0)¢50 + Z k)&51, + Uy (4, k)@
Jj=Jjo+j1+j2 J=jo+ij1+j2 k=1

Step 1: We claim that
(1) lim (Junt 15 + lunall3)/lluall; =0,
@ 1im (funsl )/ lunllo = 0.

Defining
Up = —Upl — Up2 + Up3 + Ung,

and from (3.2))(2), we have

(Dyty, )y = 0.

As a result, from with v = u,,, we obtain
L, Wn) = (Njg +7){tn, Tn)
= (1= n"Y)(f(z,un) = yun, Un)y +{(9(,t,un), Un)y — G(tn)
+ L, Tn) — M(tun, ).
Set
I= E(umﬂn) — (Njo + 'Y)<unvﬂn>p~»
IT=(1—n"Y{f(z,u,) — YVl Un )y A (g(2, U ), Un )y
— G(Tn) + L(tn, Tn) — M(un, n).
Now from and Aj, +7v = Ajy4+4, — 7, we see that

I 2 lunlly + 17,
where
Jo—1 Jo—1
=" (N - (7,0 |2+Z jo — ‘Z[I (R + (a3, (7, k)1

Jj=1 k=1
n n

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

D = NGO+ D (= M) YL G R) P
k=1

Jj=jo+ji1+j2 Jj=jo+j1+j2
+ [, (4, k)|
Hence, from (3.24)), we see that

I > Auall? + Mo = Njomt)luntllZ + Njotgatia — Notsn) 1tinall -

(3.30)
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On the other hand, for any € > 0, from (F2), (G2) and G € (H)' we see that
I <[(y +)llunllp + I follp + llgellolwnll,

B oY (3.31)
+ Kolltnll g + [L£(tn, tn) — M(un, un)|,
and M being #I;' -related to Z, we have
lim | £(up, Up) — M(tn, )|/ ||un]|2 = 0. (3.32)

n—oo

Therefore, from ) and -, we see on dividing both ( and - 3.31) by

[|tn]? and passing to the limit as n — oo, that

lim [(Aj, = Ajo—1)lunt 2 + Njotsutia — Norgi) 1unall 2/ Nualls =

n—oo

Since Ajy, — Njo—1 > 0 and Ajj4j, 4, — Ajo+s1 > 0, we see that claim (1) in is
true.
Set § =1— )‘]'0+j1//\jo+j1+j2' It implies

)\j — Xjotsa = 0, for j = jo + j1 + ja. (3.33)
Then, ) and (| give
I* > 6L (Und, tna). (3.34)
Hence, from (3.28))-(3.30)), (3.34), we obtain

'VH“nH;i + 0L(Una, Ung) < |C(“nvan) — M, )| + [('7 + E)Huan + ||f0||P
+ 1gello]lltnllo + Kolltn | 7

and on dividing by [u,[|? on both sides and letting n — oo, we see that
lim £ (tna, una)/|[un]|? = 0. (3.35)
n—oo
Since
(f(z,v), Dyv)y / flz,v(z,t))Dyv(x, t)pdtdx = 0, (3.36)
for v € C’;bp, we conclude from (3.36), (F2) and the definition of S,, that
<f(x,un),Dtun>; =0, foru, €S,, n>ns.

Hence, replacing v by D;u,, in (3.15) and from Remark Schwarz’s inequality
and G € (H)', we obtain ||Dyu,|, < |lg(x,t,un)|, + K and

lim ||Dtun||§/||un||§ =0. (3.37)
From claim (3.25)(1), 2.4), (3.35), (3-37) and || Dyunal|2 < || Dyun||2, claim (3.25)(2)
is true.
Step 2: We show that W (z) = Way(x) + W(s)(x). Setting
Wi (z) = un/|lunllp,  Whi(2) = wni/||tnll,, fori=1,...,4, (3.38)

from (3.23) there is a K such that
Whllg < K and  [[Whil z < K, (3.39)
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fori=1,...,4, and n > ny. From (3.39) and Lemma [3.1] we obtain that there is
a W € H such that

(1) lim [[W, = W], =0,
(2) Jim. Wy (z,t) = W(z,t), a.e. inQ, (3.40)

(3) HILIEO<W”’U>P~I =(W,v)g, forve H.

Since M is #f[—related to E, we obtain from that
nh_)n;o Lty Wi () — M (tn, Whi(2))|/l|unl|l, = 0,for i =1,...,4. (3.41)
We observe from that lim,, o0 [|Wha(2)|, = 0. Hence, if n — oo, then
W, @5k = (Waa, €55y — 0, for j > jo + j1 + jo,

and from (3.40)(3), we obtain W¢(j, k) = 0, for j > jo +j1 +jo and all k. In similar
way, we have W*(j,k) = 0, for j > jo + j1 + j2 and all k. Also, we observe from
(3-25) that lim, .o |[Wni(z)||, = 0. So we obtain W¢(j,k) = 0 and W*(j,k) = 0
for 1 < j < jo—1 and all k. Therefore, we have
We(j,k)=0 and W*(j,k) =0, forj>jo+ji+joandallk,  (3.42)
We(j,k) =0 and W¥(j, k) =0, for1<j<jo—1andallk. (3.43)
Next, for k > 1 and jo < j < jo + j1 + j2 — 1, from (2.2)) and (3.37)) , we have

kWe(j k) = — lim | DW, (2, )% (x, t)p(x) de dt = 0.
Q

A similar situation prevails for kW* (4, k). So we have
We(j,k)=0 and W*(j,k) =0,

for k > 1 and jo < j < jo + j1 + j2 — 1. Hence, from (3.42), (3.43) and the above
formula, we see that W (z,t) is a function unrelated to ¢; i.e.,

W(z,t) = W(x),
W(z) = W)(z) + Wiz (@),
Jo+ji1—1 -
Way(@) = > W03, (3.44)
J=Jo
Jo+tji+j2—1 .
W@ = > WL0)F.
J=Jo+i1
Step 3: We show that (f*,W(2)>; =0 and (f*,W(3)>; = Njo+s — /\jO)HW(g)H,Q).
From (3.38) and orthogonality we observe that
W = WIS = [Warll + Wz = Wi [} + [[Was = Weg) 17 + [Waall3-
From ([3.40))(1), we conclude that
m [Wye = Wil2=0 and lim [[Wy3 — W3 =0. (3.45)
n—oo n—oo
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Putting W,; in place of v in (3.15]), we obtain
L(tn, W)
= (Njo + 907 ) tn, Wi}y + (1 =07 ) (f(z,un) + gz, t,un), Wai)y  (3.46)
— G(Wri) + Lun, W) = M(un, Wei), i =1,2.

Dividing by HunH% on both sides of (3.46]) and letting n — oo, from (3.24)), (3.38)),
(3.40), (B.41), (3-45), Schwarz’s inequality, G € (H)' and (G2) we obtain

i (f (2, 1n), Was)y /llunllo = (orin = Xio) IWis Il (3.47)
In a similar way, from , we have
im (F(a ), W) /el = 0. (3.48)
Next, from (F2) and that there are K and mg3 such that
1f (@, un)llp/lunllp < K, for n > ns, (3.49)

where ng > ny. Using the Banach-Saks theorem and other~ facts about Hilbert
spaces (see [2, p. 181]), we obtain that there exits f*(z,t) € L2 such that

(1) f(x7un)7v>;:<f*7v>;, VUEE?);
n—oo |lunll,
n2+n

(2) Z —Fllo=
el ”“ ”P (3.50)
(3) there is {n]} C {n}, such that
na+n;
Z fa,u) fr(x,t), ae. in Q.

ey 2 T,

From (3.45), (3.47), (3.49) and (3.50)(2) we obtain

<f*7W(3)>pN = Njotin — Nio) Wis) 13- (3.51)
In a similar manner, from (3.48]) we obtain
(f*s W), =0. (3.52)

Step 4: We show that (f*, W(2))5 > 0 and (f*, Ws))5 < (Njowsn — Xio) Wi 13
under assumption (3.17]).

From (3.38), (F2), (3.40)(2) and (3.50))(3) it follows that
Az, t) =0, ae. inQy=QxT, (3.53)
where Qg = {z € Q: W(z) = 0}. From (F2), for s # 0, a.e. x € Q, we have

o) _SGs) _y | fole)
|s] 8 5]
and for a.e. z € , from (1.14) we see that
0< Fi(x) <FT(z) <2y and 0< F_(2) <F (v) < 2v. (3.54)

Setting
Q+ = Q+ xT and Q_=Q_ x T, (355)
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where Q, = {z € Q: W(z) > 0} and Q_ = {zeQ:W(z) <0}, let (z0,t0) € 0y
be such that f*(zo,to) is finite, ) and - ) hold, and z( be a value
such that holds. Then glven € > 0 we see that there is an s* > 0 such
that f(zo,s) < Ft(zg)s+ es for s > s*. Since uy, (zo,to) = [|unl|,Wa (2o, to), from
(3:22), (3.40)(2) and (B.50)(3), we obtain f*(zo,to) < F*(zo)W (z0). Similarly, we
have Fy (zo)W (z0) < f*(z0,t0). Also, we can prevail for Q_. Hence, we conclude
that
(1) Fo(o)W(z) < f*(x,t) < FrH(z)W(z), ae. inQ;

N (3.56)
(2) F (x2)W(x) < f*(x,t) < F_(x)W(x), ae. inQ_.
Since Q0 = Qo U §+ UQ_, we define
o [0 o eh,
f (x,t)/W((E), ($7t) €Q+QQ*'
From (3.53)—(3.56|), we have
FH(x,t) = f* (2, )W (z), ae. in €, (3.57)
0< f*(z,t) <2y, ae. inQ. (3.58)
Furthermore, from (3.44)), (3.51)), (3.52)), (3.57) and (3.58|) we see that
(Njotss = No = [TIWz), Wea))y + (7 Wia), Wia)), =0,
and
Njotir — Njo — )Wy, Wis))5 =0,
((Njot A FOWsy, Wesy), (3.59)
("W, Wey), =0.
Setting
Qy =0y xT and §~23:Qg><T (3.60)

where Q; = {z € Q: W) (z) # O} i = 2,3, from ) and ([3.59), we see that

F*(x,t) = Njgrjs — Njo, ace. in Qg Then, Qs N Qg is a set of Lebesgue measure
zero. Also, both W,y and W3y are continuous functions in €2 by . Therefore,
both Q5 and 23 are open sets, and we see that 25 and 23 are disjoint sets. Since
W = W(Q) + W(g), we find

W = W(g) on QQ, W = W(g) on Qg. (361)
Defining
ﬁiJr = Qi+ x T and QZ‘, = Qi, X T, (362)

where Qi ={reQ: W, )(:17) >0}, Q- ={z € Q: Wy(z) <0}, i=2,3, from
We see that W) (x) is a Aj,-eigenfuction for L. If Wy (x) is nontrivial, then

from we have

0< | Fi(o)W(x)We(x)p(x)drdt+ | F_(x)W (x)Way(x)p(x)dx dt.

Q2+ Qo
R (3.63)
If (x,t) € Qoy, from ) and (3.62), then (z,t) € Q.. So, from (3.56) and (3.63) (3-63)
we obtain

0< 5 [ (@, t)Wig)(z)p(z) do dt + . I (2, t)Wig)(z)p(z) dx dt;
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e, (f*,Wi)(x))y > 0. It is a contradiction of (3.52). As a result, we conclude
that W) (x) is indeed trivial; i.e., Way(x) = 0, for all z € Q. Hence, from
we obtain

W(x) = Wz)(z), forallze Q. (3.64)
Since Wi3)(x) is a )\]0+]1 eigenfuction for £, sois W from . If W is a nontrivial
function, then from (1.15)) and ( we obtain

27HW||,2)>/S~2 .7:+(x)W2(a:)p(m)dxdt—|—/ﬁ F(x)W?(x)p(x)drdt.  (3.65)

Therefore, we obtain from (3.56)(1)(2) and that
2IWIE> [ FaoW@p)dedir [ @ oW @) deds  (360)
Q4 a_

en (X W) < (Nowdn — No)IWI2. Tt is a direct contradiction of (3.51).
we conclude that W(z) = 0, for all z € Q. Next, from (3.40)(1), we obtain
lim, o [|Wh]|, = 0. However, from we see that lim, . [|Wy]|, = 1. Obvi-
ously, it is a contradiction, and is indeed true. ([l

Proof of Theorem[I.5. Since H is a separable Hilbert space, from (3.16), (S1) and
Lemma there is a subsequence (still denoted by {u, };2,,, and a function u* €

H) such that
lim ||u, —u*||, =0;
there exists W*(x,t) € Zg, such that |u,(z,t)] < W*(z,t), a.e. (z,t) € Q, n > ns;
(1) lim un(x,t) =u"(z,t), ae. (z,t)€ Q;
(2) hm<Dun, V) = (Diu”, )5, Vvefii,izl,...,N;

oo _ (3.67)

(3) nlin;o<Dtun,v>; = (Dw*,v);, Yve L2p;

(4)  lim oy(uy) = oy(u*), i=0,1,...,N.
n—0o0

Let v € H and 7;(v) be defined by [2.7). Then 7,;(v) € S;(J > n3) and from
, for n > J, we have that

(Dtan, 75 (0))5 + M(un, 75(v))

= (Njo + ™ N un, 75 (0)5 + (L =07 (F,un) + g(x,t,un), 75 (v); (3.68)

- G(TJ(U))~
We conclude from and (| - ) that
HILI%OM(un,TJ(v)) = M(u*, 75 (v)). (3.69)

Next, from (F2), (G2), (3.67)(2) and the Lebesgue dominated convergence theorem
we obtain

Jim (f (2, un) + g2t un), 71 (0))) = (f(2,u”) + g(a,t,07), 75(0)); (3.70)
From (3.69), (3.70), (3.67)(1)(3), and , we obtain
(D, 75 (v))5 + M, 75 (v))
= )‘j0<u*7TJ( )>pN+<f( ) )+g<x7t’U*>7TJ(U)>; _G(TJ(U))'

(3.71)
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Passing to the limit as J — oo on both sides of (3.71]), we obtain

(Deu*,v)7 + M(u*, v) = Njo (U, 0)5 + (f(z,u") + g(@, t,u™),v); — G(v),

for all v € H , and the proof of Theorem is complete. ([

4. AN EXAMPLE

We give two functions to establish existence results for a function f(zx,s) that
satisfies (F1), (F2) and a function g(z,t,s) that satisfies (G1), (G2). Set =
{x = (w1,22) : 2% + 23 < 1} and

felz)= (23 +23)7", 0<p<l1/4, x€Q.
Also, v > 0 is given, and set

—s2fu(z)+vs, 0<s<1,

x,8) =
fes) —Vsfu(x) +vs, 1< s < oo,

forz € Q and 0 < s < 4+o0. For —oco < s < 0, we set f(z,s) = —f(x,—s). Clearly,
f(x,s) meets (F1), (F2). For g(x,t,s) , set Q = {x = (w1, 22) : 22 + 23 <1}, T =
(—m,7), and

go(x,t) = [t|(z2 +23)7", 0<p<1/4, (x,t)€Q.
Also, we set

75290(1‘1775)’ 0<s< 17

z,t,8) =
g( ) _\/590(x7t)7 1<s < Ho0,

for (z,t) € Q and 0 < 5 < +00. For —oo < s < 0, we set g(z,t,5) = —g(z,t, —s).
Clearly, g(z,t,s) satisfies (G1)-(G2).
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