
Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 13, pp. 1–16.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS FOR QUASILINEAR PARABOLIC
EQUATIONS AT RESONANCE

GAO JIA, XIAO-JUAN ZHANG, LI-NA HUANG

Abstract. In this article, we show the existence of nontrivial solutions for a
class of quasilinear parabolic differential equations. To obtain the solution in

a weighted Sobolev space, we use the Galerkin method, Brouwer’s theorem,

and a compact Sobolev-type embedding theorem proved by Shapiro.

1. Introduction

Many results on the existence of solutions of the quasilinear parabolic resonance
problems have been presented in [3, 5, 7, 8, 9] and their references cited therein.
Shapiro [9] considered a weak solution of the following problem, in the Hilbert space
H̃(Ω̃,Γ),

ρDtu+Qu = [λj0u+ f(x, u) + g(x, t, u)]ρ, (x, t) ∈ Ω̃,

u ∈ H̃(Ω̃,Γ),
(1.1)

where

Qu = −
N∑
i=1

Di

[
p

1/2
i (x)Ai(x, u,Du)

]
+ qB0(x, u,Du)u.

Kuo [5] also discussed the existence of a nontrivial solution for a quasilinear para-
bolic equation in the Hilbert space H̃m

0 :

Dtu+ Q̃u− λ1u+ f(x, t, u) = h(x, t), (x, t) ∈ Ω̃,

u = 0, (x, t) ∈ ∂Ω̃,
(1.2)

where

Q̃(u)(v) =
∑
|α|≤m

∫
eΩAα(x, ξ(u))Dαv,

and λ1 is the first eigenvalue of Q̃.
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Motivated by Shapiro [9], in this paper, we show the existence of solutions for
the quasilinear parabolic equation in the weighted Sobolev space H̃(Ω̃,Γ):

ρDtu+ M̃u = [λj0u+ f(x, u) + g(x, t, u)]ρ−G, (x, t) ∈ Ω̃,

u ∈ H̃(Ω̃,Γ),
(1.3)

where

M̃u = −
N∑

i,j=1

Di[p
1/2
i (x)p1/2

j (x)σ1/2
i (u)σ1/2

j (u)bij(x)Dju] + b0(x)σ0(u)qu, (1.4)

and λj0 is an eigenvalue of L.
In fact, (1.3) is one of the most useful sets of Navier-Stokes equations which

describe the motion of viscous fluid substances. They are widely used in the design
of aircrafts and cars, the study of blood flow and the design of power stations, etc.
Furthermore, coupled with Maxwell’s equations, the Navier-Stokes equations can
also be used to model and study magnetohydrodynamics.

The method of this paper is based on the Galerkin method [6], the general-
ized Brouwer’s theorem [4] and a weighted compact Sobolev-type embedding the-
orem [9] established by Shapiro. The nonlinearity in (1.3) satisfies the generalized
Landesman-Lazer type conditions [6]. Compared with the problem (1.1) in [9], the
operator M̃ in (1.3) has an extensive presentation format and wider applications.

Now, we give the assumptions and definitions which are needed for the proof of
Theorem 1.5.

Let Ω ⊂ RN , N ≥ 1, be an open (possibly unbounded) set and let ρ(x), pi(x) ∈
C0(Ω) be positive functions with the property that∫

Ω

ρ(x)dx <∞,
∫

Ω

pi(x)dx <∞, i = 1, 2, . . . , N. (1.5)

Let q(x) ∈ C0(Ω) be a nonnegative function and Γ ⊂ ∂Ω be a fixed closed set. Note
that Γ may be an empty set and q(x) may be zero. On the other hand, q(x) will
satisfy: There exists K > 0, such that

0 ≤ q(x) ≤ Kρ(x), for all x ∈ Ω. (1.6)

Here A is a set of real-valued functions defined as

A = {u ∈ C0(Ω̄×R) : u(x, t+ 2π) = u(x, t), for all (x, t) ∈ Ω̄×R}.

Setting Ω̃ = Ω×T , T = (−π, π), p = (p1, . . . , pN ) and Di = ∂u
∂xi

, i = 1, 2, . . . , N , we
consider the following pre-Hilbert spaces (see [9]):

C̃0
ρ(Ω̃) =

{
u ∈ C0(Ω̃) :

∫
eΩ |u(x, t)|2ρ(x) dx dt <∞

}
,

with the inner product

〈u, v〉∼ρ =
∫

eΩ u(x, t)v(x, t)ρ(x) dx dt,

and the space

C̃1
p,ρ(Ω̃,Γ) =

{
u ∈ A ∩ C1(Ω×R) : u(x, t) = 0, for all (x, t) ∈ Γ×R;∫

eΩ[
N∑
i=1

|Diu|2pi + (u2 + |Dtu|2)ρ] <∞
}
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with inner product

〈u, v〉 eH =
∫

eΩ
[ N∑
i=1

piDiuDiv + (uv +DtuDtv)ρ
]
dx dt. (1.7)

Let L̃2
ρ = L2

ρ(Ω̃) denote the Hilbert space obtained from the completion of C̃0
ρ with

the norm ‖u‖ρ = (〈u, u〉∼ρ )1/2 by using Cauchy sequences, and H̃ = H̃(Ω̃,Γ) denote

the completion of the space C̃1
p,ρ with the norm ‖u‖ eH = 〈u, u〉1/2eH . Similarly, we

have L̃2
pi , (i = 1, 2, · · ·, N) and L̃2

q.
It is assumed throughout this paper that σi(u)(i = 0, 1, . . . , N) meets:

(S1) σi(u) : H̃ → R is weakly sequentially continuous;
(S2) there are η0, η1 > 0, such that η0 ≤ σi(u) ≤ η1, and σi(u) is measurable,

for u ∈ H̃.
The functions aij(i, j = 1, 2, . . . , N) and a0(x) satisfy (also bij(x) and b0(x)):

a0(x), aij(x) ∈ C0(Ω) ∩ L∞(Ω), i, j = 1, 2, . . . , N ;

aij(x) = aji(x), ∀x ∈ Ω, i, j = 1, 2, . . . , N ;

a0(x) ≥ β0 > 0 (b0(x) ≥ β1 > 0), for x ∈ Ω;

there is a c0 > 0 (c1 > 0) for x ∈ Ω, ξ ∈ RN , such that
N∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|2 (
N∑

i,j=1

bij(x)ξiξj ≥ c1|ξ|2).

(1.8)

The function g(x, t, s) meets the following conditions:
(G1) g(x, t, s) satisfies the Caratheodory assumptions;
(G2) for any ε > 0, there is a gε(x, t) ∈ L̃2

ρ, such that |g(x, t, s)| ≤ ε|s|+ gε(x, t),
for a.e. (x, t) ∈ Ω̃, and all s ∈ R.

Definition 1.1. For the quasilinear differential operator M̃, the two-form is

M̃(u, v) =
N∑

i,j=1

∫
eΩ
[
p

1
2
i p

1
2
j σ

1
2
i (u)σ

1
2
j (u)bijDjuDiv

]
+
∫

eΩ qσ0(u)b0uv, (1.9)

for u, v ∈ H̃(Ω̃,Γ).

Defining

Lu = −
N∑

i,j=1

Di

[
p

1
2
i p

1
2
j aijDju

]
+ a0qu, (1.10)

for u ∈ Hp,q,ρ = Hp,q,ρ(Ω,Γ) (as described in [9]), and

L̃u = −
N∑

i,j=1

Di

[
p

1
2
i p

1
2
j aijDju

]
+ a0qu, u ∈ H̃(Ω̃,Γ),

then the two-form of L is

L(u, v) =
N∑

i,j=1

∫
Ω

p
1/2
i p

1/2
j aij(x)DjuDiv +

∫
Ω

a0uvq, u, v ∈ Hp,q,ρ(Ω,Γ), (1.11)
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and the two-form of L̃ is

L̃(u, v) =
N∑

i,j=1

∫
eΩ p

1/2
i p

1/2
j aij(x)DjuDiv +

∫
eΩ a0uvq, u, v ∈ H̃(Ω̃,Γ). (1.12)

Definition 1.2. We say that M̃ is #H̃-related to L̃ if the following condition
holds:

lim
‖u‖fH→∞

[M̃(u, v)− L̃(u, v)]
‖u‖ eH = 0, uniformly for ‖v‖ eH ≤ 1.

Definition 1.3. The pair (Ω,Γ) is a VL(Ω,Γ) if
(VL1) there is a complete orthonormal system {ϕn}∞n=1 in L2

ρ. Also ϕn ∈ Hp,q,ρ ∩
C2 for all n;

(VL2) there is a sequence of eigenvalues {λn}∞n=1 with 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤
λn → ∞ such that L(ϕn, v) = λn〈ϕn, v〉ρ for all v ∈ Hp,q,ρ(Ω,Γ). Also
ϕ1 > 0 in Ω.

We set
γ = (λj0+j1 − λj0)/2, (1.13)

where λj0 is an eigenvalue of L of multiplicity j1. So λj0+j1 is the next eigenvalue
strictly greater than λj0 . Also, we set

F±(x) = lim sup
s→±∞

f(x, s)/s, F±(x) = lim inf
s→±∞

f(x, s)/s . (1.14)

For f(x, s), we have:
(F1) f(x, s) satisfies the Caratheodory conditions;
(F2) |f(x, s)− γs| ≤ γ|s|+ f0(x) for all s ∈ R, a.e. x ∈ Ω, where f0 ∈ L2

ρ;
(F3)∫
Ω∩(v>0)

(λj0+j1 − λj0 −F+)v2ρ+
∫

Ω∩(v<0)

(λj0+j1 − λj0 −F−)v2ρ > 0, (1.15)

for every nontrivial λj0+j1 -eigenfunction v of L, and∫
Ω∩(w>0)

F+w
2ρ+

∫
Ω∩(w<0)

F−w2ρ > 0, (1.16)

for every nontrivial λj0 -eigenfunction w of L .

Remark 1.4. If M̃, as defined by (1.4), satisfies (S1)–(S2), then

M̃(v,Dtv) = 0, ∀v ∈ C̃1b
p,ρ = {v ∈ C̃1

p,ρ : Dtv ∈ C̃1
p,ρ}. (1.17)

Now, we state the main result of this article.

Theorem 1.5. Let Ω ⊂ RN (N ≥ 1), T = (−π, π), Ω̃ = Ω× T , p = (p1, . . . , pN ), ρ
and pi(i = 1, . . . , N) be positive functions in C0(Ω) satisfying (1.5), q ∈ C0(Ω) be
a nonnegative function satisfying (1.6), and Γ ⊂ ∂Ω be a closed set. Let L and M̃
be given by (1.9) and (1.4) satisfying (1.8), (S1), (S2) respectively and L satisfies
the conditions of VL(Ω,Γ). If λj0 is an eigenvalue of L of multiplicity j1, M̃ is
#H̃- related to L̃, and (F1)–(F3), (G1)–(G2) hold, then problem (1.3) has at least
one weak solution; i.e., there exits u∗ ∈ H̃ such that

〈Dtu
∗, v〉∼ρ + M̃(u∗, v) = λj0〈u∗, v〉∼ρ + 〈f(x, u∗) + g(x, t, u∗), v〉∼ρ −G(v) . (1.18)
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The rest of this article is arranged as follows. In section 2, we will give some
preliminary lemmas; In section 3, we will prove the main results on the quasilinear
parabolic differential equations.

2. Preliminary lemmas

In this section, we introduce some lemmas, and concepts which will be used later.
If both (1.8) and the conditions of VL(Ω,Γ) hold, we have

{ϕ̃cjk}
∞,∞
j=1,k=0 ∪ {ϕ̃

s
jk}
∞,∞
j=1,k=1is a CONS for L̃2

ρ, (2.1)

where

ϕ̃cjk(x, t) =

{
ϕj(x)/

√
2π k = 0, j = 1, 2, . . . ,

ϕj(x) cos(kt)/
√
π j, k = 1, 2, . . . ,

ϕ̃sjk(x, t) = ϕj(x) sin(kt)/
√
π j, k = 1, 2, . . . .

(2.2)

Obviously, both ϕ̃cjk and ϕ̃sjk are in H̃(Ω̃,Γ). Define

L1(u, v) = L̃(u, v) + 〈u, v〉∼ρ , ∀u, v ∈ H̃. (2.3)

It is clear that L1(u, v) is an inner product on H̃ and from (1.6)-(1.8), (1.12) and
(2.3), there are K1,K2 > 0 such that

K1‖v‖2eH ≤ L1(v, v) + ‖Dtv‖2ρ ≤ K2‖v‖2eH , ∀v ∈ H̃. (2.4)

For v ∈ L̃2
ρ, setting

v̂c(j, k) = 〈v, ϕ̃cjk〉∼ρ , v̂s(j, k) = 〈v, ϕ̃sjk〉∼ρ , (2.5)

and from (VL2), (1.12) and (2.3), we see that for v ∈ H̃,

L1(v, ϕ̃sjk) = (λj + 1)v̂s(j, k), L1(v, ϕ̃cjk) = (λj + 1)v̂c(j, k). (2.6)

Lemma 2.1. If {ϕ̃cjk}
∞,∞
j=1,k=0∪{ϕ̃sjk}

∞,∞
j=1,k=1 is a CONS for L2

ρ(Ω̃) defined by (2.2),
setting

τn(v) =
n∑
j=1

v̂c(j, 0)ϕ̃cj0 +
n∑
j=1

n∑
k=1

[v̂c(j, k)ϕ̃cjk + v̂s(j, k)ϕ̃sjk], (2.7)

we have
lim
n→∞

‖τn(v)− v‖ eH = 0, for all v ∈ H̃. (2.8)

Lemma 2.2. (i) If v ∈ H̃, then

L1(v, v) + ‖Dtv‖2ρ

=
∞∑
j=1

|v̂c(j, 0)|2(λj + 1) +
∞∑
j=1

∞∑
k=1

[|v̂c(j, k)|2 + |v̂s(j, k)|2](λj + 1 + k2).
(2.9)

(ii) If v ∈ L2
ρ(Ω̃) and L1(v, v) + ‖Dtv‖2ρ <∞, then v ∈ H̃.

Lemma 2.3. Let Ω̃, ρ, p, q, and L be as in the hypothesis of Theorem 1.5 and
assume that (Ω,Γ) is a VL(Ω,Γ). Then H̃ is compactly imbedded in L2

ρ(Ω̃).

The proofs of Lemmas 2.1–2.3, can be found in [9]. We define

Sn =
{
v ∈ H̃ : v =

n∑
j=1

ηcj0ϕ̃
c
j0 +

n∑
j=1

n∑
k=1

ηcjkϕ̃
c
jk + ηsjkϕ̃

s
jk, η

c
jk, η

s
jk ∈ R

}
. (2.10)
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Remark 2.4. If un ∈ Sn, then M̃(un, Dtun) = 0.

3. Proof of main results

In this section, we will give the proof of Theorem 1.5. To do this, we divide the
proof into three parts. In part 1, we construct approximation solutions in a finite
dimension space Sn. That is,

Lemma 3.1. Assume that all the conditions in the hypothesis of Theorem 1.5 hold
except for (F3). Let Sn be the subspace of H̃ defined by (2.10). Taking n0 = j0 +j1,
then for n ≥ n0, there is a un ∈ Sn with the property that

〈Dtun, v〉∼ρ + M̃(un, v)

= (λj0 + γn−1)〈un, v〉∼ρ + (1− n−1)〈f(x, un) + g(x, t, un), v〉∼ρ −G(v), ∀v ∈ Sn.
(3.1)

Proof. First observe that from (2.10),

(1) v ∈ Sn ⇒ Dtv ∈ Sn,
(2) 〈Dt(αϕ̃cjk + βϕ̃sjk), αϕ̃cjk + βϕ̃sjk〉∼ρ = 0, for j, k ≥ 1, α, β ∈ R.

(3.2)

Let {ψi}2n
2+n

i=1 be an enumeration of {ϕ̃cjk}
n,n
j=1,k=0 ∪ {ϕ̃sjk}

n,n
j=1,k=1, and set

n∗ = (j0 + j1 − 1)(2n+ 1). (3.3)

So {ψi}n
∗

i=1 is an enumeration of {ϕ̃cjk}
j0+j1−1,n
j=1,k=0 ∪ {ϕ̃sjk}

j0+j1−1,n
j=1,k=1 , where n ≥ n0.

For α = (α1, . . . , α2n2+n), setting

u =
2n2+n∑
i=1

αiψi, ũ =
2n2+n∑
i=1

δiαiψi, (3.4)

where

δi =

{
−1, 1 ≤ i ≤ n∗,
1, n∗ + 1 ≤ i ≤ 2n2 + n,

(3.5)

we define

Fi(α) = 〈Dtu, δiψi〉∼ρ + M̃(u, δiψi)− (λj0 + γn−1)〈u, δiψi〉∼ρ
− (1− n−1)〈f(x, u) + g(x, t, u), δiψi〉∼ρ +G(δiψi).

(3.6)

It is clear from the orthogonality that 〈Dtu, ũ〉∼ρ = 0. From (3.4) and (3.6), we
obtain

2n2+n∑
i=1

Fi(α)αi = M̃(u, ũ)− (λj0 + γn−1)〈u, ũ〉∼ρ

− (1− n−1)〈f(x, u) + g(x, t, u), ũ〉∼ρ +G(ũ).

(3.7)
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From (3.3)–(3.5), we have

ũ =
n∑
j=1

δj û
c(j, 0)ϕ̃cj0 +

n∑
j=1

n∑
k=1

δj [ûc(j, k)ϕ̃cjk + ûs(j, k)ϕ̃sjk],

u =
n∑
j=1

ûc(j, 0)ϕ̃cj0 +
n∑
j=1

n∑
k=1

[ûc(j, k)ϕ̃cjk + ûs(j, k)ϕ̃sjk],

δj =

{
−1, 1 ≤ j ≤ j0 + j1 − 1,
1, j0 + j1 ≤ j ≤ n.

(3.8)

Consequently, we obtain

L̃(u, ũ) =
n∑
j=1

δjλj |ûc(j, 0)|2 +
n∑
j=1

n∑
k=1

λjδj [|ûc(j, k)|2 + |ûs(j, k)|2].

Adding and subtracting −γ〈u, ũ〉∼ρ + L̃(u, ũ) to the right-hand side of (3.7), we see
that

2n2+n∑
i=1

Fi(α)αi =
n∑
j=1

δj(λj − λj0 − γ)|ûc(j, 0)|2

+
n∑
j=1

n∑
k=1

δj(λj − λj0 − γ)[|ûc(j, k)|2 + |ûs(j, k)|2]

− (1− n−1)〈f(x, u)− γu, ũ〉∼ρ − (1− n−1)〈g(x, t, u), ũ〉∼ρ
+G(ũ) + M̃(u, ũ)− L̃(u, ũ).

(3.9)

By (3.8), it is obvious that δj(λj − λj0 − γ) ≥ γ, for j = 1, . . . , n. From (F2), (2.1)
and (3.9) there exists is a K > 0, such that

2n2+n∑
i=1

Fi(α)αi ≥ γn−1‖u‖2ρ − (1− n−1)〈g(x, t, u), ũ〉∼ρ

−K‖u‖ρ +G(ũ) + M̃(u, ũ)− L̃(u, ũ).

(3.10)

Now from (G2), it follows that

lim
‖u‖ρ→∞

|〈g(x, t, u), ũ〉∼ρ |
/
‖u‖2ρ = 0. (3.11)

For a fixed n , it follows from (2.4), (2.9), and (3.8) that there is a K > 0, such
that

‖u‖ eH ≤ K‖u‖ρ, u ∈ Sn, (3.12)

and since M̃ is #H̃- related to L̃,

lim
‖u‖ρ→∞

|M̃(u, ũ)− L̃(u, ũ)|
/
‖u‖2ρ = 0, u ∈ Sn. (3.13)

From ‖u‖2ρ = |α|2 and G ∈ (H̃)′, we conclude from (3.10)–(3.13) that there is an
s0 > 0 such that

2n2+n∑
i=1

Fi(α)αi ≥
γ|α|2

2n
, for |α| > s0. (3.14)
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From the generalized Brouwer’s theorem [4], there exists α∗ = (α∗1, . . . , α
∗
2n2+n)

satisfying Fi(α∗) = 0. Thus, setting un =
∑2n2+n
i=1 α∗iψi, and from (3.6), we have

〈Dtun, ψi〉∼ρ + M̃(un, ψi)

= (λj0 + γn−1)〈un, ψi〉∼ρ + (1− n−1)〈f(x, un) + g(x, t, un), ψi〉∼ρ −G(ψi),

for i = 1, . . . , 2n2 + n. The proof of Lemma 3.1 is completed by the definition of
Sn. �

Lemma 3.2. Assume that the conditions in Lemma 3.1 hold. If (F3) holds, then
the sequence {un} obtained in Lemma 3.1 is uniformly bounded in H̃ with respect
to the norm ‖un‖ eH = 〈un, un〉1/2eH .

Proof. We assume that λj0+j1 is an eigenvalue of L of multiplicity j2. By Lemma
3.1, for un ∈ Sn, we have

〈Dtun, v〉∼ρ + M̃(un, v)

= (λj0 + γn−1)〈un, v〉∼ρ + (1− n−1)〈f(x, un) + g(x, t, un), v〉∼ρ −G(v),
(3.15)

for all v ∈ Sn, n ≥ n1 = j0 + j1 + j2. We claim that there is a constant K such that

‖un‖ eH ≤ K, for all n ≥ n1. (3.16)

Suppose that (3.16) fails. For ease of notation and without loss of generality, we
assume

lim
n→∞

‖un‖ eH =∞. (3.17)

Taking v = un in (3.15), from (3.11), (3.2)(1), (F2), (G2), G ∈ (H̃)′ and Schwarz’s
inequality, there exists a K > 0 such that

M̃(un, un) ≤ K‖un‖2ρ +K‖un‖ρ, for n ≥ n1. (3.18)

We observe from (3.2)(1) and Remark 2.4 that

M̃(un, Dtun) = 0, for n ≥ n1. (3.19)

Thus, replacing v by Dtun in (3.15), from (F2), (G2) and G ∈ (H̃)′, there is a
K > 0 such that

‖Dtun‖ρ ≤ K‖un‖ρ +K. (3.20)

From (1.8) and (S2), there is a K > 0 such that

K
( N∑
i=1

∫
eΩ pi|Diun|2 +

∫
eΩ qu

2
n

)
≤ M̃(un, un). (3.21)

Therefore, from (1.7), (3.18), (3.20) and (3.21), it is easy to obtain from (3.17) that

lim
n→∞

‖un‖ρ =∞, (3.22)

and there exist n2 > 0 and K > 0 such that

‖un‖ eH ≤ K‖un‖ρ, for n ≥ n2. (3.23)

Set
un = un1 + un2 + un3 + un4, (3.24)
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where

un1 =
j0−1∑
j=1

ûcn(j, 0)ϕ̃cj0 +
j0−1∑
j=1

n∑
k=1

[ûcn(j, k)ϕ̃cjk + ûsn(j, k)ϕ̃sjk],

un2 =
j0+j1−1∑
j=j0

ûcn(j, 0)ϕ̃cj0 +
j0+j1−1∑
j=j0

n∑
k=1

[ûcn(j, k)ϕ̃cjk + ûsn(j, k)ϕ̃sjk],

un3 =
j0+j1+j2−1∑
j=j0+j1

ûcn(j, 0)ϕ̃cj0 +
j0+j1+j2−1∑
j=j0+j1

n∑
k=1

[ûcn(j, k)ϕ̃cjk + ûsn(j, k)ϕ̃sjk],

un4 =
n∑

j=j0+j1+j2

ûcn(j, 0)ϕ̃cj0 +
n∑

j=j0+j1+j2

n∑
k=1

[ûcn(j, k)ϕ̃cjk + ûsn(j, k)ϕ̃sjk].

Step 1: We claim that

(1) lim
n→∞

(‖un1‖2ρ + ‖un4‖2ρ)/‖un‖2ρ = 0,

(2) lim
n→∞

(‖un4‖ eH)/‖un‖ρ = 0.
(3.25)

Defining
ũn = −un1 − un2 + un3 + un4, (3.26)

and from (3.2)(2), we have
〈Dtun, ũn〉∼ρ = 0. (3.27)

As a result, from (3.15) with v = ũn, we obtain

L̃(un, ũn)− (λj0 + γ)〈un, ũn〉∼ρ
= (1− n−1)〈f(x, un)− γun, ũn〉∼ρ + 〈g(x, t, un), ũn〉∼ρ −G(ũn)

+ L̃(un, ũn)− M̃(un, ũn).

(3.28)

Set

I = L̃(un, ũn)− (λj0 + γ)〈un, ũn〉∼ρ ,
II = (1− n−1)〈f(x, un)− γun, ũn〉∼ρ + 〈g(x, t, un), ũn〉∼ρ

−G(ũn) + L̃(un, ũn)− M̃(un, ũn).

Now from (3.8) and λj0 + γ = λj0+j1 − γ, we see that

I ≥ γ‖un‖2ρ + I∗, (3.29)

where

I∗ =
j0−1∑
j=1

(λj0 − λj)|ûcn(j, 0)|2 +
j0−1∑
j=1

(λj0 − λj)
n∑
k=1

[|ûcn(j, k)|2 + |ûsn(j, k)|2]

+
n∑

j=j0+j1+j2

(λj − λj0+j1)|ûcn(j, 0)|2 +
n∑

j=j0+j1+j2

(λj − λj0+j1)
n∑
k=1

[|ûcn(j, k)|2

+ |ûsn(j, k)|2].

Hence, from (3.24), we see that

I ≥ γ‖un‖2ρ + (λj0 − λj0−1)‖un1‖2ρ + (λj0+j1+j2 − λj0+j1)‖un4‖2ρ. (3.30)
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On the other hand, for any ε > 0, from (F2), (G2) and G ∈ (H̃)′ we see that

II ≤ [(γ + ε)‖un‖ρ + ‖f0‖ρ + ‖gε‖ρ]‖ũn‖ρ
+K0‖ũn‖ eH + |L̃(un, ũn)− M̃(un, ũn)|,

(3.31)

and M̃ being #H̃-related to L̃, we have

lim
n→∞

|L̃(un, ũn)− M̃(un, ũn)|/‖un‖2ρ = 0. (3.32)

Therefore, from (3.28) and (3.32), we see on dividing both (3.30) and (3.31) by
‖un‖2ρ and passing to the limit as n→∞, that

lim
n→∞

[(λj0 − λj0−1)‖un1‖2ρ + (λj0+j1+j2 − λj0+j1)‖un4‖2ρ]/‖un‖2ρ = 0.

Since λj0 − λj0−1 > 0 and λj0+j1+j2 − λj0+j1 > 0, we see that claim (1) in (3.25) is
true.

Set δ = 1− λj0+j1/λj0+j1+j2 . It implies

λj − λj0+j1 ≥ δλj , for j ≥ j0 + j1 + j2. (3.33)

Then, (3.24) and (3.33) give

I∗ ≥ δL̃(un4, un4). (3.34)

Hence, from (3.28)-(3.30), (3.34), we obtain

γ‖un‖2ρ + δL̃(un4, un4) ≤ |L̃(un, ũn)− M̃(un, ũn)|+ [(γ + ε)‖un‖ρ + ‖f0‖ρ
+ ‖gε‖ρ]‖ũn‖ρ +K0‖ũn‖ eH ,

and on dividing by ‖un‖2ρ on both sides and letting n→∞, we see that

lim
n→∞

L̃(un4, un4)/‖un‖2ρ = 0. (3.35)

Since

〈f(x, v), Dtv〉∼ρ =
∫

eΩ f(x, v(x, t))Dtv(x, t)ρ dt dx = 0, (3.36)

for v ∈ C̃1b
p,ρ, we conclude from (3.36), (F2) and the definition of Sn that

〈f(x, un), Dtun〉∼ρ = 0, for un ∈ Sn, n ≥ n2.

Hence, replacing v by Dtun in (3.15) and from Remark 1.4, Schwarz’s inequality
and G ∈ (H̃)′, we obtain ‖Dtun‖ρ ≤ ‖g(x, t, un)‖ρ +K and

lim
n→∞

‖Dtun‖2ρ/‖un‖2ρ = 0. (3.37)

From claim (3.25)(1), (2.4), (3.35), (3.37) and ‖Dtun4‖2ρ ≤ ‖Dtun‖2ρ, claim (3.25)(2)
is true.

Step 2: We show that W (x) = W(2)(x) +W(3)(x). Setting

Wn(x) = un/‖un‖ρ, Wni(x) = uni/‖un‖ρ, for i = 1, . . . , 4, (3.38)

from (3.23) there is a K such that

‖Wn‖ eH ≤ K and ‖Wni‖ eH ≤ K, (3.39)
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for i = 1, . . . , 4, and n ≥ n2. From (3.39) and Lemma 3.1, we obtain that there is
a W ∈ H̃ such that

(1) lim
n→∞

‖Wn −W‖ρ = 0,

(2) lim
n→∞

Wn(x, t) = W (x, t), a.e. in Ω,

(3) lim
n→∞

〈Wn, v〉 eH = 〈W, v〉 eH , for v ∈ H̃.

(3.40)

Since M̃ is #H̃-related to L̃, we obtain from (3.39) that

lim
n→∞

|L̃(un,Wni(x))− M̃(un,Wni(x))|/‖un‖ρ = 0, for i = 1, . . . , 4. (3.41)

We observe from (3.25) that limn→∞ ‖Wn4(x)‖ρ = 0. Hence, if n→∞, then

〈Wn, ϕ̃
c
jk〉∼ρ = 〈Wn4, ϕ

c
jk〉∼ρ → 0, for j ≥ j0 + j1 + j2,

and from (3.40)(3), we obtain Ŵ c(j, k) = 0, for j ≥ j0 +j1 +j2 and all k. In similar
way, we have Ŵ s(j, k) = 0, for j ≥ j0 + j1 + j2 and all k. Also, we observe from
(3.25) that limn→∞ ‖Wn1(x)‖ρ = 0. So we obtain Ŵ c(j, k) = 0 and Ŵ s(j, k) = 0
for 1 ≤ j ≤ j0 − 1 and all k. Therefore, we have

Ŵ c(j, k) = 0 and Ŵ s(j, k) = 0, for j ≥ j0 + j1 + j2 and all k, (3.42)

Ŵ c(j, k) = 0 and Ŵ s(j, k) = 0, for 1 ≤ j ≤ j0 − 1 and all k. (3.43)

Next, for k ≥ 1 and j0 ≤ j ≤ j0 + j1 + j2 − 1, from (2.2) and (3.37) , we have

kŴ c(j, k) = − lim
n→∞

∫
eΩDtWn(x, t)ϕ̃sjk(x, t)ρ(x) dx dt = 0.

A similar situation prevails for kŴ s(j, k). So we have

Ŵ c(j, k) = 0 and Ŵ s(j, k) = 0,

for k ≥ 1 and j0 ≤ j ≤ j0 + j1 + j2 − 1. Hence, from (3.42), (3.43) and the above
formula, we see that W (x, t) is a function unrelated to t; i.e.,

W (x, t) ≡W (x),

W (x) = W(2)(x) +W(3)(x),

W(2)(x) =
j0+j1−1∑
j=j0

Ŵ c(j, 0)ϕ̃cj0,

W(3)(x) =
j0+j1+j2−1∑
j=j0+j1

Ŵ c(j, 0)ϕ̃cj0.

(3.44)

Step 3: We show that 〈f∗,W(2)〉∼ρ = 0 and 〈f∗,W(3)〉∼ρ = (λj0+j1 − λj0)‖W(3)‖2ρ.
From (3.38) and orthogonality we observe that

‖Wn −W‖2ρ = ‖Wn1‖2ρ + ‖Wn2 −W(2)‖2ρ + ‖Wn3 −W(3)‖2ρ + ‖Wn4‖2ρ.

From (3.40)(1), we conclude that

lim
n→∞

‖Wn2 −W(2)‖2ρ = 0 and lim
n→∞

‖Wn3 −W(3)‖2ρ = 0. (3.45)
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Putting Wni in place of v in (3.15), we obtain

L̃(un,Wni)

= (λj0 + γn−1)〈un,Wni〉∼ρ + (1− n−1)〈f(x, un) + g(x, t, un),Wni〉∼ρ
−G(Wni) + L̃(un,Wni)− M̃(un,Wni), i = 1, 2.

(3.46)

Dividing by ‖un‖2ρ on both sides of (3.46) and letting n→∞, from (3.24), (3.38),
(3.40), (3.41), (3.45), Schwarz’s inequality, G ∈ (H̃)′ and (G2) we obtain

lim
n→∞

〈f(x, un),Wn3〉∼ρ /‖un‖ρ = (λj0+j1 − λj0)‖W(3)‖2ρ. (3.47)

In a similar way, from (3.45), we have

lim
n→∞

〈f(x, un),Wn2〉∼ρ /‖un‖ρ = 0. (3.48)

Next, from (F2) and (3.22) that there are K and n3 such that

‖f(x, un)‖ρ/‖un‖ρ ≤ K, for n ≥ n3, (3.49)

where n3 ≥ n2. Using the Banach-Saks theorem and other facts about Hilbert
spaces (see [2, p. 181]), we obtain that there exits f∗(x, t) ∈ L̃2

ρ such that

(1) lim
n→∞

〈f(x, un)
‖un‖ρ

, v〉∼ρ = 〈f∗, v〉∼ρ , ∀v ∈ L̃2
ρ;

(2) lim
n→∞

‖ 1
n

n2+n∑
k=n2

f(x, uk)
‖uk‖ρ

− f∗‖ρ = 0;

(3) there is {nj} ⊂ {n}, such that

lim
j→∞

1
nj

n2+nj∑
k=n2

f(x, uk)
‖uk‖ρ

= f∗(x, t), a.e. in Ω̃.

(3.50)

From (3.45), (3.47), (3.49) and (3.50)(2) we obtain

〈f∗,W(3)〉∼ρ = (λj0+j1 − λj0)‖W(3)‖2ρ. (3.51)

In a similar manner, from (3.48) we obtain

〈f∗,W(2)〉∼ρ = 0. (3.52)

Step 4: We show that 〈f∗,W(2)〉∼ρ > 0 and 〈f∗,W(3)〉∼ρ < (λj0+j1 − λj0)‖W(3)‖2ρ
under assumption (3.17).

From (3.38), (F2), (3.40)(2) and (3.50)(3) it follows that

f∗(x, t) = 0, a.e. in Ω̃0 = Ω0 × T, (3.53)

where Ω0 = {x ∈ Ω : W (x) = 0}. From (F2), for s 6= 0, a.e. x ∈ Ω, we have

−f0(x)
|s|

≤ f(x, s)
s

≤ 2γ +
f0(x)
|s|

,

and for a.e. x ∈ Ω, from (1.14) we see that

0 ≤ F+(x) ≤ F+(x) ≤ 2γ and 0 ≤ F−(x) ≤ F−(x) ≤ 2γ. (3.54)

Setting
Ω̃+ = Ω+ × T and Ω̃− = Ω− × T, (3.55)
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where Ω+ = {x ∈ Ω : W (x) > 0} and Ω− = {x ∈ Ω : W (x) < 0}, let (x0, t0) ∈ Ω̃+

be such that f∗(x0, t0) is finite, (3.40)(2) and (3.50)(3) hold, and x0 be a value
such that (3.54) holds. Then given ε > 0, we see that there is an s∗ > 0 such
that f(x0, s) ≤ F+(x0)s+ εs for s ≥ s∗. Since un(x0, t0) = ‖un‖ρWn(x0, t0), from
(3.22), (3.40)(2) and (3.50)(3), we obtain f∗(x0, t0) ≤ F+(x0)W (x0). Similarly, we
have F+(x0)W (x0) ≤ f∗(x0, t0). Also, we can prevail for Ω̃−. Hence, we conclude
that

(1) F+(x)W (x) ≤ f∗(x, t) ≤ F+(x)W (x), a.e. in Ω̃+;

(2) F−(x)W (x) ≤ f∗(x, t) ≤ F−(x)W (x), a.e. in Ω̃−.
(3.56)

Since Ω̃ = Ω̃0 ∪ Ω̃+ ∪ Ω̃−, we define

f∗∗(x, t) =

{
0, (x, t) ∈ Ω̃0,

f∗(x, t)/W (x), (x, t) ∈ Ω̃+ ∩ Ω̃−.

From (3.53)–(3.56), we have

f∗(x, t) = f∗∗(x, t)W (x), a.e. in Ω̃, (3.57)

0 ≤ f∗∗(x, t) ≤ 2γ, a.e. in Ω̃. (3.58)

Furthermore, from (3.44), (3.51), (3.52), (3.57) and (3.58) we see that

〈(λj0+j1 − λj0 − f∗∗)W(3),W(3)〉∼ρ + 〈f∗∗W(2),W(2)〉∼ρ = 0,

and
〈(λj0+j1 − λj0 − f∗∗)W(3),W(3)〉∼ρ = 0,

〈f∗∗W(2),W(2)〉∼ρ = 0.
(3.59)

Setting
Ω̃2 = Ω2 × T and Ω̃3 = Ω3 × T, (3.60)

where Ωi = {x ∈ Ω : W(i)(x) 6= 0}, i = 2, 3, from (3.58) and (3.59), we see that
f∗∗(x, t) = λj0+j1 − λj0 , a.e. in Ω̃3. Then, Ω̃2 ∩ Ω̃3 is a set of Lebesgue measure
zero. Also, both W(2) and W(3) are continuous functions in Ω by (3.44). Therefore,
both Ω2 and Ω3 are open sets, and we see that Ω2 and Ω3 are disjoint sets. Since
W = W(2) +W(3), we find

W = W(2) on Ω2, W = W(3) on Ω3. (3.61)

Defining
Ω̃i+ = Ωi+ × T and Ω̃i− = Ωi− × T, (3.62)

where Ωi+ = {x ∈ Ω : W(i)(x) > 0}, Ωi− = {x ∈ Ω : W(i)(x) < 0}, i = 2, 3, from
(3.44) we see that W(2)(x) is a λj0-eigenfuction for L. If W(2)(x) is nontrivial, then
from (1.16) we have

0 <
∫

eΩ2+

F+(x)W (x)W(2)(x)ρ(x) dx dt+
∫

eΩ2−

F−(x)W (x)W(2)(x)ρ(x) dx dt.

(3.63)
If (x, t) ∈ Ω̃2+, from (3.61) and (3.62), then (x, t) ∈ Ω̃+. So, from (3.56) and (3.63)
we obtain

0 <
∫

eΩ2+

f∗(x, t)W(2)(x)ρ(x) dx dt+
∫

eΩ2−

f∗(x, t)W(2)(x)ρ(x) dx dt;
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i.e., 〈f∗,W(2)(x)〉∼ρ > 0. It is a contradiction of (3.52). As a result, we conclude
that W(2)(x) is indeed trivial; i.e., W(2)(x) = 0, for all x ∈ Ω. Hence, from (3.44)
we obtain

W (x) = W(3)(x), for all x ∈ Ω. (3.64)
Since W(3)(x) is a λj0+j1-eigenfuction for L, so is W from (3.64). If W is a nontrivial
function, then from (1.15) and (3.55) we obtain

2γ‖W‖2ρ >
∫

eΩ+

F+(x)W 2(x)ρ(x) dx dt+
∫

eΩ− F
−(x)W 2(x)ρ(x) dx dt. (3.65)

Therefore, we obtain from (3.56)(1)(2) and (3.65) that

2γ‖W‖2ρ >
∫

eΩ+

f∗(x, t)W (x)ρ(x) dx dt+
∫

eΩ− f
∗(x, t)W (x)ρ(x) dx dt; (3.66)

i.e., 〈f∗,W 〉∼ρ < (λj0+j1 − λj0)‖W‖2ρ. It is a direct contradiction of (3.51). So
we conclude that W (x) = 0, for all x ∈ Ω. Next, from (3.40)(1), we obtain
limn→∞ ‖Wn‖ρ = 0. However, from (3.38) we see that limn→∞ ‖Wn‖ρ = 1. Obvi-
ously, it is a contradiction, and (3.16) is indeed true. �

Proof of Theorem 1.5. Since H̃ is a separable Hilbert space, from (3.16), (S1) and
Lemma 3.2, there is a subsequence (still denoted by {un}∞n=n3

and a function u∗ ∈
H̃) such that

lim
n→∞

‖un − u∗‖ρ = 0;

there exists W ∗(x, t) ∈ L̃2
ρ, such that |un(x, t)| ≤W ∗(x, t), a.e. (x, t) ∈ Ω̃, n ≥ n3;

(1) lim
n→∞

un(x, t) = u∗(x, t), a.e. (x, t) ∈ Ω̃;

(2) lim
n→∞

〈Diun, v〉∼pi = 〈Diu
∗, v〉∼pi , ∀v ∈ L̃2

pi , i = 1, . . . , N ;

(3) lim
n→∞

〈Dtun, v〉∼ρ = 〈Dtu
∗, v〉∼ρ , ∀v ∈ L̃2

ρ;

(4) lim
n→∞

σi(un) = σi(u∗), i = 0, 1, . . . , N.

(3.67)

Let v ∈ H̃ and τJ(v) be defined by (2.7). Then τJ(v) ∈ SJ(J ≥ n3) and from
(3.15), for n ≥ J , we have that

〈Dtun, τJ(v)〉∼ρ + M̃(un, τJ(v))

= (λj0 + γn−1)〈un, τJ(v)〉∼ρ + (1− n−1)〈f(x, un) + g(x, t, un), τJ(v)〉∼ρ
−G(τJ(v)).

(3.68)

We conclude from (1.4) and (3.67) that

lim
n→∞

M̃(un, τJ(v)) = M̃(u∗, τJ(v)). (3.69)

Next, from (F2), (G2), (3.67)(2) and the Lebesgue dominated convergence theorem
we obtain

lim
n→∞

〈f(x, un) + g(x, t, un), τJ(v)〉∼ρ = 〈f(x, u∗) + g(x, t, u∗), τJ(v)〉∼ρ . (3.70)

From (3.69), (3.70), (3.67)(1)(3), and (3.68), we obtain

〈Dtu
∗, τJ(v)〉∼ρ + M̃(u∗, τJ(v))

= λj0〈u∗, τJ(v)〉∼ρ + 〈f(x, u∗) + g(x, t, u∗), τJ(v)〉∼ρ −G(τJ(v)).
(3.71)
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Passing to the limit as J →∞ on both sides of (3.71), we obtain

〈Dtu
∗, v〉∼ρ + M̃(u∗, v) = λj0〈u∗, v〉∼ρ + 〈f(x, u∗) + g(x, t, u∗), v〉∼ρ −G(v),

for all v ∈ H̃, and the proof of Theorem 1.5 is complete. �

4. An example

We give two functions to establish existence results for a function f(x, s) that
satisfies (F1), (F2) and a function g(x, t, s) that satisfies (G1), (G2). Set Ω =
{x = (x1, x2) : x2

1 + x2
2 < 1} and

f∗(x) = (x2
1 + x2

2)−ρ, 0 < ρ < 1/4, x ∈ Ω.

Also, γ > 0 is given, and set

f(x, s) =

{
−s2f∗(x) + γs, 0 ≤ s < 1,
−
√
sf∗(x) + γs, 1 ≤ s < +∞,

for x ∈ Ω and 0 ≤ s ≤ +∞. For −∞ < s < 0, we set f(x, s) = −f(x,−s). Clearly,
f(x, s) meets (F1), (F2). For g(x, t, s) , set Ω = {x = (x1, x2) : x2

1 + x2
2 < 1}, T =

(−π, π), and

g0(x, t) = |t|(x2
1 + x2

2)−ρ, 0 < ρ < 1/4, (x, t) ∈ Ω̃.

Also, we set

g(x, t, s) =

{
−s2g0(x, t), 0 ≤ s < 1,
−
√
sg0(x, t), 1 ≤ s < +∞,

for (x, t) ∈ Ω̃ and 0 ≤ s < +∞. For −∞ < s < 0, we set g(x, t, s) = −g(x, t,−s).
Clearly, g(x, t, s) satisfies (G1)–(G2).
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