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QUENCHING FOR SINGULAR AND DEGENERATE
QUASILINEAR DIFFUSION EQUATIONS

YUANYUAN NIE, CHUNPENG WANG, QIAN ZHOU

Abstract. This article concerns the quenching phenomenon of the solution

to the Dirichlet problem of a singular and degenerate quasilinear diffusion

equation. It is shown that there exists a critical length for the special domain
in the sense that the solution exists globally in time if the length of the special

domain is less than this number while the solution quenches if the length is

greater than this number. Furthermore, we also study the quenching properties
for the quenching solution, including the location of the quenching points and

the blowing up of the derivative of the solution with respect to the time at the
quenching time.

1. Introduction

In the paper, we consider the problem

xq
∂u

∂t
− ∂2um

∂x2
= f(um), (x, t) ∈ (0, a)× (0, T ), (1.1)

u(0, t) = 0 = u(a, t), t ∈ (0, T ), (1.2)

u(x, 0) = 0, x ∈ (0, a), (1.3)

where a > 0, q ∈ R, m ≥ 1 and f ∈ C2([0, cm)) with c > 0 satisfies

f(0) > 0, f ′(0) > 0, f ′′(s) ≥ 0 for 0 < s < cm, lim
s→cm

f(s) = +∞.

At x = 0, (1.1) is singular if q > 0 and degenerate if q < 0. Furthermore, (1.1)
is degenerate at the points where u = 0 in the quasilinear case m > 1. If q = 0
and m > 1, (1.1) is the famous porous medium equation, which arises from many
physical and biological models [19]. If q > 0 and m = 1, (1.1) can be used to
describe the Ockendon model for the flow in a channel of a fluid whose viscosity is
temperature-dependent [10, 14].

Due to the properties of f , the solution u to (1.1)–(1.3) may quench at a finite
time. That is to say, there exists a finite time T > 0 such that

lim
t→T−

sup
(0,a)

u(·, t) = c.
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Quenching phenomena were introduced by Kawarada [12] in 1975 for the problem
(1.1)–(1.3) in the case q = 0, m = 1 and

f(s) =
1

1− s
, 0 ≤ s < 1,

where Kawarada proved the existence of the critical length (which is 2
√

2). That
is to say, the solution exists globally in time if a is less than the critical length,
while it quenches if a is greater than the critical length. For the quenching case,
Kawarada also showed that a/2 is the quenching point and the derivative of the
solution with respect to the time blows up at the quenching time. Since then,
there are many interesting results on quenching phenomena for semilinear uniformly
parabolic equations (see, e.g., [1, 2, 8, 15, 16, 17] and the references therein) and for
singular or degenerate semilinear parabolic equations (see, e.g., [3, 4, 5, 6, 11, 13]
and the references therein). Among these, Chan and Kong [3] considered (1.1)–(1.3)
in the semilinear case m = 1, where the authors showed the existence of the critical
length, the location of the quenching points and the blowing up of the derivative
of the solution with respect to the time at the quenching time.

Recently, there are few results on quenching phenomena for quasilinear diffusion
equations [7, 9, 18, 20, 21]. [7] and [21] showed some sufficient conditions for quench-
ing solutions to the Dirichlet problems of porous medium equations. In [9] and [20],
the authors considered quenching phenomena for the one-dimensional homogeneous
porous medium equation and p-Laplacian equation with singular boundary flux, re-
spectively. It is shown that the solution quenches at the singular boundary and the
quenching rate was estimated. Winkler [18] studied the following problem for a
strongly degenerate diffusion equation with strong absorption

∂u

∂t
− up ∂

2u

∂x2
= −u−βχ{u>0}, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = 0 = u(a, t), t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ (0, a),

where a > 0, p > 1, −1 < β < p− 1, 0 ≤ u0 ∈ C([0, a]) and χ is the characteristic
function. Due to p > 1, this equation in non-divergence form cannot be trans-
formed into the porous medium equation. Winkler [18] ruled out the possibility of
quenching in infinite time under certain assumptions on p, β and a.

In this article, we study the quenching phenomenon of the solution to the problem
(1.1)–(1.3). The equation (1.1) is quasilinear in the case m > 1. Furthermore, there
are two kinds of singularity or degeneracy in (1.1): one is the degeneracy at u = 0
in the case m > 1, the other is the singularity (q > 0) or degeneracy (q < 0) at
x = 0. Therefore, the classical solution to the problem (1.1)–(1.3) may not exist and
the weak solution should be considered. By precise estimates near the parabolic
boundary, it is shown that the problem (1.1)–(1.3) admits a continuous solution
before the quenching time. By constructing suitable super and sub solutions, we
prove the existence of the critical length. For the quenching solution, we also study
the location of the quenching points and the blowing up of the derivative of the
solution with respect to the time at the quenching time by energy estimates and
many kinds of comparison principles. Due to the quasilinearity and the two kinds
of singularity or degeneracy in (1.1), we have to overcome some technical difficulties
when doing estimates, constructing super and sub solutions, and using comparison
principles.
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This paper is arranged as follows. The well-posedness of the problem (1.1)–(1.3)
is shown in §2. The existence of the critical length is proved in §3. Subsequently,
in §4 we study the quenching properties for the quenching solution, including the
location of the quenching points and the blowing up of the derivative of the solution
with respect to the time at the quenching time.

2. Well-posedness

Solutions to (1.1), and super and sub solutions, are defined as follows.

Definition 2.1. A nonnegative function u ∈ L∞((0, a) × (0, T )) is said to be a
super (sub) solution to (1.1) in (0, T ) for some 0 < T ≤ +∞, if for any 0 < T̃ < T ,
sup(0,a)×(0,T̃ ) u < c and

−
∫ T̃

0

∫ a

0

xqu
∂ϕ

∂t
dx dt−

∫ T̃

0

∫ a

0

um
∂2ϕ

∂x2
dx dt ≥ (≤)

∫ T̃

0

∫ a

0

f(um)ϕdx dt

for each 0 ≤ ϕ ∈ C2
0 ([0, a]× [0, T̃ ]). Furthermore, u is said to be a solution to (1.1),

if it is both a super solution and a sub solution.

The following comparison principle can be established by a duality argument.
The proof is similar to [19, Theorem 1.3.1] and it is omitted.

Theorem 2.2. Assume that û and ǔ are a super solution and a sub solution to (1.1)
in (0, T ) for some 0 < T ≤ +∞, respectively. Furthermore, û, ǔ ∈ C([0, a]× [0, T )).
If

û(·, 0) ≥ ǔ(·, 0) in (0, a), û(0, ·) ≥ ǔ(0, ·), û(a, ·) ≥ ǔ(a, ·) in (0, T ),

then û ≥ ǔ in (0, a)× (0, T ).

Let us turn to the existence of local solution.

Theorem 2.3. The problem (1.1)–(1.3) admits uniquely a solution u in (0, T ) for
some T > 0. Furthermore, u ∈ C2,1((0, a) × (0, T ]) ∩ C([0, a] × [0, T ]), ∂u

∂t ,
∂u
∂x ∈

C2,1((0, a)× (0, T ]) and

u(x, t) > 0,
∂u

∂t
(x, t) > 0, (x, t) ∈ (0, a)× (0, T ),∫ a

0

(∂um
∂x

(x, t)
)2

dx ≤ 2ma
∫ max(0,a) u(·,t)

0

sm−1f(sm)ds, t ∈ (0, T ).

Proof. Fix 0 < c0 < c. For an integer n ≥ (2e)1/m

c0
and k ≥ 1, the classical theory

yields that the problem(
x+

1
k

)q ∂un,k
∂t

−
∂2umn,k
∂x2

= f(umn,k), (x, t) ∈ (0, a)× (0, T ), (2.1)

un,k(0, t) = un,k(a, t) =
1
n
, t ∈ (0, T ), (2.2)

un,k(x, 0) =
1
n
, x ∈ (0, a) (2.3)

admits a unique solution un,k ∈ C2,1((0, a) × [0, T ]) ∩ C([0, a] × [0, T ]) locally in
time. Set

ūn,k(x, t) =
c0

21/m

(
1−

(x
a

)3/2

+ et/T0−1
)1/m

, (x, t) ∈ [0, a]× [0, T0],
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where

T0 =
c0 min

{
δq, (a+ 1)q

}
2mef(cm0 )

, δ = min
{a

2
,

9c2m0
64a3f2(cm0 )

}
.

Then
c0

(2e)1/m
≤ ūn,k ≤ c0, (x, t) ∈ [0, a]× [0, T0]

and (
x+

1
k

)q ∂ūn,k
∂t

−
∂2ūmn,k
∂x2

=
cm0

(
x+ 1

k

)q
2mūm−1

n,k T0

et/T0−1 +
3cm0

8a3/2x1/2

≥


3cm

0
8a3/2δ1/2 ≥ f(cm0 ), (x, t) ∈ (0, δ)× (0, T0),
c0 min

{
δq,(a+1)q

}
2meT0

, (x, t) ∈ (δ, a)× (0, T0).

Note that
c0 min

{
δq,(a+1)q

}
2meT0

≥ f(cm0 ). Therefore, ūn,k is a supersolution to (2.1)–
(2.3) in (0, T0). The classical comparison principle yields that un,k exists in (0, T0)
and

1
n
≤ un,k(x, t) ≤ c0, (x, t) ∈ (0, a)× (0, T0). (2.4)

Since ∂un,k

∂t solves(
x+

1
k

)q ∂
∂t

(∂un,k
∂t

)
−m ∂2

∂x2

(
um−1
n,k (x, t)

∂un,k
∂t

)
−mf ′(umn,k(x, t))um−1

n,k (x, t)
∂un,k
∂t

= 0, (x, t) ∈ (0, a)× (0, T0),

∂un,k
∂t

(0, t) =
∂un,k
∂t

(a, t) = 0, t ∈ (0, T0),

∂un,k
∂t

(x, 0) ≥ 0, x ∈ (0, a),

the classical comparison principle leads to

∂un,k
∂t

(x, t) ≥ 0, (x, t) ∈ (0, a)× (0, T0). (2.5)

Set

v̄n,k(x, t) =
(( 1

n

)m
+

1
2
f(cm0 )x(a− x)

)1/m

, (x, t) ∈ [0, a]× [0, T0],

Then, v̄n,k is a supersolution of the problem(
x+

1
k

)q ∂vn,k
∂t
−
∂2vmn,k
∂x2

= f(cm0 ), (x, t) ∈ (0, a)× (0, T0),

vn,k(0, t) = vn,k(a, t) =
1
n
, t ∈ (0, T0),

vn,k(x, 0) =
1
n
, x ∈ (0, a).

Furthermore, (2.4) shows that vn,k is a supersolution of the problem (2.1)–(2.3) in
(0, T0). It follows from the classical comparison principle that

un,k(x, t) ≤ vn,k(x, t) ≤ v̄n,k(x, t), (x, t) ∈ (0, a)× (0, T0). (2.6)
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For a fixed x̃ ∈ (0, a), denote δ = 1
2 min{x̃, a− x̃}. Set

wn,k(x, t) =
1
n

+ (x− x̃+ δ)(x̃+ δ − x) min{t, T1},

(x, t) ∈ [x̃− δ, x̃+ δ]× [0, T0],

z̄n,k(x, t) =
1
n

+
(
c0 −

1
n

)
δ−2(x− x̃)2 +

t

T2
, (x, t) ∈ [x̃− δ, x̃+ δ]× [0, T2],

where 0 < T1, T2 < T0. Then, there exist sufficiently small T1, T2 > 0, which are
independent of n and k, such that(

x+
1
k

)q ∂wn,k
∂t

−
∂2wmn,k
∂x2

≤ f(0), (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T0),(
x+

1
k

)q ∂z̄n,k
∂t
−
∂2z̄mn,k
∂x2

≥ f(cm0 ), (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T2).

Therefore, wn,k is a subsolution of the problem(
x+

1
k

)q ∂wn,k
∂t

−
∂2wmn,k
∂x2

= f(0), (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T0), (2.7)

wn,k(x̃− δ, t) = wn,k(x̃+ δ, t) =
1
n
, t ∈ (0, T0), (2.8)

wn,k(x, 0) =
1
n
, x ∈ (x̃− δ, x̃+ δ), (2.9)

z̄n,k is a supersolution to the problem(
x+

1
k

)q ∂zn,k
∂t
−
∂2zmn,k
∂x2

= f(cm0 ), (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T2), (2.10)

zn,k(x̃− δ, t) = zn,k(x̃+ δ, t) = c0, t ∈ (0, T2), (2.11)

zn,k(x, 0) =
1
n
, x ∈ (x̃− δ, x̃+ δ). (2.12)

Further, (2.4) shows that un,k is a supersolution to the problem (2.7)–(2.9) in
(0, T0) and a subsolution to the problem (2.10)–(2.12) in (0, T2). It follows from
the classical comparison principle that

un,k(x, t) ≥ wn,k(x, t) ≥ wn,k(x, t), (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T0), (2.13)

un,k(x, t) ≤ zn,k(x, t) ≤ z̄n,k(x, t), (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T2). (2.14)

Set

En,k(t) =
1
2

∫ a

0

(∂umn,k
∂x

(x, t)
)2

dx−m
∫ a

0

∫ un,k(x,t)

0

sm−1f(sm) ds dx,

for t ∈ [0, T0]. Integrating by parts, one gets

E′n,k(t) =
∫ a

0

∂umn,k
∂x

(x, t)
∂2umn,k
∂t∂x

(x, t)dx−m
∫ a

0

∂un,k
∂t

um−1
n,k (x, t)f(umn,k(x, t))dx

=
∂umn,k
∂x

(a, t)
∂umn,k
∂t

(a, t)−
∂umn,k
∂x

(0, t)
∂umn,k
∂t

(0, t)

−m
∫ a

0

um−1
n,k (x, t)

∂un,k
∂t

(x, t)
(∂2umn,k

∂x2
(x, t) + f(umn,k(x, t))

)
dx

= −m
∫ a

0

um−1
n,k (x, t)

(∂un,k
∂t

(x, t)
)2

dx ≤ 0, t ∈ (0, T0).
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Therefore,
En,k(t) ≤ En,k(0) ≤ 0, t ∈ (0, T0),

which leads to∫ a

0

(∂un,k
∂x

(x, t)
)2

dx ≤ 2m
∫ a

0

∫ un,k(x,t)

0

sm−1f(sm) ds dx

≤ 2ma
∫ max(0,a) un,k(·,t)

0

sm−1f(sm)ds, t ∈ (0, T0).

(2.15)

From the classical comparison principle and (2.5), we have

un2,k(x, t) ≤ un1,k(x, t), (x, t) ∈ [0, a]× [0, T0], n2 ≥ n1 ≥
(2e)1/m

c0
,

for k ≥ 1, and {
un,k2(x, t) ≤ un,k1(x, t), if q ≥ 0,
un,k2(x, t) ≥ un,k1(x, t), if q ≤ 0,

for (x, t) ∈ (0, a)× (0, T0), n ≥ (2e)1/m/c0, k2 ≥ k1 ≥ 1. Let

u(x, t) = lim
k→∞

lim
n→∞

un,k(x, t), (x, t) ∈ [0, a]× [0, T0].

Due to (2.4), (2.5), (2.6), (2.13) and (2.14), the function u satisfies

0 ≤ u(x, t) ≤ c0, (x, t) ∈ (0, a)× (0, T0), (2.16)

u(x, ·) is increasing in (0, T0), x ∈ (0, a), (2.17)

0 ≤ u(x, t) ≤
(1

2
f(cm0 )x(a− x)

)1/m

, (x, t) ∈ (0, a)× (0, T0), (2.18)

u(x, t) ≥ (x− x̃+ δ)(x̃+ δ − x) min{t, T1}, (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T0),
(2.19)

u(x, t) ≤ c0δ−2(x− x̃)2 +
t

T2
, (x, t) ∈ (x̃− δ, x̃+ δ)× (0, T2). (2.20)

It is not hard to show that u is a solution of (1.1)–(1.3) in (0, T0). Furthermore,
(2.19) yields that

u(x, t) > 0, (x, t) ∈ (0, a)× (0, T0). (2.21)

Therefore, u ∈ C2,1((0, a) × (0, T0]), which together with (2.16)–(2.21) and f ∈
C2([0, cm)), implies that u ∈ C([0, a] × [0, T0]) satisfies (1.2) and (1.3), ∂u

∂t ,
∂u
∂x ∈

C2,1((0, a)× (0, T0]) and

∂u

∂t
(x, t) ≥ 0, (x, t) ∈ (0, a)× (0, T0). (2.22)

Noting ∂u
∂t ∈ C

2,1((0, a)× (0, T0]) with (2.22) solves

xq
∂

∂t

(∂u
∂t

)
−m ∂2

∂x2

(
um−1(x, t)

∂u

∂t

)
−mf ′(um(x, t))um−1(x, t)

∂u

∂t
= 0, (2.23)

for (x, t) ∈ (0, a)× (0, T0). From the classical strong maximum principle and (2.21)
we obtain

∂u

∂t
(x, t) > 0, (x, t) ∈ (0, a)× (0, T0). (2.24)
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Indeed, if (2.24) is wrong, then there exists (x0, t0) ∈ (0, a) × (0, T0) such that
∂u
∂t (x0, t0) = 0. For any 0 < ε < min{x0, a− x0} and any 0 < τ < t0, (2.22) shows
that

∂u

∂t
(x0, t0) = 0 = min

(ε,a−ε)×(τ,t0)

∂u

∂t
.

Since (2.23) is uniformly parabolic in (ε, a − ε) × (τ, t0) due to (2.21), from the
classical strong maximum principle, we have

∂u

∂t
(x, t) = 0, (x, t) ∈ (ε, a− ε)× (τ, t0).

Then, it follows from the arbitrariness of ε ∈ (0,min{x0, a − x0}) and τ ∈ (0, t0)
that

∂u

∂t
(x, t) = 0, (x, t) ∈ (0, a)× (0, t0),

which contradicts (1.3) and (2.21). Finally, (2.15) leads to∫ a

0

(∂um
∂x

(x, t)
)2

dx ≤ 2ma
∫ max(0,a) u(·,t)

0

sm−1f(sm)ds, t ∈ (0, T0).

�

Denote

T∗ = sup
{
T > 0 : the problem (1.1)–(1.3) admits a solution in (0, T )

}
.

We call T∗ the life span of the solution to problem (1.1)–(1.3).

Remark 2.4. By the standard extension process, one can show that Problem
(1.1)–(1.3) admits uniquely a solution u in (0, T∗). Furthermore, u ∈ C2,1((0, a)×
(0, T∗)) ∩ C([0, a]× [0, T∗)), ∂u

∂t ,
∂u
∂x ∈ C

2,1((0, a)× (0, T∗)) and

u(x, t) > 0,
∂u

∂t
(x, t) > 0, (x, t) ∈ (0, a)× (0, T∗),∫ a

0

(∂um
∂x

(x, t)
)2

dx ≤ 2ma
∫ max(0,a) u(·,t)

0

sm−1f(sm)ds, t ∈ (0, T∗).

3. Critical length

Assume that u is the solution to (1.1)–(1.3) and T∗ is its life span. If T∗ = +∞,
then u exists globally in time. If T∗ < +∞, then u must quench at a finite time,
i.e.

lim
t→T−∗

sup
(0,a)

u(·, t) = c.

Let us study the relation between T∗ and a in this section. For convenience, we
denote ua by the solution to (1.1)–(1.3), and T∗(a) its life span.

Lemma 3.1. If a is positive and sufficiently small, then T∗(a) = +∞ and

sup
(0,a)×(0,+∞)

ua < c.
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Proof. Fix 0 < c0 < c and 0 < a ≤
(

8cm
0

f(cm
0 )

)1/2

. Set

ūa(x, t) =
(f(cm0 )

2
x(a− x)

)1/m

, (x, t) ∈ [0, a]× [0,+∞).

Then, ūa satisfies

0 ≤ ūa(x, t) ≤
(f(cm0 )a2

8

)1/m

≤ c0, (x, t) ∈ [0, a]× [0,+∞),

xq
∂ūa
∂t
− ∂2ūma

∂x2
= f(cm0 ) ≥ f(ūma ), (x, t) ∈ (0, a)× (0,+∞).

The comparison principle (Theorem 2.2) shows that

ua(x, t) ≤ ūa(x, t) ≤ c0, (x, t) ∈ [0, a]× [0,+∞).

�

Lemma 3.2. If a > 0 is sufficiently large, then T∗(a) < +∞.

Proof. Set

ua(x, t) =
t

T

(f(0)
4

(x− a/2)(a− x)
)1/m

, (x, t) ∈ [a/2, a]× [0, T ]

with

T = 2max{(a/2)q, aq}
( a2

64fm−1(0)

)1/m

.

Then, ua satisfies

xq
∂ua
∂t
− ∂2uma

∂x2
=
xq

T

(f(0)
4

(x− a/2)(a− x)
)1/m

+
f(0)

2

( t
T

)m
≤ f(0) ≤ f(uma ), (x, t) ∈ (a/2, a)× (0, T ).

The comparison principle (Theorem 2.2) shows that

ua(x, t) ≥ ua(x, t), (x, t) ∈ [a/2, a]× [0, T ].

Particularly,

ua(3a/4, T ) ≥
(f(0)a2

64

)1/m

,

which yields T∗(a) < +∞ if a ≥ 8cm/2f−1/2(0). �

Lemma 3.3. For any 0 < a1 < a2,

ua1(x, t) < ua2(x, t), (x, t) ∈ (0, a1)× (0, T∗(a2)).

Proof. For any 0 < a1 < a2, Remark 2.4 shows that

ua2(a1, t) > 0, t ∈ (0, T∗(a2)).

Then, it follows from the comparison principle (Theorem 2.2) that

ua1(x, t) ≤ ua2(x, t), (x, t) ∈ (0, a1)× (0, T∗(a2)).

Set
w(x, t) = ua1(x, t)− ua2(x, t), (x, t) ∈ [0, a1]× [0, T∗(a2)).

By Remark 2.4, w ∈ C2,1((0, a1)× (0, T∗(a2))) ∩ C([0, a1]× [0, T∗(a2)]) and solves

xq
∂w

∂t
−m ∂2

∂x2

(
w

∫ 1

0

(σua1(x, t) + (1− σ)ua2(x, t))m−1dσ
)
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= mw

∫ 1

0

f ′(σuma1
(x, t) + (1− σ)uma2

(x, t))dσ

×
∫ 1

0

(σua1(x, t) + (1− σ)ua2(x, t))m−1dσ, (x, t) ∈ (0, a1)× (0, T∗(a2)),

where ua1 , ua2 ∈ C2,1((0, a1)× (0, T∗(a2))) ∩ C([0, a1]× [0, T∗(a2)]) with

ua1(x, t) > 0, ua2(x, t) > 0, (x, t) ∈ (0, a1)× (0, T∗(a2)).

The classical strong maximum principle (a similar discussion to (2.24) in Theorem
2.3) leads to

w(x, t) < 0, (x, t) ∈ (0, a1)× (0, T∗(a2)),
i.e.

ua1(x, t) < ua2(x, t), (x, t) ∈ (0, a1)× (0, T∗(a2)).
�

Lemma 3.4. There exists at most one a > 0 such that ua quenches at the infinite
time, i.e. T∗(a) = +∞ and sup(0,a)×(0,+∞) ua = c.

Proof. Assume that ua0 quenches at the infinite time for some a0 > 0. For a > a0,
set

ua(x, t) = λ2/mua0(λ−1x, λ−2/m−qt), (x, t) ∈ [0, a]× [0,+∞), λ =
a

a0
.

Then, λ > 1, and ua solves

xq
∂ua
∂t
− ∂2uma

∂x2
= f(λ−2uma ), (x, t) ∈ (0, a)× (0,+∞).

Therefore, ua is a subsolution to (1.1)–(1.3). Since

lim
t→+∞

sup
(0,a)

ua(·, t) = λ2/mc > c,

ua must quench at a finite time. �

Theorem 3.5. There exists a∗ > 0 such that
(i) T∗(a) = +∞ and sup(0,a)×(0,+∞) ua < c if 0 < a < a∗,

(ii) T∗(a) < +∞ if a > a∗.

Proof. Set
S =

{
a > 0 : T∗(a) = +∞ and sup

(0,a)×(0,+∞)

ua < c
}
.

By Lemmas 3.1 and 3.2, this set is bounded. Denote

a∗ = supS.

By Lemma 3.3, a ∈ S for each 0 < a < a∗. For a > a∗, the definition of S shows
that T∗(a) < +∞ or ua quenches at the infinite time. Let us prove that the latter
case is impossible by contradiction. Otherwise, assume that ua0 quenches at the
infinite time for some a0 > a∗. From the definition of S and Lemma 3.3, uã must
quench at the infinite time for each a∗ < ã < a0, which contradicts Lemma 3.4. �

Remark 3.6. Using Lemma 3.3, it is not difficult to show that

ua∗(x, t) = lim
a→a∗

ua(x, t), (x, t) ∈ (0, a∗)× (0, T∗(a∗)).

Therefore, T∗(a∗) = +∞. However, it is unknown whether ua∗ quenches or not at
the infinite time.
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4. Quenching properties

Assume that u is the solution of (1.1)–(1.3). According to Theorem 3.5, u
quenches at a finite time if and only if a > a∗. In this section, we investigate the
location of the quenching points and the blowing up of ∂u

∂t .

Definition 4.1. Assume that the solution u to (1.1)–(1.3) quenches at 0 < T∗ <
+∞. A point x ∈ [0, a] is said to be a quenching point if there exist two sequences
{tn}∞n=1 ⊂ (0, T∗) and {xn}∞n=1 ⊂ (0, a) such that

lim
n→∞

tn = T∗, lim
n→∞

xn = x, lim
n→∞

u(xn, tn) = c.

Theorem 4.2. Assume that a > a∗. Then
(i) there is no quenching point in (a/2, a) if q > 0,
(ii) there is no quenching point in (0, a/2) if q < 0.

Proof. We prove the case q > 0 only; the other case can be proved similarly. By
Remark 2.4,

u(x, t) > 0,
∂u

∂t
(x, t) > 0, (x, t) ∈ (0, a)× (0, T∗). (4.1)

Set
v(x, t) = u(a− x, t), (x, t) ∈ [0, a/2]× [0, T∗).

Then, v is a solution of the equation

(a− x)q
∂v

∂t
− ∂2vm

∂x2
= f(vm), (x, t) ∈ (0, a/2)× (0, T∗). (4.2)

By (4.1), u is a supersolution to (4.2). Similar to the proof of Lemma 3.3, one can
show that

u(x, t) > v(x, t), (x, t) ∈ (0, a/2)× (0, T∗). (4.3)
Set

w(x, t) = um(x, t)− vm(x, t), (x, t) ∈ [0, a/2]× [0, T∗).
Then w solves

xqh(x, t)
∂w

∂t
− ∂2w

∂x2
+ xq

∂h

∂t
(x, t)w ≥ g(x, t)w, (x, t) ∈ (0, a/2)× (0, T∗), (4.4)

where

h(x, t) =
1
m

∫ 1

0

(σum(x, t) + (1− σ)vm(x, t))1/m−1dσ,

g(x, t) =
∫ 1

0

f ′(σum(x, t) + (1− σ)vm(x, t))dσ ≥ f ′(0) > 0,

for (x, t) ∈ (0, a/2) × (0, T∗). From (4.1) and (4.3), for (x, t) ∈ (0, a/2) × (0, T∗),
follows that

∂h

∂t
(x, t) =

1
m

( 1
m
− 1
)∫ 1

0

(
σ
∂um(x, t)

∂t
+ (1− σ)

∂vm(x, t)
∂t

)1/m−1

dσ < 0,

w(x, t) > 0.

Therefore, w satisfies

xqh(x, t)
∂w

∂t
− ∂2w

∂x2
≥ 0, (x, t) ∈ (0, a/2)× (0, T∗). (4.5)
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For any 0 < η < a/4, set

δ = min
(η,a/2−η)

(um(·, T∗/2)− vm(·, T∗/2)).

Let z be the solution to the problem

xqh(x, t)
∂z

∂t
− ∂2z

∂x2
= 0, (x, t) ∈ (η, a/2− η)× (T∗/2, T∗), (4.6)

z(η, t) = z(a/2− η, t) = 0, t ∈ (T∗/2, T∗), (4.7)

z(x, T∗/2) = δ sin
(2π(x− η)

a− 4η

)
, x ∈ (η, a/2− η). (4.8)

Since (4.6) is a uniformly parabolic equation in (η, a/2− η)× (T∗/2, T∗), from the
classical strong maximum principle it follows that

z(x, t) > 0, (x, t) ∈ (η, a/2− η)× [T∗/2, T∗]. (4.9)

By (4.5) and (4.3), w is a supersolution to (4.6)–(4.8). The classical comparison
principle leads to

w(x, t) ≥ z(x, t), (x, t) ∈ (η, a/2− η)× (T∗/2, T∗);

i.e.,

um(a− x, t) ≤ um(x, t)− z(x, t), (x, t) ∈ (η, a/2− η)× (T∗/2, T∗).

So, there is no quenching point in (a/2+η, a−η) owing to (4.9). Then, (i) is proved
due to the arbitrariness of 0 < η < a/4. �

Theorem 4.3. Assume that a > a∗ and M =
∫ c
0
sm−1f(sm)ds < +∞. Then

M ≥ c2m

ma2

and
(i) the quenching points belong to [c2m/(2Mma), a/2] if q > 0,

(ii) the quenching points belong to [c2m/(2Mma), a− c2m/(2Mma)] if q = 0,
(iii) the quenching points belong to [a/2, a− c2m/(2Mma)] if q < 0.

Proof. From Remark 2.4, one gets∫ a

0

(∂um
∂x

(x, t)
)2

dx ≤ 2mMa, t ∈ (0, T∗). (4.10)

Then, it follows from (4.10) and the Schwarz inequality that

um(x, t) =
∫ x

0

∂um

∂x
(y, t)dy ≤ x1/2

(∫ a

0

(∂um
∂x

(y, t)
)2

dy
)1/2

≤ (2mMax)1/2, (x, t) ∈ [0, a/2]× [0, T∗)
(4.11)

and

um(x, t) = −
∫ a

x

∂um

∂x
(y, t)dy ≤ (a− x)1/2

(∫ a

0

(∂um
∂x

(y, t)
)2

dy
)1/2

≤ (2mMa(a− x))1/2, (x, t) ∈ [a/2, a]× [0, T∗).
(4.12)

Since

lim
t→T−∗

sup
(0,a)

u(·, t) = c
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by Theorem 3.5, from (4.11) and (4.12) it follows that

M ≥ c2m

ma2
.

Furthermore, (i)–(iii) follow from Theorem 4.2, (4.11) and (4.12) directly. �

Theorem 4.4. Assume that a > a∗ and
∫ c
0
sm−1f(sm)ds < +∞. Then the solution

u of (1.1)–(1.3) satisfies

lim
t→T−∗

sup
(0,a)

∂u

∂t
(·, t) = +∞.

Proof. From Theorem 4.3, there exist 0 < x1 < x2 < x3 < x4 < a such that

lim
t→T−∗

sup
(x2,x3)

u(·, t) = c, (4.13)

sup
(0,x2)×(0,T∗)

u < c, sup
(x3,a)×(0,T∗)

u < c. (4.14)

Set
w(x, t) = um(x, t), (x, t) ∈ [x1, x4]× [0, T∗).

Then w and ∂w
∂t solve

xq

m
w1/m−1 ∂w

∂t
− ∂2w

∂x2
= f(w), (x, t) ∈ (x1, x4)× (0, T∗) (4.15)

and
xq

m
w1/m−1(x, t)

∂

∂t

(∂w
∂t

)
+
( 1
m
− 1
)xq
m
w1/m−2(x, t)

(∂w
∂t

)2

− ∂2

∂x2

(∂w
∂t

)
= f ′(w(x, t))

∂w

∂t
, (x, t) ∈ (x1, x4)× (0, T∗),

(4.16)

respectively. By Remark 2.4,
∂w

∂t
(x, t) > 0, (x, t) ∈ (0, a)× (0, T∗). (4.17)

Let z be the solution to the problem

xq

m
w1/m−1(x, t)

∂z

∂t
− ∂z2

∂x2
= 0, (x, t) ∈ (x1, x4)× (T∗/2, T∗), (4.18)

z(x1, t) = z(x4, t) = 0, t ∈ (T∗/2, T∗), (4.19)

z(x, T∗/2) = δ sin
(π(x− x1)
x4 − x1

)
, x ∈ (x1, x4), (4.20)

where
δ = min

(x1,x4)

∂w

∂t
(·, T∗/2).

Since (4.18) is a uniformly parabolic equation, one gets from the classical maximum
principle that

z(x, t) > 0, (x, t) ∈ (x1, x4)× [T∗/2, T∗]. (4.21)
By (4.16) and (4.17), the function ∂w

∂t is a supersolution to (4.18)–(4.21). The
classical comparison principle leads to

∂w

∂t
(x, t) ≥ z(x, t), (x, t) ∈ (x1, x4)× (T∗/2, T∗). (4.22)

Set
v(x, t) =

∂w

∂t
(x, t)− κf(w(x, t)), (x, t) ∈ [x2, x3]× [T∗/2, T∗).
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By (4.14), (4.17), (4.21) and (4.22), there exists κ > 0 such that

v(x, t) ≥ 0, (x, t) ∈ {x2, x3} × [T∗/2, T∗) ∪ [x2, x3]× {T∗/2}. (4.23)

From (4.15) and (4.16), v solves

xq

m
w1/m−1(x, t)

∂v

∂t
− ∂2v

∂x2
− f ′(w(x, t))v

=
xq

m
w1/m−1

(∂2w

∂t2
− κf ′(w)

∂w

∂t

)
− ∂3w

∂t∂x2
+ κf ′′(w)

(∂w
∂x

)2

+ κf ′(w)
∂2w

∂x2
− f ′(w)

(∂w
∂t
− κf(w)

)
=
(

1− 1
m

)xq
m
w1/m−2

(∂w
∂t

)2

+ κf ′′(w)
(∂w
∂x

)2

≥ 0, (x, t) ∈ (x2, x3)× (T∗/2, T∗).

Then, from the classical comparison principle with (4.23) it follows that

v(x, t) ≥ 0, (x, t) ∈ [x2, x3]× [T∗/2, T∗),

which, together with (4.13), yields

lim
t→T−∗

sup
(x2,x3)

∂u

∂t
(·, t) = +∞.

�
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