EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC DEGENERATE SYSTEMS WITH L^{1} DATA AND NONLINEARITY IN THE GRADIENT

ABDELHAQ MOUIDA, NOUREDDINE ALAA, SALIM MESBAHI, WALID BOUARIFI

Abstract

In this article we show the existence of weak solutions for some quasilinear degenerate elliptic systems arising in modeling chemotaxis and angiogenesis. The nonlinearity we consider has critical growth with respect to the gradient and the data are in L^{1}.

1. Introduction

Reaction-diffusion systems are important for a wide range of applied areas such as cell processes, drug release, ecology, spread of diseases, industrial catalytic processes, transport of contaminants in the environment, chemistry in interstellar media, to mention a few. Some of these applications, especially in chemistry and biology, are explained in books by Murray [26, 27] and Baker [10]. While a general theory of reaction-diffusion systems is detailed in the books of Rothe 34 and Grzybowski 21. Various forms of this problems have been proposed in the literature. Most discussions in the current literature are for linear or nonlinear systems and different methods for the existence problem have been used, see Alaa et al [1]-9], Baras [11, 12], Boccardo et al [15], Boudiba [16] and Pierre et al [29]-32]. This is a relatively recent subject of mathematical and applied research. Most of the work that has been done so far is concerned with the exploration of particular aspects of very specific systems and equations. This is because these systems are usually very complex and display a wide range of phenomena remain poorly understood. Consequently, there is no established program for solving a large class of systems. For example a system of Chemotaxis, which is a biological phenomenon describing the change of motion of a population densities or of single particles (such as amoebae, bacteria, endothelial cells, any cell, animals, etc.) in response (taxis) to an external chemical stimulus spread in the environment where they reside see for example [28]. The simple mathematical model which describes such a phenomenon

[^0]reads as follows
\[

$$
\begin{array}{r}
\frac{\partial u}{\partial t}-D_{u} \Delta u+\nabla(\kappa(u) \nabla u+\chi(v) \nabla v)=0 \quad \text { in } \Omega \times(0, T) \\
\frac{\partial v}{\partial t}-D_{v} \Delta v+\nabla(\zeta(u) \nabla u+\eta(v) \nabla v)=0 \quad \text { in } \Omega \times(0, T) \tag{1.1}\\
u(0)=u_{0}, \quad v_{0}(0)=v_{0}
\end{array}
$$
\]

here u and v are the population densities. For a simple expansion, we include

$$
\begin{array}{cl}
a(x)=\frac{\partial \kappa(u)}{\partial u}, \quad b(x)=\frac{\partial \chi(v)}{\partial v}, & c(x)=\frac{\partial \zeta(u)}{\partial u}, \quad d(x)=\frac{\partial \eta(v)}{\partial v} \\
f=-(\kappa(u) \Delta u+\chi(v) \Delta) v, & g=-(\zeta(u) \Delta u+\eta(v) \Delta v)
\end{array}
$$

Then the system can be written as

$$
\begin{array}{cc}
\frac{\partial u}{\partial t}-D_{u} \Delta u+a(x)|\nabla u|^{2}+b(x)|\nabla v|^{2}=f & \text { in } \Omega \times(0, T) \\
\frac{\partial v}{\partial t}-D_{v} \Delta v+c(x)|\nabla u|^{2}+d(x)|\nabla v|^{2}=g & \text { in } \Omega \times(0, T) \tag{1.2}\\
u(0)=u_{0}, \quad v_{0}(0)=v_{0} &
\end{array}
$$

In this work we are interested in the quasilinear elliplic degenerate problem

$$
\begin{gather*}
u-D_{1} \Delta u+a(x)|\nabla u|^{2}+b(x)|\nabla v|^{\alpha}=f(x) \quad \text { in } \Omega \\
v-D_{2} \Delta v+c(x)|\nabla u|^{\beta}+d(x)|\nabla v|^{2}=g(x) \quad \text { in } \Omega \tag{1.3}\\
u=v=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is an open bounded set of $\mathbb{R}^{N}, N \geq 1$, with smooth boundary $\partial \Omega$, the diffusion coefficients D_{1} and D_{2} are positive constants, $a, b, c, d, f, g: \Omega \rightarrow[0,+\infty)$ are a non-negative integrable functions and $1 \leq \alpha, \beta \leq 2$.

We are interested in the case where the data are non-regular and where the growth of the nonlinear terms is arbitrary with respect to the gradient. To help understanding the situation, let us mention some previous works concerning the problem when $a, b, c, d \in L^{\infty}(\Omega)$.

- if f, g are regular enough $\left(f, g \in W^{1, \infty}(\Omega)\right)$ and for all $\alpha, \beta \geq 1$, the method of sub- and super-solution can be used to prove the existence of solutions to 1.3 . For instance $(0,0)$ is a subsolution and a solution, $w=\left(w_{1}, w_{2}\right)$, of the linear problem

$$
\begin{gather*}
w_{1}-D_{1} \Delta w_{2}=f(x) \quad \text { in } \Omega \\
w_{1}-D_{1} \Delta w_{2}=g(x) \quad \text { in } \Omega \tag{1.4}\\
w_{1}=w_{2}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

is a supersolution. Then (1.3) has a solution $(u, v) \in W_{0}^{1, \infty}(\Omega) \cap W^{2, p}(\Omega)$; see Lions [23].

- If $f, g \in L^{2}(\Omega)$ and $1 \leq \alpha, \beta \leq 2$, then $|\nabla u|^{\alpha},|\nabla v|^{\beta} \in L^{1}(\Omega)$. Many authors have studied this problem and showed that (1.3) has a solution $(u, v) \in H_{0}^{1}(\Omega) \times$ $H_{0}^{1}(\Omega)$, see Bensoussan et al [14], Boccardo et al [15] and the references there in.
- If $f, g \in L^{1}(\Omega)$ and $1 \leq \alpha, \beta<2$, Alaa and Mesbahi [1] proved that (1.3) has a non negative solution $(u, v) \in W_{0}^{1,1}(\Omega) \times W_{0}^{1,1}(\Omega)$.
- The case where $f, g \in M_{B}^{+}(\Omega)(f, g$ are a finite non negative measures on $\Omega)$ has treated by Alaa and Pierre [9. They proved that if $1 \leq \alpha, \beta \leq 2$ and the supersolution $w=\left(w_{1}, w_{2}\right) \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$, then the problem 1.3) has a non negative solution $(u, v) \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$.

We are particularly interested in the case of a system when a, b, c, d, f, g are not regular, more precisely, a, b, c, d, f, g are in $L^{1}(\Omega)$.

Let us make some specifications on the model problem

$$
\begin{array}{cc}
u-D_{1} \Delta u+b(r)|\nabla v|^{\alpha}=f & \text { in } B \\
v-D_{2} \Delta v+c(r)|\nabla u|^{\beta}=g & \text { in } B \tag{1.5}\\
u=v=0 \quad \text { on } \partial B &
\end{array}
$$

where B is the unit ball in $\mathbb{R}^{N}, r=\|x\|$ and

$$
b(r)=c(r)= \begin{cases}-\ln r & \text { if } N=2 \tag{1.6}\\ r^{2-N} & \text { if } N \geq 3\end{cases}
$$

In this case, $b(r), c(r)$ are in $L_{\text {loc }}^{1}(B)$ but not in $L^{\infty}(B)$. As a consequence the techniques usually used to prove existence and based on a priori L^{∞}-estimates on u and ∇u fail. To overcome this difficulty, we will develop a new method which differ completely of the previous approach.

We have organized this article as follows. In section 2 we give the precise setting of the problem and state the main result. In section 3 we present an approximate problem and we give suitable estimates to prove that (1.3) has a solution in the case where the growth of the nonlinearity with respect to the gradient is arbitrary.

2. Assumptions and statement of main Results

Let f, g, a, b, c, d are functions that satisfies the following assumptions

$$
\begin{gather*}
f, g \in L^{1}(\Omega), \quad f, g \geq 0 \tag{2.1}\\
a, b, c, d \in L_{\mathrm{loc}}^{1}(\Omega), \quad a, b, c, d \geq 0 \tag{2.2}
\end{gather*}
$$

First, we have to clarify in which sense we want to solved problem 1.3).
Definition 2.1. We say that (u, v) is a weak solution of 1.3 if

$$
\begin{gather*}
u, v \in W_{0}^{1,1}(\Omega) \\
a(x)|\nabla u|^{2}, \quad b(x)|\nabla v|^{\alpha}, \quad c(x)|\nabla u|^{\beta}, \quad d(x)|\nabla v|^{2} \in L_{\mathrm{loc}}^{1}(\Omega) \\
u-D_{1} \Delta u+a(x)|\nabla u|^{2}+b(x)|\nabla v|^{\alpha}=f(x) \quad \text { in } D^{\prime}(\Omega) \tag{2.3}\\
v-D_{2} \Delta v+c(x)|\nabla u|^{\beta}+d(x)|\nabla v|^{2}=g(x) \quad \text { in } D^{\prime}(\Omega)
\end{gather*}
$$

We are interested to proving the existence of weak positive solutions of the problem (1.3). For this, we define the truncation function $T_{k} \in C^{2}$, such that

$$
\begin{gather*}
T_{k}(r)=r \quad \text { if } 0 \leq r \leq k \\
T_{k}(r) \leq k+1 \quad \text { if } r \geq k \\
0 \leq T_{k}^{\prime}(r) \leq 1 \quad \text { if } r \geq 0 \tag{2.4}\\
T_{k}^{\prime}(r)=0 \quad \text { if } r \geq k+1 \\
0 \leq-T_{k}^{\prime \prime}(r) \leq C(k)
\end{gather*}
$$

For example, the function T_{k} can be defined as

$$
\begin{gather*}
T_{k}(r)=r \quad \text { in }[0, k] \\
T_{k}(r)=\frac{1}{2}(r-k)^{4}-(r-k)^{3}+r \quad \text { in }[k, k+1] \tag{2.5}\\
T_{k}(r)=\frac{1}{2}(k+1) \quad \text { for } r>k+1
\end{gather*}
$$

Then we define the the space

$$
\tau^{1,2}(\Omega)=\left\{w: \Omega \rightarrow \mathbb{R} \text { measurable, such that } T_{k}(w) \in H^{1}(\Omega) \text { for all } k>0\right\}
$$

This enables us to state the main result of this paper.
Theorem 2.2. Assume that (2.1) and 2.2 hold, and $1 \leq \alpha, \beta<2$. If there exists a function $\theta \in \tau^{1,2}(\Omega)$ and a sequence $\theta_{n} \in L^{\infty}(\Omega)$ such that

$$
\begin{gather*}
0 \leq a, b, c, d \leq \theta \quad \text { in } \Omega \\
\\
\theta_{n} \rightarrow \theta \quad \text { a.e. } \Omega \tag{2.6}\\
\nabla T_{k}\left(\theta_{n}\right) \rightarrow \\
\nabla T_{k}(\theta) \quad \text { strongly in } L^{2}(\Omega) \\
\lim _{k \rightarrow \infty} \sup _{n}\left(\frac{1}{k} \int_{\Omega}\left|\nabla T_{k}\left(\theta_{n}\right)\right|^{2}\right)=0
\end{gather*}
$$

Then the problem 1.3 has a non negative weak solution.
Remark 2.3. (i) If $a, b, c, d \in L^{\infty}(\Omega)$, then (2.6) is satisfied. Indeed, θ can take the value of any non negative constant C, such that

$$
\begin{equation*}
C \geq \max \left\{\|a\|_{L^{\infty}},\|b\|_{L^{\infty}},\|c\|_{L^{\infty}},\|d\|_{L^{\infty}}\right\} \tag{2.7}
\end{equation*}
$$

(ii) Hypothesis 2.6 holds for the functions $\xi=b$ or c given in 1.6). Indeed $-\Delta \xi=\lambda$ is in this case the measure of Dirac which is a finite non negative measure on Ω. By consequent, we take $\theta=\xi$ and θ_{n} solution of

$$
\begin{gather*}
-\Delta \theta_{n}=\lambda_{n} \quad \text { in } \Omega \\
\theta_{n}=0 \quad \text { on } \partial \Omega \tag{2.8}
\end{gather*}
$$

where $\lambda_{n} \in C_{0}^{\infty}(\Omega), \lambda_{n} \rightarrow \lambda$ in $L^{1}(\Omega)$ and $\lambda_{n} \leq \lambda$. Then, we can applied Theorem 2.2 and conclude the existence of the non negative weak solution for our model problem 2.1.

3. Proof of theorem 2.2

3.1. An approximation scheme. In this paragraph, we define an approximated system of 1.3 . For this, we truncate the functions a, b, c, d, f, g by introducing the sequence $a_{n}, b_{n}, c_{n}, d_{n}, f_{n}, g_{n}$ defined as follows

$$
a_{n}=\min \left\{a, \theta_{n}\right\}, \quad b_{n}=\min \left\{b, \theta_{n}\right\}, \quad c_{n}=\min \left\{c, \theta_{n}\right\}, \quad d_{n}=\min \left\{d, \theta_{n}\right\}
$$

and

$$
\begin{align*}
& f_{n} \in C_{0}^{\infty}(\Omega), f_{n} \rightarrow f \text { in } L^{1}(\Omega), f_{n} \leq f \\
& g_{n} \in C_{0}^{\infty}(\Omega), g_{n} \rightarrow g \text { in } L^{1}(\Omega), g_{n} \leq g \tag{3.1}
\end{align*}
$$

Then the approximate problem is

$$
\begin{gather*}
u_{n}, v_{n} \in W_{0}^{1, \infty}(\Omega) \\
u_{n}-D_{1} \Delta u_{n}+a_{n}(x)\left|\nabla u_{n}\right|^{2}+b_{n}(x)\left|\nabla v_{n}\right|^{\alpha}=f_{n}(x) \quad \text { in } D^{\prime}(\Omega) \tag{3.2}\\
v_{n}-D_{2} \Delta v_{n}+c_{n}(x)\left|\nabla u_{n}\right|^{\beta}+d_{n}(x)\left|\nabla v_{n}\right|^{2}=g_{n}(x) \quad \text { in } D^{\prime}(\Omega)
\end{gather*}
$$

One can see that $a_{n}, b_{n}, c_{n}, d_{n}$ are in $L^{\infty}(\Omega)$. On the other hand, $(0,0)$ is a subsolution of 3.2 and $\left(U_{n}, V_{n}\right)$ a solution of the linear problem

$$
\begin{gather*}
U_{n}-D_{1} \Delta U_{n}=f_{n} \quad \text { in } \Omega \\
V_{n}-D_{2} \Delta V_{n}=g_{n} \quad \text { in } \Omega \tag{3.3}\\
U_{n}, V_{n} \in W_{0}^{1, \infty}(\Omega)
\end{gather*}
$$

is a supersolution, then by the classical results in Amann and Grandall [13] and Lions [23, 24, there exists $\left(u_{n}, v_{n}\right)$ solution of (3.2) such that

$$
\begin{array}{ll}
0 \leq u_{n} \leq U_{n} & \text { for all } n \\
0 \leq v_{n} \leq V_{n} & \text { for all } n
\end{array}
$$

3.2. A priori estimates. To prove theorem 2.2, we propose to send n to infinity in (3.2). For this we will need some estimates passing to the limit.

Lemma 3.1. Let $u_{n}, v_{n}, a_{n}, b_{n}, c_{n}, d_{n}$ be sequences defined as above. Then (i)

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq k\|f\|_{L^{1}(\Omega)} \\
& \int_{\Omega}\left|\nabla T_{k}\left(v_{n}\right)\right|^{2} \leq k\|g\|_{L^{1}(\Omega)}
\end{aligned}
$$

and (ii)

$$
\begin{aligned}
& \int_{\Omega} b_{n} \cdot\left|\nabla T_{k}\left(v_{n}\right)\right|^{\alpha} \leq k\|f\|_{L^{1}(\Omega)} \\
& \int_{\Omega} c_{n} \cdot\left|\nabla T_{k}\left(u_{n}\right)\right|^{\beta} \leq k\|g\|_{L^{1}(\Omega)}
\end{aligned}
$$

Proof. (i) By multiplying the first equation of 3.2 by $T_{k}\left(u_{n}\right)$ and the second equation by $T_{k}\left(v_{n}\right)$ and integrating over Ω, we have

$$
\begin{aligned}
& \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2}+D_{1} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \\
& +\int_{\Omega} a_{n} T_{k}\left(u_{n}\right)\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}+\int_{\Omega} b_{n} T_{k}\left(u_{n}\right)\left|\nabla T_{k}\left(v_{n}\right)\right|^{\alpha} \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\Omega}\left|T_{k}\left(v_{n}\right)\right|^{2}+D_{2} \int_{\Omega}\left|\nabla T_{k}\left(v_{n}\right)\right|^{2} \\
& +\int_{\Omega} c_{n} T_{k}\left(v_{n}\right)\left|\nabla T_{k}\left(u_{n}\right)\right|^{\beta}+\int_{\Omega} d_{n} T_{k}\left(v_{n}\right)\left|\nabla T_{k}\left(v_{n}\right)\right|^{2} \leq \int_{\Omega} g_{n} T_{k}\left(v_{n}\right)
\end{aligned}
$$

Thanks to the positivity of $a_{n}, b_{n}, c_{n}, d_{n}$, the assumptions on f_{n} and g_{n}, the definition of the function T_{k}, we deduce the result.
(ii) Integrating the first equation of $(3.2$ over Ω, we obtain

$$
\begin{equation*}
\int_{\Omega} u_{n}-D_{1} \int_{\Omega} \Delta u_{n}+\int_{\Omega} a_{n}(x)\left|\nabla u_{n}\right|^{2}+\int_{\Omega} b_{n}(x)\left|\nabla v_{n}\right|^{\alpha}=\int_{\Omega} f_{n}(x) \tag{3.4}
\end{equation*}
$$

On the other hand, it is well know that for every function y in $W_{0}^{1,1}(\Omega)$ such that

$$
\begin{gathered}
-\Delta y=H, H \in L^{1}(\Omega) \\
y \geq 0
\end{gathered}
$$

there exists a sequence y_{n} in $C^{2}(\Omega) \cap C_{0}(\bar{\Omega})$ which satisfies

$$
\begin{gathered}
y_{n} \rightarrow y \quad \text { strongly in } W_{0}^{1,1}(\Omega) \\
\Delta y_{n} \rightarrow \Delta y \quad \text { strongly in } L^{1}(\Omega)
\end{gathered}
$$

The regularity of y_{n} allows us to write

$$
\int_{\Omega} \Delta y_{n}=\int_{\partial \Omega} \frac{\partial y_{n}}{\partial v} d \sigma
$$

but $y_{n} \geq 0$ on Ω and $y_{n}=0$ in $\partial \Omega$. Then $\frac{\partial y_{n}}{\partial v} \leq 0$. We deduce by passing to the limit that $\int_{\Omega} \Delta y \leq 0$. Therefore

$$
\int_{\Omega} \Delta u_{n} \leq 0
$$

The relation (3.4 yields

$$
\int_{\Omega} u_{n}+\int_{\Omega} a_{n}(x)\left|\nabla u_{n}\right|^{2}+\int_{\Omega} b_{n}(x)\left|\nabla v_{n}\right|^{\alpha} \leq \int_{\Omega} f_{n}(x) .
$$

By (3.1); we conclude that

$$
\int_{\Omega} u_{n}+\int_{\Omega} a_{n}(x)\left|\nabla u_{n}\right|^{2}+\int_{\Omega} b_{n}(x)\left|\nabla v_{n}\right|^{\alpha} \leq\|f\|_{L^{1}(\Omega)} .
$$

In the same way, if we integrate the second equation of (3.2) over Ω, we obtain

$$
\int_{\Omega} v_{n}+\int_{\Omega} c_{n}(x)\left|\nabla u_{n}\right|^{\beta}+\int_{\Omega} d_{n}(x)\left|\nabla v_{n}\right|^{2} \leq\|g\|_{L^{1}(\Omega)}
$$

hence the result follows.
Remark 3.2. (1) Using the assertion (ii) of lemma 3.1. and the compactness of the operator

$$
\begin{gathered}
L^{1}(\Omega) \rightarrow W_{0}^{1, q}(\Omega) \\
G \mapsto \vartheta
\end{gathered}
$$

where $1 \leq q<\frac{N}{N-1}$, and ϑ is the solution of the problem

$$
\begin{gathered}
\vartheta \in W_{0}^{1, q}(\Omega) \\
\alpha \vartheta-\Delta \vartheta=G \quad \text { in } D^{\prime}(\Omega)
\end{gathered}
$$

we conclude the existence of u, up to a subsequence, still denoted by u_{n} for simplicity, such that

$$
\begin{gathered}
u_{n} \rightarrow u \quad \text { strongly in } W_{0}^{1, q}(\Omega), \quad 1 \leq q<\frac{N}{N-1}, \\
\left(u_{n}, \nabla u_{n}\right) \rightarrow(u, \nabla u) \quad \text { a.e. in } \Omega
\end{gathered}
$$

see Brezis 17
(2) Assertion (i) implies that

$$
\left(T_{k}\left(u_{n}\right), T_{k}\left(v_{n}\right)\right) \rightarrow\left(T_{k}(u), T_{k}(v)\right) \quad \text { weakly in } H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)
$$

Lemma 3.3. Let $\left(u_{n}, v_{n}\right)$ be a solution of (3.2), then

$$
\lim _{h \rightarrow+\infty} \sup _{n}\left(\frac{1}{h} \int_{\Omega}\left|\nabla T_{h}\left(u_{n}\right)\right|^{2} d x\right)=\lim _{h \rightarrow+\infty} \sup _{n}\left(\frac{1}{h} \int_{\Omega}\left|\nabla T_{h}\left(v_{n}\right)\right|^{2} d x\right)=0
$$

Proof. We first remark that u_{n} satisfies

$$
-\Delta u_{n} \leq f_{n} \quad \text { in } D^{\prime}(\Omega)
$$

If we multiply this inequality by $T_{h}\left(u_{n}\right)$ and integrate on Ω, we obtain for every $0<M<h$,

$$
\begin{aligned}
\int_{\Omega}\left|\nabla T_{h}\left(u_{n}\right)\right|^{2} & \leq \int_{\Omega \cap\left\{u_{n} \leq M\right\}} f T_{h}\left(u_{n}\right)+\int_{\Omega \cap\left\{u_{n}>M\right\}} f T_{h}\left(u_{n}\right) \\
& \leq M \int_{\Omega} f+h \int_{\Omega} f \chi_{\left\{u_{n}>M\right\}}
\end{aligned}
$$

hence

$$
\begin{gathered}
\frac{1}{h} \int_{\Omega}\left|\nabla T_{h}\left(u_{n}\right)\right|^{2} \leq \frac{M}{h} \int_{\Omega} f+\int_{\Omega} f \chi_{\left\{u_{n}>M\right\}} \\
\left|\left\{u_{n}>M\right\}\right|=\int_{\left\{u_{n}>M\right\}} d x \leq \frac{1}{M}\left\|u_{n}\right\|_{L^{1}} \leq \frac{C}{M}
\end{gathered}
$$

Then $\lim _{M \rightarrow+\infty}\left(\sup _{n}\left|\left\{u_{n}>M\right\}\right|\right)=0$
On other hand, since $f \in L^{1}(\Omega)$, we have for each $\varepsilon>0$ there exists δ such that for for all $E \subset \Omega$,

$$
|E|<\delta \int_{E}|f| \leq \frac{\varepsilon}{2}
$$

Taking into account the above limit, we obtain that for each $\varepsilon>0$, there exists M_{ε} such that for all $M \geq M_{\varepsilon}$,

$$
\sup _{n}\left(\int_{\Omega} f \chi_{\left[u_{n}>M\right]}\right) \leq \frac{\varepsilon}{2}
$$

Taking $M=M_{\varepsilon}$ and letting h tend to infinity, we obtain

$$
\lim _{h \rightarrow \infty} \sup _{n}\left(\frac{1}{h} \int_{\Omega}\left|\nabla T_{h}\left(u_{n}\right)\right|^{2}\right)=0
$$

Lemma 3.4. Let η_{n} be sequence such that $\eta_{n} \rightarrow \eta$, a.e. in Ω and $\int_{\Omega}\left|\eta_{n}\right|^{2} \leq C$ then $\eta_{n} \rightarrow \eta$ in $L^{\alpha}(\Omega)$ for all $1 \leq \alpha<2$.

Proof. We show that η_{n} is equi-integrable in $L^{\alpha}(\Omega)$. Let E be a measurable subset of Ω; we have

$$
\int_{E}\left|\eta_{n}\right|^{\alpha} \leq|E|^{(2-\alpha) / 2}\left(\int_{E}\left|\eta_{n}\right|^{2}\right)^{\alpha / 2} \leq C|E|^{(2-\alpha) / 2}
$$

Since $1 \leq \alpha<2$ then $0<2-\alpha \leq 1$. We choose $|E|=\left(\frac{\varepsilon}{C}\right)^{2 /(2-\alpha)}$, we obtain $\int_{E}\left|\eta_{n}\right|^{\alpha} \leq \varepsilon$.
3.3. Convergence. The aim of this paragraph is to prove that (u, v) (obtained in the previous section) is in fact a solution of problem (1.3). According to definition 2.1, we have to show only that

$$
\begin{aligned}
& u-D_{1} \Delta u+a(x)|\nabla u|^{2}+b(x)|\nabla v|^{\alpha}=f(x) \quad \text { in } D^{\prime}(\Omega) \\
& v-D_{2} \Delta v+c(x)|\nabla u|^{\beta}+d(x)|\nabla v|^{2}=g(x)
\end{aligned} \quad \text { in } D^{\prime}(\Omega)
$$

By lemma 3.1, we know that $a_{n}(x)\left|\nabla u_{n}\right|^{2}, d_{n}(x)\left|\nabla v_{n}\right|^{2}, b_{n}(x)\left|\nabla v_{n}\right|^{\alpha}, c_{n}(x)\left|\nabla u_{n}\right|^{\beta}$ are uniformly bounded in $L^{1}(\Omega)$. Moreover

$$
a_{n}(x)\left|\nabla u_{n}\right|^{2} \geq 0, \quad d_{n}(x)\left|\nabla u_{n}\right|^{2} \geq 0, \quad b_{n}(x)\left|\nabla u_{n}\right|^{\alpha} \geq 0, \quad c_{n}(x)\left|\nabla u_{n}\right|^{\beta} \geq 0
$$

and for almost every x in Ω, we have

$$
\begin{aligned}
a_{n}(x)\left|\nabla u_{n}(x)\right|^{2} & \rightarrow a(x)|\nabla u(x)|^{2} \\
d_{n}(x)\left|\nabla v_{n}(x)\right|^{2} & \rightarrow d(x)|\nabla v(x)|^{2} \\
b_{n}(x)\left|\nabla v_{n}(x)\right|^{\alpha} & \rightarrow b(x)|\nabla v(x)|^{\alpha} \\
c_{n}(x)\left|\nabla u_{n}(x)\right|^{\beta} & \rightarrow c(x)|\nabla u(x)|^{\beta}
\end{aligned}
$$

Then there exists μ_{1}, μ_{2} non negative measures, see Schwartz [35], such that

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}\left(u_{n}-D_{1} \Delta u_{n}+a_{n}(x)\left|\nabla u_{n}\right|^{2}+b_{n}(x)\left|\nabla v_{n}\right|^{\alpha}\right) \\
& =u-D_{1} \Delta u+a(x)|\nabla u|^{2}+b(x)|\nabla v|^{\alpha}+\mu_{1} \quad \text { in } D^{\prime}(\Omega) \\
& \lim _{n \rightarrow+\infty}\left(v_{n}-D_{2} \Delta v_{n}+c_{n}(x)\left|\nabla u_{n}\right|^{\beta}+d_{n}(x)\left|\nabla v_{n}\right|^{2}\right) \\
& =v-D_{2} \Delta v+c(x)|\nabla u|^{\beta}+d(x)|\nabla v|^{2}+\mu_{2} \quad \text { in } D^{\prime}(\Omega)
\end{aligned}
$$

Consequently,

$$
\begin{array}{ll}
u-D_{1} \Delta u+a(x)|\nabla u|^{2}+b(x)|\nabla v|^{\alpha} \leq f & \text { in } D^{\prime}(\Omega) \\
v-D_{2} \Delta v+c(x)|\nabla u|^{\beta}+d(x)|\nabla v|^{2} \leq g & \text { in } D^{\prime}(\Omega)
\end{array}
$$

Therefore, to conclude the proof of Theorem 2.2, we must establish the opposite inequality. For this, Let H be a function in $C^{1}(\mathbb{R})$, such that

$$
\begin{aligned}
0 & \leq H(s) \leq 1 \\
H(s) & = \begin{cases}0 & \text { if }|s| \geq 1 \\
1 & \text { if }|s| \leq \frac{1}{2}\end{cases}
\end{aligned}
$$

To this end, we introduce the test functions

$$
\begin{aligned}
\Phi_{1} & =\psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right) \\
\Phi_{2} & =\psi_{2} \exp \left[-\frac{\theta_{n}}{D_{2}} v_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{v_{n}}{k}\right)
\end{aligned}
$$

where H denotes the function defined above and $\psi_{1}, \psi_{2} \leq 0, \psi_{1}, \psi_{2} \in H_{0}^{1}(\Omega) \cap$ $L^{\infty}(\Omega)$. We multiply the first equation in (3.2) by Φ_{1} and we integrate on Ω, we obtain

$$
\int_{\Omega} f_{n} \Phi_{1}=\sum_{1 \leq j \leq 7} I_{j}
$$

where

$$
\begin{gathered}
I_{1}=\int_{\Omega} u_{n} \Phi_{1} \\
I_{2}=D_{1} \int_{\Omega} \nabla u_{n} \nabla \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right) \\
I_{3}=-\int_{\Omega} u_{n} \nabla u_{n} \nabla \theta_{n} \Phi_{1}
\end{gathered}
$$

$$
\begin{gathered}
I_{4}=\frac{D_{1}}{k} \int_{\Omega} \nabla u_{n} \nabla \theta_{n} \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H^{\prime}\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right) \\
I_{5}=\int_{\Omega}\left(a_{n}-\theta_{n}\right)\left|\nabla u_{n}\right|^{2} \Phi_{1} \\
I_{6}=\frac{D_{1}}{k} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H^{\prime}\left(\frac{u_{n}}{k}\right) \\
I_{7}=\int_{\Omega} b_{n} \cdot\left|\nabla v_{n}\right|^{\alpha} \Phi_{1}
\end{gathered}
$$

Next we study each term. For the first term, we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} I_{1} & =\lim _{n \rightarrow+\infty} \int_{\Omega} T_{k}\left(u_{n}\right) \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right) \\
& =\int_{\Omega} u \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
\end{aligned}
$$

since

$$
\psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right)
$$

converges strongly in $L^{2}(\Omega)$ to

$$
\psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right) \quad \text { in } L^{2}(\Omega)
$$

and $\nabla T_{k}\left(u_{n}\right)$ converges weakly to $\nabla T_{k}(u)$ in $L^{2}(\Omega)$, (see [24, lemma $1.3, \mathrm{p} 12$]).
Concerning the second term, we get

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} I_{2} & =\lim _{n \rightarrow+\infty} D_{1} \int_{\Omega} \nabla T_{k}\left(u_{n}\right) \nabla \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right) \\
& =D_{1} \int_{\Omega} \nabla u \nabla \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
\end{aligned}
$$

since

$$
\nabla \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right)
$$

converges strongly in $L^{2}(\Omega)$ to

$$
\nabla \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
$$

For I_{3}, we first remark that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} I_{3} & =-\lim _{n \rightarrow+\infty} \int_{\Omega} T_{k}\left(u_{n}\right) \nabla T_{k}\left(u_{n}\right) \nabla T_{k}\left(\theta_{n}\right) \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right) \\
& =-\int_{\Omega} T_{k}(u) \nabla T_{k}(u) \nabla T_{k}(\theta) \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
\end{aligned}
$$

since

$$
\begin{array}{ll}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { weakly in } H_{0}^{1}(\Omega) \\
T_{k}\left(\theta_{n}\right) \rightarrow T_{k}(\theta) \quad \text { strongly in } H_{0}^{1}(\Omega)
\end{array}
$$

To study I_{4} and I_{6} we use Lemma 3.3. For I_{4}, we have

$$
I_{4} \leq D_{1}\left[\frac{1}{k} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H^{\prime}\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right)\right]^{1 / 2}
$$

$$
\begin{aligned}
& \times\left[\frac{1}{k} \int_{\Omega}\left|\nabla T_{k}\left(\theta_{n}\right)\right|^{2} \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H^{\prime}\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right)\right]^{1 / 2} \\
\leq & D_{1}\left[\left\|\psi_{1}\right\|_{L^{\infty}(\Omega)} \frac{1}{k} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}\right]^{1 / 2}\left[\left\|\psi_{1}\right\|_{L^{\infty}(\Omega)} \frac{1}{k} \int_{\Omega}\left|\nabla T_{k}\left(\theta_{n}\right)\right|^{2}\right]^{12}
\end{aligned}
$$

since $\exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] \leq 1$, thus

$$
I_{4} \leq D_{1}\left[\left\|\psi_{1}\right\|_{L^{\infty}} \delta_{k}\right]^{1 / 2}\left[\left\|\psi_{1}\right\|_{L^{\infty}} \rho_{k}\right]^{1 / 2}
$$

Where

$$
\delta_{k}=\sup _{n}\left(\frac{1}{k} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}\right) \text { and } \rho_{k}=\sup _{n}\left(\frac{1}{k} \int_{\Omega}\left|\nabla T_{k}\left(\theta_{n}\right)\right|^{2}\right)
$$

By Lemma 3.3, we have

$$
\lim _{k \rightarrow \infty} \delta_{k}=0, \quad \lim _{k \rightarrow \infty} \rho_{k}=0
$$

Then

$$
\lim _{k \rightarrow \infty} \sup _{n}\left(I_{4}\right)=0
$$

Similarly, for I_{6}, we have

$$
I_{6} \leq D_{1}\left\|\psi_{1}\right\|_{L^{\infty}} \delta_{k}
$$

Then

$$
\lim _{k \rightarrow \infty} \sup _{n}\left(I_{6}\right)=0
$$

Now we investigate the remaining term I_{5}. Since $a_{n} \leq \theta_{n}$ and $\psi_{1} \leq 0$, we have

$$
\left(a_{n}-\theta_{n}\right)\left|\nabla u_{n}\right|^{2} \exp \left[-\frac{\theta_{n}}{D_{1}} u\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right) \geq 0 \quad \text { in } \Omega
$$

Therefore, by Fatou's lemma, we obtain

$$
\lim _{n \rightarrow+\infty} I_{5} \geq \int_{\Omega}(a-\theta)|\nabla u|^{2} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
$$

For I_{7}, we obtain

$$
\lim _{n \rightarrow+\infty} I_{7}=\lim _{n \rightarrow+\infty} \int_{\Omega} T_{k}\left(b_{n}\right)\left|\nabla T_{k}\left(v_{n}\right)\right|^{\alpha} \psi_{1} \exp \left[-\frac{\theta_{n}}{D_{1}} u_{n}\right] H\left(\frac{\theta_{n}}{k}\right) H\left(\frac{u_{n}}{k}\right)
$$

By a direct application of Lemma 3.3 we have $\left|\nabla T_{k}\left(v_{n}\right)\right|^{\alpha} \rightarrow\left|\nabla T_{k}(v)\right|^{\alpha}$ strongly in $L^{1}(\Omega)$, then

$$
\lim _{n \rightarrow+\infty} I_{7}=\int_{\Omega} b|\nabla v|^{\alpha} \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
$$

We have shown that

$$
\begin{aligned}
& \omega\left(\frac{1}{k}\right)+\int_{\Omega} u \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)+D_{1} \int_{\Omega} \nabla u \nabla \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right) \\
& -\int_{\Omega} u \nabla u \nabla \theta \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)+\int_{\Omega}(a-\theta)|\nabla u|^{2} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right) \\
& +\int_{\Omega} b|\nabla v|^{\alpha} \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right) \\
& \leq \int_{\Omega} f \psi_{1} \exp \left[-\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
\end{aligned}
$$

where $\omega(\varepsilon)$ denotes a quantity that tends to 0 when ε tends to 0 . Now we choose

$$
\psi_{1}=-\varphi_{1} \exp \left[\frac{\theta}{D_{1}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right)
$$

where $\varphi_{1} \geq 0, \varphi_{1} \in D(\Omega)$ and we replace ψ_{1} by this value in the previous inequality to obtain

$$
\begin{aligned}
& w\left(\frac{1}{k}\right)-\int_{\Omega} u \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)-D_{1} \int_{\Omega} \nabla u \nabla \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right) \\
& -\int_{\Omega} \varphi_{1} u \nabla u \nabla \theta H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)-\int_{\Omega} \varphi_{1}|\nabla u|^{2} \theta H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right) \\
& -\frac{D_{1}}{k} \int_{\Omega} \varphi_{1} \nabla u \nabla \theta H^{\prime}\left(\frac{\theta}{k}\right) H\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)-\frac{D_{1}}{k} \int_{\Omega} \varphi_{1}|\nabla u|^{2} H^{2}\left(\frac{\theta}{k}\right) H\left(\frac{u}{k}\right) H^{\prime}\left(\frac{u}{k}\right) \\
& +\int_{\Omega} u \nabla u \nabla \theta \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)-\int_{\Omega} b|\nabla v|^{\alpha} \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right) \\
& -\int_{\Omega} a|\nabla u|^{2} \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)+\int_{\Omega} \theta \varphi_{1}|\nabla u|^{2} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right) \\
& \leq-\int_{\Omega} f \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)
\end{aligned}
$$

By developing calculations and remarking that the sixth and seventh terms are equivalent to $\omega\left(\frac{1}{k}\right)$, we can write

$$
\begin{aligned}
& -\int_{\Omega} u \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)-D_{1} \int_{\Omega} \nabla u \nabla \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right) \\
& -\int_{\Omega}\left[a|\nabla u|^{2}+b|\nabla v|^{\alpha}\right] \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)+\omega\left(\frac{1}{k}\right) \\
& \leq-\int_{\Omega} f \varphi_{1} H^{2}\left(\frac{\theta}{k}\right) H^{2}\left(\frac{u}{k}\right)
\end{aligned}
$$

Finally passing to the limit as k tends to infinity, we use the fact that

$$
\lim _{k \rightarrow \infty} H\left(\frac{\theta}{k}\right)=1, \quad \lim _{k \rightarrow \infty} H\left(\frac{u}{k}\right)=1
$$

to conclude that for every $\varphi_{1} \geq 0, \varphi_{1} \in D(\Omega)$,

$$
\int_{\Omega}\left[u-D_{1} \Delta u+a(x)|\nabla u|^{2}+b(x)|\nabla v|^{\alpha}\right] \varphi_{1} \geq \int_{\Omega} f \varphi_{1}
$$

In the same way, we multiply the second equation in 3.2 by Φ_{2} and we integrate on Ω. By studying separately each term as in the previous case still using Lemmas 3.1, 3.3 and 3.4 we choose

$$
\psi_{2}=-\varphi_{2} \exp \left[\frac{\theta}{D_{2}} u\right] H\left(\frac{\theta}{k}\right) H\left(\frac{v}{k}\right)
$$

where $\varphi_{2} \geq 0, \varphi_{2} \in D(\Omega)$ and we replace ψ_{2} by this value in the inequality obtained to conclude that for every $\varphi_{2} \geq 0, \varphi_{2} \in D(\Omega)$ that

$$
\int_{\Omega}\left[v-D_{2} \Delta v+c(x)|\nabla u|^{\beta}+d(x)|\nabla v|^{2}\right] \varphi_{2} \geq \int_{\Omega} g \varphi_{2}
$$

This completes the proof of theorem 2.2 .
Acknowledgments. We are grateful to the anonymous referee for the corrections and useful suggestions that have improved this article.

References

[1] N. Alaa, S. Mosbahi; Existence result for triangular Reaction-Diffusion systems with L^{1} data and critical growth with respect to the gradient, to appear in Med. J. Math. (2013).
[2] N. Alaa, N. Idrissi, M. Pierre; Quasilinear elliptic degenerate equations with nonlinearity in the gradient and L^{1} data, Int. Nat. J. of Math. and Stat. Winter 2010, Vol 7, N W10.
[3] N. Alaa, N. Idrissi, J. R. Roche, A. Tounsi; Mathematical analysis for a model of Nickel-Iron alloy electrodeposition on rotating disk electrode : parabolic case, Int. J. Math. Stat. 2 (2008), S08, 30-48.
[4] N. Alaa, F. Maach, I. Mounir; Existence for some quasilinear elliptic systems with critical growth nonlinearity and L^{1} data, J. of App. Anal. Vol. 11, No. 1 (2005), 81-94.
[5] N. Alaa, M. Iguernane; Weak Periodic Solutions of Some Quasilinear Elliptic Equations with data measures, Issue 3, Article 46, JIPAM, 3, 2002.
[6] N. Alaa, I. Mounir; Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient, Ann. Math. Blaise Pascal 8(2). (2001), 1-19.
[7] N. Alaa, I. Mounir; Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient, J. Math. Anal. Appl. 253 (2001), 532-557.
[8] N. Alaa; Solutions faibles d' equations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise Pascal 3(2) (1996), 1-15.
[9] N. Alaa, M. Pierre; Weak solution of some quasilinear elliptic equations with measures, SIAM J. Math. Anal. 24(1) (1993), 23-35.
[10] R. E. Baker; Mathematical Biology and Ecology Lecture Notes. 2011.
[11] P. Baras; Semi linear Problem With Convex Non linearity, In Recent Advances in Nonlinear Elliptic and Parabolic Problems, Proc. Nancy 88, Ph. Bénilan, M. Chipot, L.C. Evans, M. Pierre ed. Pitman Res. Notes in Math. 1989.
[12] P. Baras, M. Pierre; Problèmes Paraboliques Semi-Lin éaires Avec Données Mesures, Applicable Analysis, 18 (1984), pp. 11-49.
[13] H. Amann, M. C. Crandall; On some existence theorems for semi linear equations, Indiana Univ. Math. J. 27 (1978), 779-790.
[14] A. Bensoussan, L. Boccardo, F. Murat; On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincar e Anal. Non Linéaire 5(4) (1988), 347-364.
[15] L. Boccardo, F. Murat, J. P. Puel; Existence de solutions non bornées pour certaines equations quasi-linéaires, Portugal. Math. 41 (1982), 507-534.
[16] N. Boudiba; Existence globale pour des systèmes de r éaction-diffusion avec controle de masse, Ph.D. thesis, Université de Rennes I, France, 1999.
[17] H. Brezis, W. Strauss; Semilinear elliptic equation in L^{1}, J. Math. Soc. Japan 25 (1973), 565-590.
[18] Y. Choquet-Bruhat, J. Leray; Sur le problème de Dirichlet quasilinéaire d'ordre deux, C. R. Acad. Sci. Paris Ser. I Math. 274 (1972), 81-85.
[19] W. E. Fitzgibbon, J. Morgan; Existence of solutions for a class of weakly coupled semilinear elliptic systems, J. Differential Equations 77 (1989), 351-368.
[20] W. E. Fitzgibbon, J. Morgan, R. Sanders; Global existence and boundedness for class of inhomogeneous semilinear parabolic systems, Nonlinear Anal. 19(9) (1992), 885-899.
[21] B. A. Grzybowski; Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology, Wiley, (2009).
[22] S. L. Hollis, R. H. Martin, M. Pierre; Global existence and boundeness in reaction diffusion systems, SIAM. J. Math. Anal. 18 (1987), 744-761.
[23] P. L. Lions; Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal. 74 (1980), 335-353.
[24] J. L. Lions; Quelques méthodes de résolutions des problèmes aux limites non linéaires, Dunod; Gauthier Villars, Paris, 1969.
[25] F. Maach; Existence pour des systèmes de ré action-diffusion quasi-linéaires avec loi de balance, Ph.D. thesis, Universit e Henri Poincaré, Nancy I, France, 1994.
[26] J. D. Murray; Mathematical Biology I: An Introduction, volume I. Springer-Verlag, 3rd edition, 2003.
[27] J. D. Murray; Mathematical Biology II: Spatial Models and Biochemical Applications, volume II. Springer-Verlag, 3rd edition, 2003.
[28] H. G. Othmer, S. R. Dunbar, W. Alt; Models of dispersal in biological systems. J. Math. Biol., 26, (1988) 263-298.
[29] M. Pierre; Global existence in reaction-diffusion systems with dissipation of mass: a survey, to appear in Milan Journal of Mathematics.
[30] M. Pierre; An L^{1}-method to prove global existence in some reaction-diffusion systems, in "Contribution to Nonlinear Partial Differential Equations", Vol. II (Paris, 1985), Pitman Res. Notes Math. Ser. 155 (1987), 220-231.
[31] M. Pierre, D. Schmitt; Blow up in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal. 28(2) (1987), 259-269.
[32] M. Pierre, D. Schmitt; Blow up in reaction-diffusion systems with dissipation of mass, SIAM Rev. 42(1) (2000), 93-106.
[33] A. Porretta; Existence for elliptic equations in L^{1} having lower order terms with natural growth, Portugal. Math. 57(2) (2000), 179-190.
[34] F. Rothe; Global Solutions of Reaction-Diffusion Systems, Lectures Notes in Math. 1072 (1984), Springer, New York.
[35] J. T. Schwartz; Nonlinear Functional Analysis, Gordon and Breach Science Publishers, New York-London, Paris, 1969.

Abdelhaq Mouida
Laboratory LAMAI, Faculty of Science and Technology of Marrakech, University Cadi Ayyad, B.P. 549, Street Abdelkarim Elkhattabi, Marrakech - 40000, Morocco

E-mail address: abdhaq.mouida@gmail.com
Noureddine Alaa
Laboratory LAMAI, Faculty of Science and Technology of Marrakech, University Cadi
Ayyad, B.P. 549, Street Abdelkarim Elkhattabi, Marrakech - 40000, Morocco
E-mail address: n.alaa@uca.ma
Salim Mesbahi
Department of Mathematics, Faculty of Science, University Ferhat Abbas, Setif I, Pole
2 - Elbez, Setif - 19000, Algeria
E-mail address: salimbra@gmail.com
Walid Bouarifi
Department of Computer Science, National School of Applied Sciences of Safi, Cadi Ayyad University, Sidi Bouzid, BP 63, Safi - 46000, Morocco

E-mail address: w.bouarifi@uca.ma

[^0]: 2000 Mathematics Subject Classification. 35J55, 35J60, 35J70.
 Key words and phrases. Degenerate elliptic systems; auasilinear; chemotaxis;
 angiogenesis; weak solutions.
 (C)2013 Texas State University - San Marcos.

 Submitted December 7, 2012. Published June 22, 2013.

