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POSITIVE SOLUTIONS FOR A THIRD-ORDER THREE-POINT
BOUNDARY-VALUE PROBLEM

FRANCISCO J. TORRES

Abstract. In this article, we study the existence of positive solutions to a
nonlinear third-order three point boundary value problem. The main tools are

Krasnosel’skii fixed point theorem on cones, and the fixed point index theory.

1. Introduction

In this article, we are interested in the existence of single and multiple positive
solutions to nonlinear third-order three-point boundary-value problem

u′′′(t) + a(t)f(t, u(t)) = 0, 0 < t < 1, (1.1)

u(0) = 0, u′(0) = u′(1) = αu(η) , (1.2)

where η ∈ (0, 1), α ∈ [0, 1
η ). We assume the following conditions hold in this article:

(H1) f ∈ C([0, 1]× [0,∞), [0,∞)).
(H2) a ∈ L1[0, 1] is nonnegative and a(t) 6≡ 0 on any subinterval of [0, 1].
Third-order differential equation arise in a variety of different areas of applied

mathematics and physics, as the deflection of a curved beam having a constant or
varying cross section, three layer beam, electromagnetic waves o gravity driven flows
and so on. Li in [4] by using Krasnosel’skii fixed point theorem on cone establish
various results on the existence of positive solutions. Sun [7] use the Krasnosel’skii
fixed point theorem and Schauder’s fixed point theorem to obtain existence and
nonexistence of positive solutions. In [5] Liu et al obtain results for the existence
of at least one, two, three and infinitely many monotone positive solutions by using
Krasnosel’skii and Leggett-Williams fixed point theorem. In [6] Luan et al obtain
existence results under conditions that the nonlinear term satisfies Carathéodory
condition, semipositone and lower unbounded by using the fixed point index theory.
In [1], Bai the nonlinear term depends on u, u′ and u′′, prove the existence of at
least one solution with the use of lower and upper solutions methods and Schauder
fixed point theorem. Motivated by the above works, we obtain some sufficient
conditions for the existence of at least one and two positive solutions for (1.1) and
(1.2). The organization of this article is as follows. In section 2, we present some
necessary definitions and preliminary results that will be used to prove our results.
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In section 3, we discuss the existence of at least one positive solution for (1.1) and
(1.2). In section 4, we discuss the existence of multiple positive solutions for (1.1)
and (1.2). Finally, we give some examples to illustrate our results in section 5.

2. Preliminaries

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set
K ⊂ E is called cone if

(1) if x ∈ K and λ > 0, then λx ∈ K
(2) it x ∈ K and −x ∈ K, then x = 0.

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Remark 2.3. By the positive solution of (1.1), (1.2) we understand a function
u(t) wich is positive on [0, 1] and satisfies the differential equation (1.1) and the
boundary conditions (1.2).

We shall consider the Banach space E = C[0, 1] equipped with standard norm

‖u‖ = max
0≤t≤1

|u(t)| .

The proof of existence of solution is based on an applications of the following
theorems.

Theorem 2.4 ([2, 3]). Let E be a Banach space and let K ⊆ E be a cone. Assume
Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 ⊆ Ω1 ⊆ Ω2 and let

T : K ∩ (Ω2\Ω1)→ K

be completely continuous such that

(i) ‖Tu‖ ≤ ‖u‖ if u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ if u ∈ K ∩ ∂Ω2; or
(ii) ‖Tu‖ ≥ ‖u‖ if u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ if u ∈ K ∩ ∂Ω2 .

Then T has a fixed point in K ∩ (Ω2\Ω1)

Theorem 2.5 ([2, 3]). Let E be a Banach space and K be a cone of E. For r > 0,
define Kr = {u ∈ K : ‖u‖ ≤ r} and assume that T : Kr → K is a completely
continuous operator such that Tu 6= u for u ∈ ∂Kr

(1) If ‖Tu‖ ≤ ‖u‖ for all u ∈ ∂Kr, then i(T,Kr,K) = 1
(2) If ‖Tu‖ ≥ ‖u‖ for all u ∈ ∂Kr, then i(T,Kr,K) = 0.

Consider the three-point boundary-value problem

u′′′ + h(t) = 0, 0 < t < 1, (2.1)

u(0) = 0, u′(0) = u′(1) = αu(η) , (2.2)

where η ∈ (0, 1), α ∈ [0, 1/η).

Lemma 2.6. Let αη 6= 1, h ∈ L1[0, 1]. Then the three-point boundary-value prob-
lem (2.1) and (2.2) has a unique solution

u(t) =
∫ 1

0

G(t, s)h(s)ds,
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where G(t, s) = g(t, s) + αt
1−αη g(η, s), and

g(x, y) =

{
1
2 (2x− x2 − y)y 0 ≤ y ≤ x ≤ 1
1
2x

2(1− y) 0 ≤ x ≤ y ≤ 1 .
(2.3)

Proof. From (2.1), u′′′ = −h(t). Applying the method of variation of parameter,
we obtain

u(t) = −1
2

∫ t

0

(t− s)2h(s)ds+At2 +Bt+ C, (2.4)

where A,B,C ∈ R. From (2.2), C = 0. Since u′(0) = u′(1),

B = −
∫ 1

0

(1− s)h(s)ds+ 2A+B.

Therefore,

A =
1
2

∫ 1

0

(1− s)h(s)ds .

Since u′(0) = αu(η), we obtain:

B = −α
2

∫ η

0

(η − s)2h(s)ds+
αη2

2

∫ 1

0

(1− s)h(s)ds+Bαη,

(1− αη)B = −α
2

∫ η

0

(η − s)2h(s)ds+
αη2

2

∫ 1

0

(1− s)h(s)ds,

B = − α

2(1− αη)

∫ η

0

(η − s)2h(s)ds+
αη2

2(1− αη)

∫ 1

0

(1− s)h(s)ds .

Replacing these expressions in (2.4),

u(t) = −1
2

∫ t

0

(t− s)2h(s)ds+
t2

2

∫ 1

0

(1− s)h(s)ds− αt

2(1− αη)

∫ η

0

(η − s)2h(s)ds

+
αtη2

2(1− αη)

∫ 1

0

(1− s)h(s)ds

= −1
2

∫ t

0

(t− s)2h(s)ds+
1
2

∫ t

0

t2(1− s)h(s)ds+
1
2

∫ 1

t

t2(1− s)h(s)ds

− αt

2(1− αη)

∫ η

0

(η − s)2h(s)ds+
αtη2

2(1− αη)

∫ 1

0

(1− s)h(s)ds

=
1
2

[ ∫ t

0

(2t− t2 − s)sh(s)ds+
∫ 1

t

t2(1− s)h(s)ds
]

+
αt

1− αη
1
2

[ ∫ 1

0

η2(1− s)h(s)ds−
∫ η

0

(η − s)2h(s)ds
]

=
∫ 1

0

g(s, t)h(s)ds+
αt

1− αη

∫ 1

0

g(η, s)h(s)ds

=
∫ 1

0

G(t, s)h(s)ds .

�
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Lemma 2.7. Let σ ∈ (0, 1] be fixed. Then
1
2
γs(1− s) ≤ g(t, s) ≤ 1

2
s(1− s), ∀(t, s) ∈ [σ, 1]× [0, 1],

where γ = σ2.

Proof. If s ≤ t, from (2.3),

g(t, s) =
1
2

(2t− t2 − s)s

=
1
2

(−(t2 − 2t)− s)s

=
1
2

(−[(t− 1)2 − 1]− s)s

=
1
2

[1− (1− t)2 − s]s

=
1
2

[(1− s)− (1− t)2]s .

Then
g(t, s) ≤ 1

2
s(1− s) .

On the other hand,

g(t, s) =
1
2

(2t− t2 − s)s

=
1
2
ts(1− s) +

1
2

[(1− t)(t− s)s]

≥ 1
2
ts(1− s)

≥ 1
2
t2s(1− s) .

If t ≤ s, from (2.3),
1
2
t2(1− s)s ≤ g(t, s)

=
1
2
t2(1− s)

≤ 1
2
s2(1− s)

≤ 1
2
s(1− s) .

Therefore
1
2
t2(1− s)s ≤ g(t, s) ≤ 1

2
(1− s)s ∀(t, s) ∈ [0, 1]× [0, 1] . (2.5)

For t ∈ [σ, 1], we have
1
2
σ2(1− s)s ≤ g(t, s) ≤ 1

2
(1− s)s ∀(t, s) ∈ [σ, 1]× [0, 1] .

�

Remark 2.8. For t = 1 in (2.5), we have
1
2

(1− s)s = g(1, s) . (2.6)
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Lemma 2.9. Let h(t) ∈ C+[0, 1]. The unique solution u(t) of (2.1), (2.2) is
nonnegative and satisfies

min
σ≤t≤1

u(t) ≥ γ‖u‖ .

Proof. From Lemma 2.6 and Lemma 2.7, u(t) is nonnegative. For t ∈ [0, 1], from
Lemma 2.6 and Lemma 2.7, we have that

u(t) =
∫ 1

0

g(t, s)h(s)ds+
αt

1− αη

∫ 1

0

g(η, s)h(s)ds

≤ 1
2

∫ 1

0

s(1− s)h(s)ds+
α

1− αη

∫ 1

0

g(η, s)h(s)ds .

Then

‖u‖ ≤ 1
2

∫ 1

0

s(1− s)h(s)ds+
α

1− αη

∫ 1

0

g(η, s)h(s)ds . (2.7)

On the other hand, Lemma 2.7 imply that, for any t ∈ [σ, 1],

u(t) =
∫ 1

0

g(t, s)h(s)ds+
αt

1− αη

∫ 1

0

g(η, s)h(s)ds

≥ 1
2
γ

∫ 1

0

s(1− s)h(s)ds+
αt2

1− αη

∫ 1

0

g(η, s)h(s)ds

≥ 1
2
γ

∫ 1

0

s(1− s)h(s)ds+
ασ2

1− αη

∫ 1

0

g(η, s)h(s)ds

= γ
[1

2

∫ 1

0

s(1− s)h(s)ds+
α

1− αη

∫ 1

0

g(η, s)h(s)ds
]

≥ γ‖u‖ .
Therefore

min
σ≤t≤1

u(t) ≥ γ‖u‖ .

�

We introduce the notation

fa := lim inf
u→a

min
0≤t≤1

f(t, u)
u

, f b := lim sup
u→b

max
0≤t≤1

f(t, u)
u

,

where a, b = 0+,∞,

N =
∫ 1

σ

γ

2
s(1− s)a(s)ds+

αγ

1− αη

∫ 1

σ

g(η, s)a(s)ds,

M =
∫ 1

0

1
2
s(1− s)a(s)ds+

α

1− αη

∫ 1

0

g(η, s)a(s)ds .

Define the cone

K = {u ∈ C[0, 1] : u(t) ≥ 0, min
σ≤t≤1

u(t) ≥ γ‖u‖}

and the operator T : K → E by

Tu(t) =
∫ 1

0

g(t, s)a(s)f(s, u)ds+
αt

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds (2.8)

Remark 2.10. By Lemma 2.6, problem (1.1), (1.2) has a positive solution u(t) if
and only if u is a fixed point of T .
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Lemma 2.11. The operator defined in (2.8), is completely continuous and satisfies
T (K) ⊆ K.

Proof. By Lemma 2.9, T (K) ⊆ K. T is completely continuous by an application
of Arzela-Ascoli theorem. �

In what follow, we will use the following conditions
(a) f0 = 0 and f∞ =∞;
(b) f0 =∞ and f∞ = 0;
(c) f0 =∞ and f∞ =∞;
(d) f0 = 0 and f∞ = 0;
(e) 0 ≤ f0 < R and r < f∞ ≤ ∞;
(f) r < f0 ≤ ∞ and 0 ≤ f∞ < R;
(g) ∃ρ > 0 : f(t, u) < Rρ, 0 < u ≤ ρ, t ∈ [0, 1];
(h) ∃ρ > 0 : f(t, u) > rρ, ρ < u ≤ ρ

γ , t ∈ [σ, 1].

Remark 2.12. We note that (a) corresponds to the superlinear case and (b) cor-
responds to the sublinear case. In conditions (e) and (f), r = N−1 and R = M−1.
It is obvious that r > R > 0.

3. Existence of Positive Solutions

Theorem 3.1. Assume that the conditions on a, f and (a) hold. Then (1.1), (1.2)
has at least one positive solution.

Proof. Since f0 = 0, ∃ H1 > 0 such that f(t, u) ≤ εu, for all t ∈ [0, 1], 0 < u ≤ H1,
where ε > 0. Then for u ∈ K ∩ ∂Ω1, with Ω1 = {u ∈ X : ‖u‖ < H1}, we have

Tu(t) =
∫ 1

0

g(t, s)a(s)f(s, u)ds+
αt

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≤
∫ 1

0

1
2
s(1− s)a(s)f(s, u)ds+

α

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≤
∫ 1

0

1
2
s(1− s)a(s)εuds+

α

1− αη

∫ 1

0

g(η, s)a(s)εuds

≤ ε
[ ∫ 1

0

1
2
s(1− s)a(s)ds+

α

1− αη

∫ 1

0

g(η, s)a(s)ds
]
‖u‖ .

If εM ≤ 1, then Tu(t) ≤ ‖u‖. Therefore,

‖Tu‖ ≤ ‖u‖ .
On the other hand, since f∞ = ∞, there exists H̄2 > 0 such that f(t, u) ≥ δu,
for all t ∈ [σ, 1] with H̄2 ≤ u and δ > 0. Then for u ∈ K ∩ ∂Ω2, where Ω2 =
{u ∈ X : ‖u‖ < H2} with H2 = max{2H1,

H̄2
γ }. Then u ∈ K ∩ ∂Ω2 implies that

minσ≤t≤1 u(t) ≥ γ‖u‖ = γH2 > H̄2. So, by (2.6), we obtain

(Tu)(1) =
∫ 1

0

g(1, s)a(s)f(s, u)ds+
α

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≥
∫ 1

σ

1
2
s(1− s)a(s)f(s, u)ds+

α

1− αη

∫ 1

σ

g(η, s)a(s)f(s, u)ds

≥
∫ 1

σ

1
2
s(1− s)a(s)δu(s)ds+

α

1− αη

∫ 1

σ

g(η, s)a(s)δu(s)ds
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≥ δ
[ ∫ 1

σ

γ

2
s(1− s)a(s)ds+

αγ

1− αη

∫ 1

σ

g(η, s)a(s)ds
]
‖u‖ .

If δN ≥ 1, then

Tu(1) ≥ ‖u‖ (3.1)

which implies that

‖Tu‖ ≥ ‖u‖ . (3.2)

Therefore, by Theorem 2.4, the operator T has at least one fixed point, which is a
positive solution of (1.1), (1.2). �

Theorem 3.2. Assume that the conditions on a, f and (b) hold. Then (1.1), (1.2)
has at least one positive solution.

Proof. Since f0 = ∞, there exists H1 > 0 such that f(t, u) ≥ ξu, for all t ∈ [σ, 1],
0 < u ≤ H1 where ξ > 0; thus, for u ∈ K ∩ ∂Ω1, with Ω1 = {u ∈ X : ‖u‖ < H1},
by (2.6), we have

(Tu)(1) =
∫ 1

0

g(1, s)a(s)f(s, u)ds+
α

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≥
∫ 1

σ

1
2
s(1− s)a(s)f(s, u)ds+

α

1− αη

∫ 1

σ

g(η, s)a(s)f(s, u)ds

≥
∫ 1

σ

1
2
s(1− s)a(s)δu(s)ds+

α

1− αη

∫ 1

σ

g(η, s)a(s)δu(s)ds

≥ ξ
[∫ 1

σ

γ

2
s(1− s)a(s)ds+

αγ

1− αη

∫ 1

σ

g(η, s)a(s)ds
]
‖u‖ .

If ξN ≥ 1, then Tu(1) ≥ ‖u‖. Therefore

‖Tu‖ ≥ ‖u‖ .

On the other hand, since f∞ = 0, there exists H̄2 > 0 such that f(t, u) ≤ λu, for
all t ∈ [0, 1] with H̄2 ≤ u and λ > 0.

We consider two cases:
Case 1. Suppose f is bounded. Let L such that f(t, u) ≤ L and Ω2 = {u ∈ X :
‖u‖ < H2} where H2 = max{2H1, LM}. If u ∈ K ∩ ∂Ω2, then by Lemma 2.7, we
have

Tu(t) =
∫ 1

0

g(t, s)a(s)f(s, u)ds+
αt

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≤
∫ 1

0

1
2
s(1− s)a(s)f(s, u)ds+

α

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≤
∫ 1

0

1
2
s(1− s)a(s)Lds+

α

1− αη

∫ 1

0

g(η, s)a(s)Lds

≤ L
[ ∫ 1

0

1
2
s(1− s)a(s) +

α

1− αη

∫ 1

0

g(η, s)a(s)ds
]

≤ H2 = ‖u‖

and consequently, ‖Tu‖ ≤ ‖u‖.



8 F. J. TORRES EJDE-2013/147

Case 2. Suppose f is unbounded, then from (H1) there is H2 > max{2H1, H̄2}
such that f(t, u) ≤ f(t,H2) with 0 < u ≤ H2 and let Ω2 = {u ∈ X : ‖u‖ < H2}. If
u ∈ K ∩ ∂Ω2 and λM ≤ 1, we have

Tu(t) =
∫ 1

0

g(t, s)a(s)f(s, u)ds+
αt

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≤
∫ 1

0

1
2
s(1− s)a(s)f(s,H2)ds+

α

1− αη

∫ 1

0

g(η, s)a(s)f(s,H2)ds

≤
∫ 1

0

1
2
s(1− s)a(s)λH2ds+

α

1− αη

∫ 1

0

g(η, s)a(s)λH2ds

≤ λ
[∫ 1

0

1
2
s(1− s)a(s) +

α

1− αη

∫ 1

0

g(η, s)a(s)ds
]
H2

≤ H2 = ‖u‖ .
Thus, ‖Tu‖ ≤ ‖u‖.

Therefore by Theorem 2.4, the operator T has at least one fixed point, which is
a positive solution of (1.1), (1.2). �

Theorem 3.3. Assume that the conditions on a, f and (e) hold. Then (1.1), (1.2)
has at least one positive solution.

Proof. Since 0 ≤ f0 < R, there exists H1 > 0 and 0 < ε1 < R such that f(t, u) ≤
(R − ε1)u, 0 ≤ t ≤ 1, 0 < u ≤ H1. Let Ω1 = {u ∈ X : ‖u‖ < H1}. So for any
u ∈ K ∩ ∂Ω1,

Tu(t) =
∫ 1

0

g(t, s)a(s)f(s, u)ds+
αt

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≤
∫ 1

0

1
2
s(1− s)a(s)(R− ε1)uds+

α

1− αη

∫ 1

0

g(η, s)a(s)(R− ε1)uds

≤ (R− ε1)
[∫ 1

0

1
2
s(1− s)a(s)ds+

α

1− αη

∫ 1

0

g(η, s)a(s)ds
]
‖u‖

= (R− ε1)M‖u‖ < ‖u‖ .
Thus ‖Tu‖ < ‖u‖.

Since r < f∞ ≤ ∞, there exist H̄2 > 0 and ε2 > 0 such that f(t, u) ≥ (r + ε2)u
for u ≥ H̄2 and σ ≤ t ≤ 1. Let H2 = max{2H1,

H̄2
γ } and Ω2 = {u ∈ X : ‖u‖ < H2}.

Then u ∈ K ∩ ∂Ω2 implies minσ≤t≤1 u(t) ≥ γ‖u‖ = γH2 > H̄2. So, by (2.6) we
obtain

Tu(1) =
∫ 1

0

g(1, s)a(s)f(s, u)ds+
α

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

≥
∫ 1

σ

1
2
s(1− s)a(s)(r + ε2)uds+

α

1− αη

∫ 1

σ

g(η, s)a(s)(r + ε2)uds

≥ (r + ε2)
[ ∫ 1

σ

γ

2
s(1− s)a(s)ds+

αγ

1− αη

∫ 1

σ

g(η, s)a(s)ds
]
‖u‖

= (r + ε2)N‖u‖ > ‖u‖ .
Thus, ‖Tu‖ > ‖u‖.

Therefore, by Theorem 2.4, the operator T has at least one fixed point, which is
a positive solution of (1.1), (1.2). �
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Theorem 3.4. Assume that the conditions on a, f and (f) hold. Then (1.1), (1.2)
has at least one positive solution.

4. Multiplicity results

Theorem 4.1. Assume that the conditions on a, f , (c) and (g) hold. Then (1.1),
(1.2) has at least two positive solutions.

Proof. Since f0 = ∞, ∃H1 > 0 where 0 < H1 < ρ such that f(t, u) > ru with
0 < u ≤ H1 and t ∈ [σ, 1]. Let Ω1 = {u ∈ X : ‖u‖ < H1}. Then for any
u ∈ K ∩ ∂Ω1,

Tu(1) =
∫ 1

0

g(1, s)a(s)f(s, u)ds+
α

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

>

∫ 1

σ

1
2
s(1− s)a(s)ruds+

α

1− αη

∫ 1

σ

g(η, s)a(s)ruds

> r

[∫ 1

σ

γ

2
s(1− s)a(s)ds+

γα

1− αη

∫ 1

σ

g(η, s)a(s)ds
]
‖u‖

= rN‖u‖ = ‖u‖

Thus, ‖Tu‖ > ‖u‖. Therefore, by Theorem 2.5

i(T,KH1 ,K) = 0 .

Since f∞ = ∞, there exists H̄2 > ρ such that f(t, u) > ru with u ≥ H̄2, t ∈ [σ, 1].
Let H2 = H̄2

γ and Ω2 = {u ∈ X : ‖u‖ < H2}. Then for u ∈ K ∩ ∂Ω2, we have
min
σ≤t≤1

u(t) ≥ γ‖u‖ = γH2 = H̄2. Hence,

Tu(1) =
∫ 1

0

g(1, s)a(s)f(s, u)ds+
α

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

>

∫ 1

σ

1
2
s(1− s)a(s)ruds+

α

1− αη

∫ 1

σ

g(η, s)a(s)ruds

> r
[ ∫ 1

σ

γ

2
s(1− s)a(s)ds+

γα

1− αη

∫ 1

σ

g(η, s)a(s)ds
]
‖u‖

= rN‖u‖ = ‖u‖ .

Thus, ‖Tu‖ > ‖u‖. Therefore, by Theorem 2.5

i(T,KH2 ,K) = 0 .

On the other hand, let Ω3 = {u ∈ X : ‖u‖ < ρ}. For any u ∈ K ∩ ∂Ω3, we get
from (e) that f(t, u) < Rρ for 0 ≤ t ≤ 1, then

Tu(t) =
∫ 1

0

g(t, s)a(s)f(s, u)ds+
αt

1− αη

∫ 1

0

g(η, s)a(s)f(s, u)ds

<

∫ 1

0

1
2
s(1− s)a(s)Rρds+

α

1− αη

∫ 1

0

g(η, s)a(s)Rρds

< R
[ ∫ 1

0

1
2
s(1− s)a(s)ds+

α

1− αη

∫ 1

0

g(η, s)a(s)ds
]
ρ

< RMρ ≤ ‖u‖ .
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Thus, ‖Tu‖ < ‖u‖. Therefore, by Theorem 2.5,

i(T,Kρ,K) = 1 .

Hence,

i(T,KH2 \Kρ,K) = i(T,KH2 ,K)− i(T,Kρ,K) = 0− 1 = −1

i(T,Kρ \KH1 ,K) = i(T,Kρ,K)− i(T,KH1 ,K) = 1− 0 = 1

Therefore, there exist at least two positive solutions u1 ∈ K ∩ (Ω̄3\Ω1) and u2 ∈
K ∩ (Ω̄2\Ω3) of (1.1),(1.2) in K, such that

0 < ‖u1‖ < ρ < ‖u2‖ . (4.1)

�

Theorem 4.2. Assume that the conditions on a, f , (d) and (h) hold. Then (1.1),
(1.2) has at least two positive solutions.

5. Examples

Example 5.1 (Superlinear and Sublinear Case). (a) If f(t, u) = uα, α > 1,
the conclusions of Theorem 3.1, hold.

(b) If f(t, u) = 1 + uα, α ∈ (0, 1) the conclusions of Theorem 3.2, hold.

Example 5.2. Let f(t, u) = λt ln (1 + u)+u2, fix λ > 0, sufficiently small. Clearly
f0 = λ and f∞ = ∞. By Theorem 3.3, (1.1) and (1.2) have at least one positive
solution.

Example 5.3. Let f(t, u) = u2e−u + µ sinu, fix µ > 0 sufficiently large. Then
f0 = µ and f∞ = 0. By Theorem 3.4, (1.1) and (1.2) have at least one positive
solution.

Example 5.4. Consider the boundary-value problem

u′′′(t) + ub + uc = 0, 0 < t < 1, (5.1)

u(0) = 0, u′(0) = u′(1) =
1
4
u(

1
2

), (5.2)

where f(t, u) = f(u) = ub + uc, a(t) = 1, b ∈ (0, 1) and c > 1. Then f0 = ∞ and
f∞ =∞. By a simple calculation, M = 2/21 then R = 21/2.

On the other hand, we could choose ρ = 1, then f(t, u) ≤ 2 < 21
2 1 = Rρ for

(t, u) ∈ [0, 1] × [0, ρ]. By Theorem 4.1, (5.1) and (5.2) have at least two positive
solutions.
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Chile

E-mail address: ftorres@mat.uda.cl


	1. Introduction
	2. Preliminaries
	3. Existence of Positive Solutions
	4. Multiplicity results
	5. Examples
	References

