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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A
DEGENERATE NONLOCAL ELLIPTIC DIFFERENTIAL

EQUATION

NGUYEN THANH CHUNG, HOANG QUOC TOAN

Abstract. Using variational arguments, we study the existence and multi-

plicity of solutions for the degenerate nonlocal differential equation

−M
“Z

Ω
|x|−ap|∇u|p dx

”
div
“
|x|−ap|∇u|p−2∇u

”
= |x|−p(a+1)+cf(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) and the function M may be zero at zero.

1. Introduction

In this article, we study the boundary-value problem

−M
(∫

Ω

|x|−ap|∇u|p dx
)

div
(
|x|−ap|∇u|p−2∇u

)
= |x|−p(a+1)+cf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, 0 ∈ Ω, 0 ≤ a < N−p
p ,

1 < p < N , 0 < c, M : R+ → R+ is a continuous function, R+ = [0,∞).
Since the first equation in (1.2) contains an integral over Ω, it is no longer a

pointwise equation, and therefore it is often called nonlocal problem. It should be
noticed that if a = 0 and c = p then problem (1.1) becomes

−M
(∫

Ω

|∇u|p dx
)

∆pu = f(x, u) in Ω,

u = 0 on ∂Ω.
(1.2)

This equation is related to the stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx)∂2u

∂x2
= 0 (1.3)

presented by Kirchhoff in 1883 [15]. This is an extension of the classical d’Alembert’s
wave equation by considering the effects of the changes in the length of the string
during the vibrations. The parameters in (1.3) have the following meanings: L is
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the length of the string, h is the area of the cross-section, E is the Young modulus
of the material, ρ is the mass density, and P0 is the initial tension.

In recent years, problems involving Kirchhoff type operators have been studied
in many papers, we refer to [2, 4, 10, 11, 12, 13, 16, 17, 18, 19], in which the authors
have used different methods to get the existence of solutions for (1.2). One of the
important hypotheses in these papers is that the function M is non-degenerate; i.e.,

M(t) ≥ m0 > 0 for all t ∈ R+. (1.4)

We refer the readers to [3, 9] where the authors studied the existence of weak
solutions for elliptic equations involving p-polyharmonic Kirchhoff operators.

Motivated by the ideas introduced in [7, 9, 14, 16, 20], the goal of this paper
is to study the existence and multiplicity of solutions for (1.1) without condition
(1.4). The approach is based on variational arguments. Our results complement
the previous ones in the non-degenerate case. Moreover, we consider problem (1.1)
in the general case 0 ≤ a < N−p

p , 1 < p < N , 0 < c. It should be noticed that
in [8], we studied the existence of solutions for problem (1.1) in the sublinear case
when f : Ω× [0,+∞)→ R is a Carathéodory function satisfying

|f(x, t)| ≤ Ctαp−1, 1 < α < min
{ N

N − p
,
N − p(a+ 1) + c

N − p(a+ 1)
}
, C > 0

for all t ∈ [0,+∞) and x ∈ Ω.
We start by recalling some useful results in [5, 6, 20]. We have known that for

all u ∈ C∞0 (RN ), there exists a constant Ca,b > 0 such that(∫
RN
|x|−bq|u|q dx

)p/q
≤ Ca,b

∫
RN
|x|−ap|∇u|p dx, (1.5)

where

−∞ < a <
N − p
p

, a ≤ b ≤ a+ 1, q = p∗(a, b) =
Np

N − dp
, d = 1 + a− b.

Let W 1,p
0 (Ω, |x|−ap) be the completion of C∞0 (Ω) with respect to the norm

‖u‖a,p =
(∫

Ω

|x|−ap|∇u|p dx
)1/p

.

Then W 1,p
0 (Ω, |x|−ap) is reflexive and separable Banach space. From the bounded-

ness of Ω and the standard approximation argument, it is easy to see that (1.5)
holds for any u ∈W 1,p

0 (Ω, |x|−ap) in the sense that(∫
RN
|x|−α|u|l dx

)p/l
≤ Ca,b

∫
RN
|x|−ap|∇u|p dx, (1.6)

for 1 ≤ l ≤ p∗ = Np
N−p , α ≤ (1 + a)l + N

(
1 − l

p

)
; that is, the embedding

W 1,p
0 (Ω, |x|−ap) ↪→ Ll(Ω, |x|−α) is continuous, where Ll(Ω, |x|−α) is the weighted

Ll(Ω) space with the norm

|u|l,α := |u|Ll(Ω,|x|−α) =
(∫

Ω

|x|−α|u|l dx
)1/l

.

In fact, we have the following compact embedding result which is an extension of
the classical Rellich-Kondrachov compactness theorem.
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Lemma 1.1 (Compactness embedding theorem [20]). Suppose that Ω ⊂ RN is
an open bounded domain with C1 boundary and that 0 ∈ Ω, where 1 < p < N ,
−∞ < a < N−p

p , 1 ≤ l < Np
N−p and α < (1 + a)l +N

(
1− l

p

)
. Then the embedding

W 1,p
0 (Ω, |x|−ap) ↪→ Ll(Ω, |x|−α) is compact.

2. Main results

In this section, will we discuss the existence of weak solutions for problem (1.1).
For simplicity, we denote X = W 1,p

0 (Ω, |x|−ap). In the following, when there is no
misunderstanding, we always use ci, Ci to denote positive constants.

Definition 2.1. We say that u ∈ X is a weak solution of problem (1.1) if

M
(∫

Ω

|x|−ap|∇u|p dx
)∫

Ω

|x|−ap|∇u|p−2∇u · ∇ϕdx

−
∫

Ω

|x|−p(a+1)+cf(x, u)ϕdx = 0

for all ϕ ∈ C∞0 (Ω).

Define

Φ(u) =
1
p
M̂
(∫

Ω

|x|−ap|∇u|p dx
)
, Ψ(u) =

∫
Ω

|x|−p(a+1)+cF (x, u) dx, (2.1)

where

M̂(t) =
∫ t

0

M(s) ds, F (x, t) =
∫ t

0

f(x, s) ds.

By the condition (F0) (see Theorem 2.2 below), Lemma 1.1 implies that the energy
functional J(u) = Φ(u) − Ψ(u) : X → R associated with problem (1.1) is well
defined. Then it is easy to see that J ∈ C1(X,R) and u ∈ X is a weak solution of
(1.1) if and only if u is a critical point of J . Moreover, we have

J ′(u)(ϕ) = M
(∫

Ω

|x|−ap|∇u|p dx
)∫

Ω

|x|−ap|∇u|p−2∇u · ∇ϕdx

−
∫

Ω

|x|−p(a+1)+cf(x, u)ϕdx

= Φ′(u)(ϕ)−Ψ′(u)(ϕ)

for all ϕ ∈ X.
For the next theorem, we use the following assumptions:

(M0) M : R+ → R+ is a continuous function and satisfies

m0t
α−1 ≤M(t) for all t ∈ R+,

where m0 > 0 and α > 1;
(F0) f : Ω× R→ R is a Carathéodory function such that

|f(x, t)| ≤ C1(1 + |t|q−1) for all x ∈ Ω and t ∈ R,

where C1 > 0 and 1 < q < min{p∗, p(N−(a+1)p+c)
N−(a+1)p };

(E0) αp > q.

Theorem 2.2. Under assumptions (M0), (F0), (E0), problem (1.1) has at least
one weak solution.



4 N. T. CHUNG, H. Q. TOAN EJDE-2013/148

Proof. Let {um} be a sequence that converges weakly to u in X. Then, by the
weak lower semicontinuity of the norm, we have

lim inf
m→∞

∫
Ω

|x|−ap|∇um|p dx ≥
∫

Ω

|x|−ap|∇u|p dx.

Combining this with the continuity and monotonicity of the function ψ : R+ → R,
t 7→ ψ(t) = 1

pM̂(t), we obtain

lim inf
m→∞

Φ(um) = lim inf
m→∞

1
p
M̂
(∫

Ω

|x|−ap|∇um|p dx
)

= lim inf
m→∞

ψ
(∫

Ω

|x|−ap|∇um|p dx
)

≥ ψ
(

lim inf
m→∞

∫
Ω

|x|−ap|∇um|p dx
)

≥ ψ
(∫

Ω

|x|−ap|∇u|p dx
)

=
1
p
M̂
(∫

Ω

|x|−ap|∇u|p dx
)

= Φ(u).

(2.2)

Using (F0), Hölder’s inequality, and Lemma 1.1, it follows that∣∣ ∫
Ω

|x|−p(a+1)+c[F (x, um)− F (x, u)] dx
∣∣

≤
∫

Ω

|x|−p(a+1)+c|f(x, u+ θm(um − u))||um − u| dx

≤ C1

∫
Ω

|x|−p(a+1)+c
(
1 + |u+ θm(um − u)|q−1

)
|um − u| dx

≤ C1

(∫
Ω

|x|−p(a+1)+c dx
) q−1

q ‖um − u‖Lq(Ω,|x|−p(a+1)+c)

+ C1‖u+ θm(um − u)‖q−1
Lq(Ω,|x|−p(a+1)+c)

‖um − u‖Lq(Ω,|x|−p(a+1)+c),

(2.3)

which tends to 0 as m → ∞, where 0 ≤ θm(x) ≤ 1 for all x ∈ Ω. From (2.2) and
(2.3), the functional J is weakly lower semi-continuous in X.

On the other hand, by assumptions (M0) and (F0), we have

J(u) =
1
p
M̂
(∫

Ω

|x|−ap|∇u|p dx
)
−
∫

Ω

|x|−p(a+1)+cF (x, u) dx

≥ m0

p

∫ ‖u‖pa,p
0

tα−1 dt− c1
∫

Ω

|x|−p(a+1)+c
(
1 + |u|q

)
dx

≥ m0

αp
‖u‖αpa,p − c2‖u‖qa,p − c3.

(2.4)

Since 1 < q < αp, it follows from (2.4) that the functional J is coercive. Therefore,
using the minimum principle, we deduce that the functional J has at least one weak
solution and thus problem (1.1) has at least one weak solution. �

For the next theroem, we sue the following conditions:
(M1) M : R+ → R+ is a continuous function and satisfies the condition

m1t
α1−1 ≤M(t) ≤ m2t

α2−1 for all t ∈ R+,

where m2 ≥ m1 > 0 and 1 < α1 ≤ α2;
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(M2) M satisfies

M̂(t) ≥M(t)t for all t ∈ R+;

(F1) f(x, t) = o
(
|t|α1p−1

)
, t→ 0 uniformly for x ∈ Ω;

(F2) There exists a positive constant µ > α2p such that

0 < µF (x, t) :=
∫ t

0

f(x, s)ds ≤ f(x, t)t

for all x ∈ Ω and |t| ≥ T > 0;
(E1) α1p < q.

Theorem 2.3. Under assumptions (F0)–(F2), (M1)–(M2), problem (1.1) has at
least one nontrivial weak solution.

To prove the above theorem, we need to verify the following lemmas.

Lemma 2.4. Assume that (M1), (M2), (F0), (F2) are satisfied. Then the functional
J satisfies the (PS) condition.

Proof. Let {um} ⊂ X be a sequence such that

J(um)→ c <∞, J ′(um)→ 0 in X∗ as m→∞, (2.5)

where X∗ is the dual space of X.
First, we will show that the sequence {um} is bounded in X. Indeed, from (2.5),

(M1), (M2) and (F2), we obtain that for all m large enough,

1 + c+ ‖um‖a,p

≥ J(um)− 1
µ
J ′(um)(um)

=
1
p
M̂
(∫

Ω

|x|−ap|∇um|p dx
)
− 1
µ
M
(∫

Ω

|x|−ap|∇um|p dx
)∫

Ω

|x|−ap|∇um|p dx

−
∫

Ω

|x|−p(a+1)+cF (x, um) dx+
1
µ

∫
Ω

|x|−p(a+1)+cf(x, um)um dx

≥
(1
p
− 1
µ

)
M
(∫

Ω

|x|−ap|∇um|p dx
)∫

Ω

|x|−ap|∇um|p dx

−
∫

Ω

|x|−p(a+1)+c
( 1
µ
f(x, um)um − F (x, um)

)
dx

≥ m1

(1
p
− 1
µ

)
‖um‖α1p

a,p − c4.

(2.6)
Since α1p > 1, it follows from (2.6) that {um} is bounded. Passing to a subsequence
if necessary, there exists u ∈ X, such that {um} converges weakly to u in X. By
(2.5), we obtain

lim
m→∞

J ′(um)(um − u) = 0. (2.7)
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By (F0) and Lemma 1.1, we have∣∣ ∫
Ω

|x|−p(a+1)+cf(x, um)(um − u) dx
∣∣

≤
∫

Ω

|x|−p(a+1)+c|f(x, um)||um − u| dx

≤ C1

∫
Ω

|x|−p(a+1)+c(1 + |um|q−1)|um − u| dx

≤ C1

(∫
Ω

|x|−p(a+1)+c dx
) q−1

q ‖um − u‖Lq(Ω,|x|−p(a+1)+c)

+ C1‖um‖q−1
Lq(Ω,|x|−p(a+1)+c)

‖um − u‖Lq(Ω,|x|−p(a+1)+c),

(2.8)

which tends to 0 as m→∞.
By (2.7), (2.8) and the definition of the functional J , it follows that

lim
m→∞

M
(∫

Ω

|x|−ap|∇um|p dx
)∫

Ω

|x|−ap|∇um|p−2∇um·(∇um−∇u) dx = 0. (2.9)

Since {um} is bounded in X, passing to a subsequence, if necessary, we may assume
that ∫

Ω

|x|−ap|∇um|p dx→ t0 ≥ 0 as m→∞.

If t0 = 0 then {um} converges strongly to u = 0 in X and the proof is finished. If
t0 > 0 then by (M1) and the continuity of M , we obtain

M
(∫

Ω

|x|−ap|∇um|p dx
)
→M(t0) > 0 as m→∞.

Thus, for m sufficiently large, we have

0 < c5 ≤M
(∫

Ω

|x|−ap|∇um|p dx
)
≤ c6. (2.10)

From (2.9) and (2.10) and the condition (M1), we have

lim
m→∞

∫
Ω

|x|−ap|∇um|p−2∇um · (∇um −∇u) dx = 0. (2.11)

On the other hand, since {um} converges weakly to u in X, we have

lim
m→∞

∫
Ω

|x|−ap|∇u|p−2∇u · (∇um −∇u) dx = 0. (2.12)

By (2.11) and (2.12),

lim
m→∞

∫
Ω

|x|−ap
(
|∇um|p−2∇um − |∇u|p−2∇u

)
· (∇um −∇u) dx = 0.

or
lim
m→∞

∫
Ω

(
|∇vm|p−2∇vm − |∇v|p−2∇v

)
· (∇vm −∇v) dx = 0, (2.13)

where ∇vm = |x|−a∇um, ∇v = |x|−a∇u ∈ Lp(Ω).
We recall that the following inequalities hold

〈|ξ|p−2ξ − |η|p−2η, ξ − η〉 ≥ c7
(
|ξ|+ |η|

)p−2

|ξ − η|2 if 1 < p < 2,

〈|ξ|p−2ξ − |η|p−2η, ξ − η〉 ≥ c8|ξ − η|p if p ≥ 2,
(2.14)

for all ξ, η ∈ RN , where 〈., .〉 denote the usual product in RN .
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If 1 < p < 2, using the Hölder inequality, by (2.13), we have

0 ≤ ‖um − u‖pa,p = ‖|∇vm −∇v|‖pLp(Ω)

≤
∫

Ω

|∇vm −∇v|p
(
|∇vm|+ |∇v|

) p(p−2)
2
(
|∇vm|+ |∇v|

) p(2−p)
2

dx

≤
(∫

Ω

|∇vm −∇v|2(|∇vm|+ |∇v|)p−2 dx
)p/2(∫

Ω

(|∇vm|+ |∇v|)p dx
) 2−p

2

≤ c9
(∫

Ω

〈|∇vm|p−2∇vm − |∇v|p−2∇v,∇vm −∇v〉 dx
) p

2

×
(∫

Ω

(|∇vm|+ |∇v|)p dx
) 2−p

2

≤ c10

(∫
Ω

〈|∇vm|p−2∇vm − |∇v|p−2∇v,∇vm −∇v〉 dx
)p/2

,

which converges to 0 as m→∞. If p ≥ 2, one has

0 ≤ ‖um − u‖pa,p = ‖|∇vm −∇v|‖pLp(Ω)

≤ c11

∫
Ω

〈|∇vm|p−2∇vm − |∇v|p−2∇v,∇vm −∇u〉 dx,

which converges to 0 as m→∞. So we deduce that {um} converges strongly to u
in X and the functional J satisfies the (PS) condition. �

Lemma 2.5. Suppose that (M1), (F0), (F1), (F2), (E1) hold. Then we have:
(i) There exist two positive real numbers ρ and R such that J(u) ≥ R > 0 for

all u ∈ X with ‖u‖a,p = ρ;
(ii) There exists û ∈ X such that ‖û‖a,p > ρ and J(u) < 0.

Proof. (i) By (M1), we have

J(u) =
1
p
M̂
(∫

Ω

|x|−ap|∇u|p dx
)
−
∫

Ω

|x|−p(a+1)+cF (x, u) dx

≥ m1

α1p
‖u‖α1p

a,p −
∫

Ω

|x|−p(a+1)+cF (x, u) dx.
(2.15)

Since α1p < q < min{p∗, p(N−(a+1)p+c)
N−(a+1)p }, the embeddings

X ↪→ Lα1p(Ω, |x|−p(a+1)+c), X ↪→ Lq(Ω, |x|−p(a+1)+c)

are compact. Then there are constants c12, c13 > 0 such that

‖u‖Lα1p(Ω,|x|−p(a+1)+c) ≤ c12‖u‖a,p, (2.16)

‖u‖Lq(Ω,|x|−p(a+1)+c) ≤ c13‖u‖a,p. (2.17)

Let ε > 0 be small enough such that ε < m1
α1pc

α1p
12

. By (F0) and (F1), we obtain

|F (x, t)| ≤ ε|t|α1p + cε|t|q for all x ∈ Ω and t ∈ R. (2.18)

Therefore, by (2.15)-(2.18), we have

J(u) ≥ m1

α1p
‖u‖α1p

a,p −
∫

Ω

|x|−p(a+1)+cF (x, u) dx

≥ m1

α1p
‖u‖α1p

a,p − ε
∫

Ω

|x|−p(a+1)+c|u|α1p dx− cε
∫

Ω

|x|−p(a+1)+c|u|q dx
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≥
(m1

α1p
− εcα1p

12

)
‖u‖α1p

a,p − cεc
q
13‖u‖q.

Since α1p < q, there exist real numbers ρ,R > 0 such that J(u) ≥ R for all u ∈ X
with ‖u‖a,p = ρ.

(ii) By (F2), there exists c14 > 0 such that

F (x, t) ≥ c14|t|µ for all x ∈ Ω and |t| ≥ T. (2.19)

For w ∈ X\{0} and t > 0, it follows from (2.19) that

J(tw) =
1
p
M̂
(∫

Ω

|x|−ap|∇tw|p dx
)
−
∫

Ω

|x|−p(a+1)+cF (x, tw) dx

≤ m2t
α2p

α2p
‖w‖α2p

a,p − c14t
µ

∫
Ω

|x|−p(a+1)+c|w|µ dx− c15,

(2.20)

which tends to −∞ as t→ +∞ since α2p < µ. Then, there exists t0 > 0 such that
J(t0w) < 0 and ‖t0w‖a,p > ρ. We set û = t0w, then Lemma 2.5 is proved. �

Proof of Theorem 2.3. By Lemmas 2.4 and 2.5, all assumptions of the mountain
pass theorem in [1] are satisfied. Then the functional J has a nontrivial critical
point in X and thus problem (1.1) has a nontrivial weak solution. �

Next, we will use the Fountain theorem and the Dual fountain theorem in order
to study the existence of infinitely many solution for (1.1). More exactly, we will
prove the following theorems.

Theorem 2.6. Assume that (M1), (M2), (F0), (F2), (E1) are satisfied. Moreover,
we assume that

(F3) f(x,−t) = −f(x, t) for all x ∈ Ω and t ∈ R.
Then problem (1.1) has a sequence of weak solutions {±uk}∞k=1 such that J(±uk)→
+∞ as k → +∞.

Theorem 2.7. Assume that (M1), (M2), (F0)–(F2) are satisfied. Moreover, we
assume that

(F4) f(x, t) ≥ C2|t|r−1, t → 0, where α2p < r < min{p∗, p(N−(a+1)p+c)
N−(a+1)p } for all

x ∈ Ω and t ∈ R.
Then problem (1.1) has a sequence of weak solutions {±vk}∞k=1 such that J(±vk) <
0 and J(±vk)→ 0 as k → +∞.

Because X is a reflexive and separable Banach space, there exist {ej} ⊂ X and
{e∗j} ⊂ X∗ such that

X = span{ej : j = 1, 2, . . . , }, X∗ = span{e∗j : j = 1, 2, . . . , },
and

〈ei, e∗j 〉 =

{
1, if i = j,

0, if i 6= j.

For convenience, we write Xj = span{ej}, Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj .

Lemma 2.8. If 1 < l < min{p∗, p(N−(a+1)p+c)
N−(a+1)p }, denote

βk = sup{‖u‖Ll(Ω,|x|−p(a+1)+c) : ‖u‖a,p = 1, u ∈ Zk},
then limk→∞ βk = 0.
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Proof. Obviously, for any k, 0 < βk+1 ≤ βk, so βk → β ≥ 0 as k → ∞. Let
uk ∈ Zk, k = 1, 2, . . . satisfy

‖uk‖a,p = 1, 0 ≤ βk − ‖uk‖Ll(Ω,|x|−p(a+1)+c) <
1
k
.

Then there exists a subsequence of {uk}, still denoted by {uk} such that {uk}
converges weakly to u in X and

〈e∗j , u〉 = lim
k→∞

〈e∗j , uk〉, j = 1, 2, . . . ,

which implies that u = 0 and so {uk} converges weakly to 0 in X as k → ∞.
Since 1 < l < min{p∗, p(N−(a+1)p+c)

N−(a+1)p }, the embedding X ↪→ Ll(Ω, |x|−p(a+1)+c) is
compact (see Lemma 1.1), then {uk} converges strongly to 0 in Ll(Ω, |x|−p(a+1)+c).
Hence, limk→∞ βk = 0. �

Lemma 2.9 (Fountain theorem [21]). Assume that (X, ‖ · ‖) is a separable Banach
space, J ∈ C1(X,R) is an even functional satisfying the (PS) condition. Moreover,
for each k = 1, 2, . . . , there exist ρk > rk > 0 such that

(A1) inf{u∈Zk:‖u‖=rk} J(u)→ +∞ as k →∞;
(A2) max{u∈Yk:‖u‖=ρk} J(u) ≤ 0.

Then J has a sequence of critical values which tends to +∞.

Definition 2.10. We say that J satisfies the (PS)∗c condition (with respect to (Yn))
if any sequence {unj} ⊂ X such that unj ∈ Ynj , J(unj )→ c and (J |Ynj )′(unj )→ 0
as nj → +∞, contains a subsequence converging to a critical point of J .

Lemma 2.11 (Dual fountain theorem [21]). Assume that (X, ‖ · ‖) is a separable
Banach space, J ∈ C1(X,R) is an even functional satisfying the (PS)∗c condition.
Moreover, for each k = 1, 2, . . . , there exist ρk > rk > 0 such that

(B1) inf{u∈Zk:‖u‖=ρk} J(u) ≥ 0;
(B2) bk := max{u∈Yk:‖u‖=rk} J(u) < 0;
(B3) dk := inf{u∈Zk:‖u‖=ρk} J(u)→ 0 as k →∞.

Then J has a sequence of negative critical values which tends to 0.

Proof of Theorem 2.6. According to (F3) and Lemma 2.4, J is an even functional
and satisfies the (PS) condition. We will prove that if k is large enough, then there
exist ρk > rk > 0 such that (A1) and (A2) hold. Thus, the assertion of conclusion
can be obtained from the Fountain theorem.

(A1): From (F0), there exists c16 > 0 such that

|F (x, t)| ≤ c16(|t|+ |t|q) for all x ∈ Ω and all t ∈ R.

Then, using (M1) and Lemma 1.1, for any u ∈ Zk,

J(u) =
1
p
M̂
(∫

Ω

|x|−ap|∇u|p dx
)
−
∫

Ω

|x|−p(a+1)+cF (x, u) dx

≥ m1

pα1

(∫
Ω

|x|−ap|∇u|p dx
)α1

− c16

∫
Ω

|x|−p(a+1)+c(|u|+ |u|q) dx

≥ m1

pα1
‖u‖α1p

a,p − c17β
q
k‖u‖

q
a,p − c17‖u‖a,p,

(2.21)

where
βk = sup

{
‖u‖Lq(Ω,|x|−p(a+1)+c) : ‖u‖a,p = 1, u ∈ Zk

}
. (2.22)
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Now, we deduce from (2.21) that for any u ∈ Zk, ‖u‖a,p = rk =
(
c17qβ

q
k

m1

) 1
α1p−q ,

J(u) ≥ m1

pα1
‖u‖α1p

a,p − c17β
q
k‖u‖

q
a,p − c17‖u‖a,p

=
m1

pα1

(c17qβ
q
k

m1

) α1p
α1p−q − c17β

q
k

(c17qβ
q
k

m1

) q
α1p−q − c17

(c17qβ
q
k

m1

) 1
α1p−q

= m1

( 1
α1p
− 1
q

)(c17qβ
q
k

m1

) α1p
α1p−q − c17

(c17qβ
q
k

m1

) 1
α1p−q

,

(2.23)

which tends to +∞ as k → +∞, because α1p < q < min{p∗, p(N−(a+1)p+c)
N−(a+1)p } and

βk → 0 as k →∞, see Lemma 2.8.
(A2): From (F2), there exists a constant c18 > 0 such that

F (x, t) ≥ c18|t|µ − c18 for all x ∈ Ω and t ∈ R.
Therefore, using (M1), for any w ∈ Yk with ‖w‖a,p = 1 and 1 < t < ρk, we have

J(tw) =
1
p
M̂
(∫

Ω

|x|−ap|∇tw|p dx
)
−
∫

Ω

|x|−p(a+1)+cF (x, tw) dx

≤ m2

α2p

(∫
Ω

|x|−ap|∇tw|p dx
)α2

− c18

∫
Ω

|x|−p(a+1)+c|tw|µ dx− c19

=
m2t

α2p

α2p
‖w‖α2p

a,p − c18t
µ

∫
Ω

|x|−p(a+1)+c|w|µ dx− c19.

(2.24)

Since µ > α2p and dim(Yk) = k, it is easy to see that J(u)→ −∞ as ‖u‖a,p → +∞
for u ∈ Yk. �

To prove Theorem 2.7, we need to verify the following lemma.

Lemma 2.12. Assume that (M1), (M2), (F0), (F2) are satisfied. Then the func-
tional J satisfies the (PS)∗c condition.

Proof. Let {unj} ⊂ X be such that unj ∈ Ynj and J(unj )→ 0 and (J |Ynj )′(unj )→
0 as nj → ∞. Similar to the process of verifying the (PS) condition in the proof
of Lemma 2.4, we can get the boundedness of {‖unj‖a,p}. Going, if necessary,
to a subsequence, we can assume that {unj} converges weakly to u in X. As
X = ∪njYnj , we can choose vnj ∈ Ynj such that vnj → u. Hence,

lim
nj→∞

J ′(unj )(unj − u) = lim
nj→∞

J ′(unj )(unj − vnj ) + lim
nj→∞

J ′(unj )(vnj − u)

= lim
nj→∞

(J |Ynj )′(unj )(unj − vnj ) = 0.

(2.25)

From the proof of Lemma 2.4, J ′ is of (S+) type, so we can conclude that unj → u
as nj →∞, furthermore we have J ′(unj )→ J ′(u).

Let us prove J ′(u) = 0, i.e., u is a critical point of J . Indeed, taking arbitrarily
wk ∈ Yk, notice that when nj ≥ k we have

J ′(u)(wk) = (J ′(u)− J ′(unj ))(wk) + J ′(unj )(wk)

= (J ′(u)− J ′(unj ))(wk) + (J |Ynj )′(unj )(wk).
(2.26)

Going to limit in the right hand-side of (2.26) reaches J ′(u)(wk) = 0 for all wk ∈
Yk. Thus, J ′(u) = 0 and the functional J satisfies the (PS)∗c condition for every
c ∈ R. �
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Proof of Theorem 2.7. From (F0), (F2), (F3) and Lemma 2.12, we know that J is
an even functional and satisfies the (PS)∗c condition, the assertion of conclusion can
be obtained from Dual fountain theorem.

(B1): For any v ∈ Zk, ‖v‖a,p = 1 and 0 < t < 1, using (M1) and (2.18), we have

J(tv)

=
1
p
M̂
(∫

Ω

|x|−ap|∇tv|p dx
)
−
∫

Ω

|x|−p(a+1)+cF (x, tv) dx

≥ m1

α1p
tα1p‖v‖α1p

a,p − εtα1p

∫
Ω

|x|−p(a+1)+c|v|α1p dx− cεtq
∫

Ω

|x|−p(a+1)+c|v|q dx

≥
(m1

α1p
− εc20

)
tα1p − c21β

q
kt
q.

(2.27)

Let 0 < ε < M1
α1pc20

. Since q > α1p, taking ρk = t small enough and sufficiently
large k, for v ∈ Zk with ‖v‖a,p = 1, we have J(tv) ≥ 0. So for sufficiently large k,

inf
{u∈Zk:‖u‖a,p=ρk}

J(u) ≥ 0;

i.e., (B1) is satisifed.
(B2): For v ∈ Yk, ‖v‖a,p = 1 and 0 < t < ρk < 1, we have

J(tv) =
1
p
M̂
(∫

Ω

|x|−ap|∇tv|p dx
)
−
∫

Ω

|x|−p(a+1)+cF (x, tv) dx

≤ m2

α2p

(∫
Ω

|x|−ap|∇tv|p dx
)α2

− C2

∫
Ω

|x|−p(a+1)+c|tv|r dx

=
m2

α2p
tα2p‖v‖α2p

a,p − C2t
r

∫
Ω

|x|−p(a+1)+c|v|r dx.

(2.28)

Condition α2p < r < min{p∗, p(N−(a+1)p+c)
N−(a+1)p } implies that there exists a constant

rk ∈ (0, ρk) such that J(tv) < 0 when t = rk. Hence, we obtain from (2.28) that

bk := max
{u∈Yk:‖u‖a,p=rk}

J(u) < 0,

so (B2) is satisfied.
(B3): Because Yk ∩ Zk 6= ∅ and rk < ρk we have

dk := inf
{u∈Zk:‖u‖a,p≤ρk}

J(u) ≤ bk := max
{u∈Yk:‖u‖a,p=rk}

J(u) < 0. (2.29)

From (2.27), for v ∈ Zk, ‖v‖a,p = 1, 0 ≤ t ≤ ρk and u = tv we have

J(u) = J(tv)

≥
(m1

α1p
− εc20

)
tα1p − c21β

q
kt
q

≥ −c21β
q
kt
q.

(2.30)

From (2.29) and (2.30), dk → 0 as k →∞; i.e., (B3) is satisfied. �
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3. Corrigendum posted on August 21, 2014

A reader pointed out that no function M(t) can satisfy both hypotheses (M1)
and (M2). In response, we present a proof of our results with a modified assumption
(F2), and without assumption (M2).
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Modified assumptions. We delete the assumption (M2), and re-state the follow-
ing:

(M1) There exist m2 ≥ m1 > 0 and α > 1 such that

m1t
α−1 ≤M(t) ≤ m2t

α−1, ∀t ∈ R+

(The original (M1) implies α1 = α2, so we rename constant α.);
(F2) There exists a positive constant µ > m2

m1
αp such that

0 < µF (x, t) = µ

∫ t

0

f(x, s) ds ≤ f(x, t)t

for all x ∈ Ω and |t| ≥ T > 0 (The constant µ has been redefined);

New Lemma 2.4. Assume that (M1), (F0), (F2) are satisfied. Then the functional
J satisfies the Palais-Smale condition in the space X.

Proof. Let {um} ⊂ X be a sequence such that

J(um)→ c <∞, J ′(um)→ 0 in X∗ as m→∞, (3.1)

where X∗ is the dual space of X.
We shall show that the sequence {um} is bounded in X. Indeed, from (3.1),

(M1) and (F2), for all m large enough, we have

1 + c+ ‖um‖a,p

≥ J(um)− 1
µ
J ′(um)(um)

=
1
p
M̂
(∫

Ω

|x|−ap|∇um|p dx
)
− 1
µ
M
(∫

Ω

|x|−ap|∇um|p dx
)∫

Ω

|x|−ap|∇um|p dx

−
∫

Ω

|x|−p(a+1)+cF (x, um) dx+
1
µ

∫
Ω

|x|−p(a+1)+cf(x, um)um dx

≥ m1

αp

(∫
Ω

|x|−ap|∇um|p dx
)α
− m2

µ

(∫
Ω

|x|−ap|∇um|p dx
)α

−
∫

Ω

|x|−p(a+1)+c
( 1
µ
f(x, um)um − F (x, um)

)
dx

≥
(m1

αp
− m2

µ

)
‖um‖αpa,p − c4.

(3.2)

Since αp > 1 and µ > m2
m1
αp, from (3.2) it follows that {um} is bounded. Then

with similar arguments as in the proof of the original Lemma 2.4 we can show that
J satisfies the Palais-Smale condition. �

Theorem 2.2 remains unchanged. However, Theorems 2.3, 2.6, 2.7 and Lemma
2.12 need to be stated without assumption (M2). Their proofs are similar to the
original proofs, but using the new Lemma 2.4, and replacing α1 and α2 by α.

The authors would like to thank anonymous reader and the editor for allowing
us to correct our mistake.
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