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MULTIPLE POSITIVE SOLUTIONS FOR QUASILINEAR
ELLIPTIC SYSTEMS

QIN LI, ZUODONG YANG

ABSTRACT. In this article, we investigate how the coefficient f(z) affects the
number of positive solutions of the quasilinear elliptic system

—Apu = Ag(2)|u|?2u + Lf(z)\u\a72u|v\’8 in Q,
a+ g

—Apw = ah()[ol7 20 + —2— ()l o2 in ©,
a+p
u=v=0 on 0,

where 0 € Q C RV is a bounded domain, > 1,8 >1land 1 < p < g <
a+g:p*:Npr for N > 2p.

1. INTRODUCTION

Let © 3 0 be a smooth bounded domain in R with N > 2p. We are concerned
with the quasilinear elliptic problem

=B = gl Pt o SNl Pull” in 0,
~ 0 = ph(E)ol 2o+ L @l o, (1)

u=v=0 on 99,

where A\, u >0, 1 < p < ¢ < p*, Apu = div(|Vu[P2Vu) is the p-Laplacian, o > 1,
B > 1 satisfy a + 8 = p* and p* = NN—Z) for N > 2p denotes the critical Sobolev
exponent.

In recent years, there have been many papers concerned with the existence and
multiplicity of positive solutions for semilinear elliptic problems. Results relating
to these problem can be found in Wu [16], 17], Furtado and Paiva [6], Lin et al [I1]
and the references therein.
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In[I], the authors established the existence and nonexistence of solutions for the
system of elliptic equations

2
—Au = au+ by + —— ulu|*2v®  inQ,
a+p
—Av=bu+cv+ 26 lu[*v[v]?~2 in Q, (1.2)
a+p :

u,v >0 in Q,
u=v=0 on J.
As for quasilinear problems, Zhang [19] studied the elliptic equation
—Apu+ [ulP2u= f(u) xeRV,
u € WHP(RY)

Using a minimization argument, the author obtained the existence of ground state

solutions for (1.3)).

In [9], the authors investigated how the shape of the graph of f(z) affects the
number of positive solutions of the problem

(1.3)

—Ayu = |ul’ "2u+ Nul""%u 2z € B.
o= ul 1 -,
u|aQ=0.

By variational methods, Hsu [8] showed the existence of multiple positive solutions
for the elliptic system

2
—Apu = Mu|T2u + aﬁ|u|°‘_2u|v|ﬁ in Q,

o+
_ 203 o (1.5)
—Ayv = plv]T 20+ —|u|®|® 20 in Q,
o = ulolt20 + 2
u=v=0 on dQ.
Yin and Yang [I8] studied the problem
_ _ 2a o
—Apu+ [ulP2u = fiy, (@) |u|T?u + mgu|u| 2ufp? x e,
2
Ao = fa @l 0+ 2 gl sen, (0

u=v=0 x¢€ .

Motivated by the results of the above cited papers, we shall study system ;
in particular, the results of the semilinear systems are extended to the quasilinear
systems. We can find the related results for p = 2 in [I1].

In this paper, we assume that f, g and h satisfy the following conditions:

(A1) f, g and h are positive continuous functions in Q.
(A2) There exist k points a', a2,...,a* in Q such that

fla") = meagf(z) =1 forl<i<k,
and for some o > N, f(2) — f(a’) = O(]z — a*|°) as z — a' uniformly in i.
(A3) Choose py > 0 such that
B,y (a') N Byy(a?) =0 fori#jand1<i,j <k,

and UF_, B, (a’) C Q, where B, (a’) = {z € RN : |z — a’| < po}.
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Let E = W, (Q) x W, *(2) be the Sobolev space with norm

o)l = ([ (vup -+ 19or)az) ™"

We will show the existence and multiplicity result of nontrivial solutions of (|1.1)
by looking for critical points of the associated functional

Iapu(it,0) = %H(u, W)l - pi / F(2)ulol dz
- é / (Ag()lult + h(2)[o]9)dz.

The critical points of the functional Jy , are in fact weak solutions of (1.1). By a
weak solution (u,v) of ([1.1)), we mean that (u,v) € E satisfying

/(\Vu|p_2VuV<p1 + | Vo2 VoVpy)dz — )\/ g(2)|u|9 % updz
Q Q

o
i [ I Rupads = 2 [ ol oz = [ ol upads
Q P Ja D Ja
=0,

for any (¢1,¢2) € E
Consider the Nehari manifold

Naw = {(u,v) € E{(0,0)} = {J} ,(u,0), (u,v)) = O}.
Thus, (u,v) € Ny, if and only if

(I3, 0), (u,0)) = ||(u,v)||p*/ﬂf(Z)IUIQIv\ﬁdZ*/Q(/\g(Z)\UIq+uh(Z)\v\q)dZ =0.

Note that the Nehari manifold NV ,, contains all nontrivial weak solutions of (L.1J).
Denote

[, 0) |7

w,weWLP(Q)\{0} (fQ |u|a|v|3dz)apTﬁ '

Modifying the proof of Alves et al [T, Theorem 5] or from Yin and Yang [18, Lemma
2.2], we can easily obtain that

Sa,p =

., _B_ o
Sus = ()7 + (5)#)s, (17)
where oo + 3 = p* and S is the best Sobolev constant defined by
Jo [VulPdz

S = inf

———— > 0.
wew @0} ([q [ulP"dz)p/p

Recall that S is independent of the domain and is never achieved except when
Q) = RY. Moreover, S is attained by the function

N-—p N-—p

U(z) = [N(N =p)]| 7 /(1 +|z|77) 7%,
so that
IVU|I%, = [U|?,. = S™/P.
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For A = = 0, we consider the quasilinear elliptic system

“Apu= Sl el in
Ay = af—ﬂ (2)ul*[o]*~2 in Q, (1.8)
(u,v) € E,
Related to this system, we define the energy functional
1
Tooltwv) = SN0l = = [ FEl bl dz
and
Opo= inf  Jyo(u,v),
0,0 (u,v)EN 0 070( )
where

Noo = {(u,v) € EN{(0,0)}[(Jg o (u, v), (u, v)) = 0}.

Moreover, if f = max,cq f(z) = 1, we define

1
Jmax(u,v) = 5||(u v /|u| |v\5dz

and

gmax = inf Jmax (’LL, U) 5
(u,0) ENmax

where
Ninax = {(u,v) € E\{(0,0)} : (Jjyax (4, 0), (u,0)) = O}

The paper is organized as follows. Firstly, we study the argument of the Nehari
manifold Ny ,,. Next, we show the existence of a positive solution (ug, vo) € Ny, of
(1.1). Finally, in Section 4, we show that the condition (A2) affects the number of
positive solutions of , that is, there are at least k critical points (u;, v;) € Ny,
of J,, such that Jy ,(u;,v;) = 7§7M((PS)—Value) for 1 <i<k.

Inspired by [I11 [I8], we establish the following theorem.

Theorem 1.1. System (1.1) admits at least one positive solution (ug,vo) € Ny ..

Theorem 1.2. Assume (A1)-(A3) hold, then there exists a positive number A*
such that (1.1)) admits at least k positive solutions for any 0 < A+ p < A*.

2. PRELIMINARIES

Lemma 2.1 ([T, Lemma 2.1]). Let D C RY™ (possibly unbounded) be a smooth
domain. If u, — u, v, — v weakly in Wol’p(D), and u, — u, v, — v almost
everywhere in D, then

lim \un—u| |v, —v[?dz = lim / \un|a\vn|ﬁdz—/ lu|®|v|Pdz.

n—oo

Note that J) , is not bounded from below in E. But from the following lemma,
we have that J) , is bounded from below on the Nehari manifold N} ,,.

Lemma 2.2. The energy functional Jy , ts bounded from below on the Nehari
manifold ./\/)\,ﬂ.
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Proof. For any (u,v) € Ny, we have

Tnu(u,v) = (}) - é)ﬂ(um)n% + (% - Z%) /Q @)l olPdz > .

Thus, Jy,, is bounded from below on N} .. O
Then, we define
O = (u,vi)Ieli/},“ Iy, v).
Lemma 2.3. (i) There exist positive number ¢ and dy such that Jy ,(u,v) >

do for [|(u,v)||e = ¢;
(ii) There ezists (w,v) € E\{(0,0)} such that ||(u,v)||g > ¢ and Jy ,(T,7) < 0.

Proof. (i) Combining (1.7), the Holder’s inequality (g1 = pf’iq, g2 = %, q%—l—q% =1)
with the Sobolev embedding theorem, we have

1 , 1 o 1 . .
Iau(w;v) = = (u, v) |l — E/Qf(Z)IUI [v]dz — Q/Q(AQ(Z)IU\ + ph(z)[v|?)dz

*

—_ 3

1 2= *
> —|[(w, )l - ] 1w, )|

iS]

p*

1
g melliglleo, l12lloo 12 2

ST+ w)(u0)] 7.

Thus, there exist positive numbers ¢, dg such that Jy ,(u,v) > dy for ||(u,v)||r = .
(ii) Note that

*

sP H sP

Iau(su, 5v) = — || (u, ) — p=

/ £l o) dz
Q
Sq

= — [ (Ag(2)|ul? + ph(z)[v]*)dz,
q9 Ja

for any (u,v) € E\{(0,0)}, then we have lim, .o J) u(su,sv) = —oo. Thus,
for fixed (u,v) € E\{(0,0)}, there exists 3 > 0 such that ||(Su,sv)||r > ¢ and
I (5u,5v) < 0. Let (w,v) = (Su, 5v), then we finish the proof. O

Define @5, = (J} ,(u,v), (u,v)), then for (u,v) € Ny ,, we have
(P u(u,0), (u,v))

= pll(u, )l - p* /Q F@)ul®fv]’dz ~ q/Q(/\g(Z)IUIq + ph(z)[o|")d=
= (=) v)lE+ @ -9 / (Ag(2)[ul? + ph(z)[v])dz
Q

= (0 - D v)[% + (g - ) /Q )l o]?dz < o.

Lemma 2.4. If (ug,vo) € Ni, satisfies Jx u(uo,vo) = ming, yen, , Iau(u,v) =
Ox,u, then (ug,vo) is a nontrivial solution of .
Proof. Since (®) ,(u,v),(u,v)) < 0 for each (u,v) € Ny, and Jy ,(ug,v0) =
ming, yyen; ,, Jau(t,v), by the Lagrange multiplier theorem, there is x € R such
that J} ,(ug,v0) = K®) ,(uo,v0) in 7', where E~" is the dual space of E. Then
we have

0= <J,I\,H(U07U0)a (uo,v0)) = ’<‘7<(I)/>\,;L(U0a o), (o, v0))-
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Thus k= 0and J} ,(uo,v0) = 0in E~!. Therefore, (ug,vg) is a nontrivial solution
of ( and JA#(uo,vo)—H)\u O

Lemma 2.5. For each (u,v) € E\{(0,0)}, there is a positive number S, ., such
that (Su,ptt, Su,wv) € Nau and Iy, (Suvt, Sy ) = SUPg>o Ja u(su,sv).

Proof. Let p(s) = Jy u(su,sv) for fixed (u,v) € E\{ (0,0)}, then we have

P

5
() = Iaulsu, sv) = I, v e - 2)[ul*v)’dz

s?

= — | (Ag(2)[ul? + ph(z)[v|")dz
q Jo

It is easy to see that ¢(0) = 0 and lim,_.o ¢(s) = —oo, then by Lemma [2.3] (i), we
obtain that sup,-q ¢(s) is achieved at some s, ,, > 0. Thus, we have ¢'(sy.) = 0;
that is, (sy U, Syv) € Ny, and we competed the proof. ]

Lemma 2.6. 0, , > do > 0 for some constant do.

Combining Lemma (i) with Lemma we can easily obtain the result of
the above lemma.

3. (PS)-CONDITION IN E FOR Jj

First, we give the definition of the Palais-Smale sequence and (PS)-condition in
E for the energy functional J.
Definition 3.1. Let ¢ € R, E be a Banach space and J € C*(E,R),
(1) {(un,vn)} is a (PS)c-sequence in E for J if J(up,v,) = ¢+ 0,(1) and
J' (tn,vn) = 0,(1) strongly in E~! as n — oo, where E~! is the dual space
of E.
(ii) We say that J satisfies the (PS).-condition in F if any (P.S).-sequence in
FE for J has a convergent subsequence.

Applying Ekeland’s variational principle and using the similar argument as in
Cao and Zhou [4] or Tarantello [14], we have the following lemma.

Lemma 3.2. There exist a (PS)g, ,-sequence {(un,vn)} in Ny, for Jy ..

Next, we show that Jy , satisfies the (PS).-condition for ¢ € (0, (Sa,5)"/P) in
E.

Lemma 3.3. J,, satisfies the (PS).-condition in E for ¢ € (0, % (Sa,3)N/?).

The proof of the above lemma is similar to the proof in [IT, Lemma 3.3]; thus it
is omitted here.

4. EXISTENCE OF k SOLUTIONS

Recall that the best Sobolev constant S is defined as

o IVl
wew b e @\ (0} ([l
r
Moreover, U(z) = [N(N_if)],i,p is a minimizer of S, and we can easily get that
(L[| P=T) 7

IVUIIL, = IUII7,. = S™/7.
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Let ¢;(z) € C5°(£2) be a cut function such that

1, |z —a'| < po/2,
Ui(2) = 40 <¥i(2) <1, po/2 < |z —a'| < po,
0, |z — a'| > po,

where 1 < ¢ < k, and |V;(2)| < C. Then, we define

i) = NPy (YU () = CLep () (77T + [z — a7,

N—p
where Cy = [N(N —p)] »* .
Next, we show that

; ; 1
SL>1;O) Tapu(s ol s/ Bul) < N(Sa,g)N/p uniformly in <.

Lemma 4.1. If there exists 0 < €9 < min{l, pg/2} such that for 0 < € < €, then
we have

sup Jy u(s {’/>u6,s{[u Se.3) NP uniformly in i.
s>0

Moreover,

1
0< 0>\7H < N(Sa,g)N/p.

Proof. From Hsu [I0, Lemma 4.3] and after a detailed calculation, we have the

following estimates
W2, = U2, e, + 0N ), "
IVUIL, = IVUIR, ) + O(N 7).

For 0 < € < po/2 and N > 2p, we have

il = [ U 1 0 ) 2 0 40, (42)
Bop i) ‘
where § = N — &=pla

When A = o = 0, we consider the functional Jy o : E — R given by

1 1 o
Joo(u,v) = =[|(u,v)|I; — 7/ F(2)|ul*[o]dz.
p P Ja
First, we claim that

sup Jo.o(s Yol , s/ Bul) <— 0,5) VP + O(N7P).

s>0
From assumption (A2), when o > N, we have
p/p* _
(] 1y as)™ =il + 0 ) = U1} oy + O ). (43

The equalities in combined with @ ) lead to
||vui||l’ VUL, gy + O(¥77)
o F @i a2y = 0T, ) + O(N7)

=S +0(N7P). (4.4)
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Using the fact that

sP sP” 1 A N 1. A
TA-EB = AL = (e
sup(, A= o Bl = 5 AR) N B

for any A > 0 and B > 0. By (4.4]), we obtain that
sup JO,O(s Yaul, s/ pul)

= suns [ (s/avaly + (s /FVulyaz = — [ flsandls/fuiaz)

— sup{ > / (a+ B)|Vuipdz — 2 / F(2)ad B i7" dz)
P Ja p Q
1 Jo o+ B)|Vul|Pdz N/p
N fQ a(;ﬁ%hj/gp*dz)p/lf‘

Q. B _a ‘ u |pd2’ ?

- %{[(ﬁ)w +(§)a ? ( (o £ Jo |Zz ye/p* )}N/
1
N

~ (Sa,8)Y? + O(MP).

)N/p

)

Since Jy,, is continuous in E, Jy ,(0,0) = 0, and from (4.1]), we see that the set

{(¥/aul, ¢/Bul)} is uniformly bounded in E for any 0 < € < min{1, pg/2}, then
there exists sg > 0 such that

sup Jx (s {”/>u€,s€[u < — ,g)N/p uniformly in 7,
0<s<so
for any 0 < e < min{1, £
Let gint = inf, 5 9(2 ) > 0 and hins = inf, g h(z) > 0, then we have

sup J)\,u(s {/auz’ S ’f/BUi)

$>S0

< sup Joo(s Yaui, s {/Bul) ——/( 9(2)| /@l |7 + ph(2)| 3/ Buil?)

$>380

1

N

IN

q
(Sa.p)NP 4+ O(NP) — SO A+ p) m/ dz
q Brg (i)

1

<
- N

q
(SQ,B)N/p +O(N7P) — %Cgm()\ + ,u)et9

where m = min{a%ginf,ﬁ%hinf} and 6 = N — (N_p)q > 0.

Since p < g < p*, it follows that 0 < 8 = N (N p)q <p< N —pfor N > 2p.
Thus, we can choose €y > 0 such that ¢y < min{1, 7} and O(eV—P) — %Cgm()\ +
p)e? < 0 for any 0 < € < ¢5. Therefore, we have for any 0 < ¢ < ¢,

, , 1
sup Jy (s ¢/ aul, s{/Bul) < N(SQ’Q)N/p uniformly in 4.
s>0

Combining Lemma [2.5] with Lemma [2.6] E we obtain

0<9}\,NSJ)\M 67 e</>u
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. . 1
= sup Jy (s /g, SWUQ < N(Sa,B)N/p-
s>0
Hence, the proof is complete

Proof of Theorem From Lemma we have that there is a minimizing
sequence {(un,v,)} C Ny, for Jy, satisfying Jx ,(un,vn) = 6, + on(1) and
J;\’u(un,vn) = 0,(1) in E~'. Combining Lemma with Lemma we ob-
tain 0 < 0y, < +(Sa,3)"/P and then there exist a subsequence (still denoted
by {(un,vn)}) and (ug,v9) € E such that (u,,v,) — (ug,vo) strongly in E. By
direct computation, we can easily prove that (ug,vo) is a nontrivial solution of
(1.1) and Jy ,(uo,vo) = Oy . Using the fact that Jy ,(uo,vo) = Jx . (Juol, [vol|) and
(Juol, [vo]) € Na,u and by Lemma [2.4] we may assume that ug > 0, vo > 0. Thus,
by the maximum principle, we can get that ug > 0 and vg > 0 in Q. That is, (1.1)
admits a positive solution (ug, vo) € N - O

Now we study the effect of the coefficient f(z). Then, we want to construct the
k compact (PS)-sequences.
From the assumptions (A2) and (A3), choose py > 0 such that

B,y (a')NByy(a?) =0 fori#jand1<i,j <k,

and UY_, B, (a’) C Q and f(a') = max,eq f(2) = 1.

Then we define M = {a’|1 < i < k} and M, o = U"_| B, js(a?). Suppose
UF_1 B, (a?) C B,,(0) for some ry > 0.

Let Q : E\{(0,0)} — R¥ be given by

_ Jox@)[ul*[v|’dz
Q(u; U) - fQ |u\a|v|5dz )

where y : RN — RY satisfying
2, |z < 7o,
x(z) =
{roz/|z|, |z| > ro.
For each 1 < i < k, we define
D5, = {(u,v) € Ny ,llQ(u,v) — a’| < po},
oD, = {(u,v) € Ny [ Q(u,v) — a’| = po},

L= inf  Jy ,(u,v
W (u,v)GDiyu )\,;L( s ),
Vi = inf  Jy u(u,0).

(u,v)Ean\’#

From Lemma there exists s > 0 such that (s! ¢/aul, st ¢/Bul) € Ny, for
each 1 < i < k. Then we have the following lemma.

Lemma 4.2. There exists €; € (0,€y) such that if 0 < € < €1, then
Q(s! ¢aul, st /Bul) e M,/

for each 1 <i<k.
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The proof of the above lemma follows from the same argument as in [I1, Lemma
4.2], and is omitted here.

Before we show that ’yﬁ\’ u < ’yﬁ\’ ,, for sufficiently small A, 1, we give the following
lemma.

Lemma 4.3. 0.« = %(SQ’B)N/:D'

The proof of the above lemma follows from the same argument as in [I1, Lemma
4.3], and it is omitted here.

Lemma 4.4. 6y = Omax-

Proof. Using the fact that f(z) < max,cq f(z) = 1, we obtain Opax < 0po. From
the proof of Lemma

sup Jo.o(s &/l , s/ Bul) <— w,5)VP + O(NP)
>0

= gmax + O(EN_p)v

uniformly in 7. Similarly to Lemma we can get that there is a sequence {t!} C
R+ such that (¢! ¢/aul,t: ¥/Bul) € Noo and

Oo.0 < Joo(t: /o, ti 4/ Bul)
= sup Jo o(s¢/au’, s {/ful)
s>0

< %(Sa,ﬁ)N/p +0(N7P)

= Omax + O(eN7P).

Let ¢ — 0T, we obtain that 00,0 < Omax. Therefore, we have 0y = Omax and the
proof is complete. (I

Using the ideas in [I1], we give the following Lemmas.

Lemma 4.5. There exists a positive number 1y such that if (u,v) € Npo and
Jo,o(u,v) < 00.0(= Omax = %(Saﬁ)N/p) + 10, then Q(u,v) € My, /3.

Proof. Suppose by contradiction that there exists a sequence {(un,v,)} C Noo
such that Joo(un,vn) = o0 + 0n(1) as n — oo and Q(un,vn) & M, o for all
n € N. A similar argument as in Lemma [2.5] we obtain that there is a sequence
{t" s} C RT such that (¢, un, t".x0n) € Nmax and

0 < Omax < Jmax( maquL?tmaxvn) < JO 0( maxun’tmax ) < JO O(UTL’,UH)

1
= 90,0(: emax = N(Sa,ﬁ)N/p) + On(l), as n — o0.

From Ekeland’s variational principle, there exists a (PS)g,,, . -sequence {(Up, V,)}
for Jmax and ||(Up, — t2axtn, Vi — thax¥n)|lE = 0n(1). Now, we will show that

/ |Un|®|V|Pdz £ 0 as n — oco.

Assuming the contrary and using that |[(Un, Vo)l = [o [Unl*ValPdz + 0,(1) as
n — 00, we obtain

emax + On(l) = Jmax(U'ru Vn)
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1 P 1 a B
= EH(UmVn)”E_E Q|Un| [Val”dz + 0,(1)

1 1
=(=- ﬂ/ U ||V Pz + 0, (1) = 04 (1),
p P Q

which is a contradiction. Thus, we obtain that
/ ‘un|a‘vn|ﬁd2’ 7L> 0 asn— oo.
Q

Therefore, from (Lions [12] or Willem [I5]), there exist sequences {6, } C R* and
{yn} C Q such that

[ walmrezo (4.5)
Bs,, (yn)

for some positive constant Cy. Let

N—

~ o~ N-p N-p
(Uns Vi) = (6" Un(nz +yn),0n" Val(dnz +yn)),
then we can easily get 5- dlbt(yn, 00Q) — oo as n — oo, and there exist a subse-

quence (still denoted by {(Un7 V,)}) and (U, V) € WEP(RY) x W12 (RN) such that
U, > U and V,, — V strongly in Wl’p(RN)

From 7 we deduce that U # 0 and 1% # 0. Using that Q is a bounded
domain and {yn} C Q, there exists a subsequence {4, } such that d,, — 0 and we
can suppose the subsequence y,, — o €  as n — oo.

Next, we will show that yo € M. In fact, since Jo o(t2axtn, thaxVn) = Omax +
on(1) and |[(Up — 2 ,xtn, Vo — th0n)lE = on(l) as n — oo. Combining the
Lebesgue dominated convergence theorem with the fact that i dist(yn, 002) — oo
as n — 00, we obtain

(Sa,p)V/P =

I /f ) Unl? Vel dz + 00(1)

n

(% /f N0 G52V G52 + 0a)
Flyo

)N/p

Then, f(yo) = 1; that is, yo € M.
On the other hand, since ||(U,, — %

max

and V,, — V strongly in WLP(RN) we have

Uny Vi, — 2 n)||E = 0n(1) and (7; —U

fQX 7rilaxrl“l”ﬂl |tmaxvn‘ﬁd’z
fQ |tmaxu’ﬂ| |tmaxv’ﬂ|ﬁdz
% fo IU (55| Vi (5522 Pd
IV Jo [Un (252 |V (5522 ) |Pdz

:y0+on() as n — 0o,

Q(un,vn) =

+ o0n(1)

which leads to a contradiction. Thus, there exists 79 > 0 such that if (u,v) € Ny
and Jo o(u,v) < 0p,0(= Omax = %(Sa’g)N/p) + 1o, then Q(u,v) € M, /5. O

Lemma 4.6. If (u,v) € Ny, and Jx ,(u,v) < 0 0(= Omax = %(SQ,Q)N/ID) + %,
then there exists a positive number A* such that Q(u,v) € M, /5 for 0 < A-pu < A*.
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Proof. We use the similar computation in Lemma [2.5] to obtain that there is a
unique positive number

( ||(u )| )%
Jo F(2)|ul*|v]Pdz
such that (tu,tv) € Nyo. We want to show that there exists A > 0 such that if

0 <A+ pu <A, then t < £ for some constant £ > 0 (independent of v and v).
Indeed, for (u,v) € Ny ,, we have

"o

t =t(u,v) =

Omax + — 5 > Iy u(u,v)
11 b (L / 5
=(-—-)|[(u,v - f(@)|ul¥|Pdz
(p q)||( e+ q )ul*[v]
> T, )|
p
Then
pq Mo
e < - emax 5/ 4.
[(u, )| < & q_p( +5) (4.6)
Moreover,
O<d0§9,\,H<J)\N(u,U)
(= Mol = = =) [ Og@al? + ph(2)lel)d
= (= - )|(u,v - - g(2)|ul? + ph(z)v|?)dz
p P R
1
< <o)
Then,
[(w, v)|Iz = & = Ndo. (4.7)
Furthermore,

/ F@ul ol dz = |[(u,0)| */(AQ(Z)IW + ph(z)[o|*)dz
Q Q
> & — max{[|glloo; [[2]loo TSRO+ ]

Thus, there exists A > 0 such that for 0 < A+ p < A,

/Qf(Z)IU\O‘Ivlﬁdz > & — max{[[glloe, [l QTSP AL > 0. (4.8)

Therefore, combining (4.6), (4.7) with (4.8), we have that ¢ < £ for some constant
¢ > 0 (independent of v and v) for some 0 < A+ p < A. Then

Qmax—i— 5 0> Iapu(u, v) = sup Jy ,(su, sv) > Jy ,(tu, to)
s>0

1 1
= —||(tu, tv p——/ 2)|tu|*|tv|Pdz
p||( e p Qf( )[tu|*[tv]
1
~+ [ Qo + uh(eleol)ax
q.Ja
1
> Joo(tu,tv) — 6/(/\g(z)|tu\q + ph(2)|tv|?)dz
Q
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which leads to
1
Jo,0(tu, tv) < Opmax + % + p / (Ag(2)[tu|? + ph(2)|tv]|?)dz

1
o+ max{llgllomIIhIIoo}IQI 7 STE (A )| (fus to) |

P—q

1
o+ ¢ exllg oo, [12loc 162 "

STREUEL (A + ).

Therefore, there exists A* € (07 A) such that for 0 < A+ pu < A*,
JO,O(tu7tv) S emax + 1o,

where (tu,tv) € Np. By Lemma | we obtain

S~ X(2)|tu|*[tv|Pdz

tu, tv € )
Qtu tv) = Jeon ltule[to]Pdz po/2

or
Q(u,v) € My, 5 for 0 <A+ pu <A™
The proof is complete. O

Next, we show that 7)'\ <7 o forany 0 <A+ p < A*. In fact, from Lemmas
1) and [£-2] . we obtain that there exists 0 < €1 < 60 such that

Yo < T ul, st /pul) < w3) NP, (4.9)

for any 0 < € < €.
By Lemma [£.6] we obtain
o 1 "o
Va2 Omax - (= N(Saﬂ)N/p) T (4.10)
for any 0 < A + p < A*. -
Thus, for each 1 <i <k, from (4.9) and ({L.10), we have that Vi <74, for any
0 <A+ p < A*. Therefore, 75 , mfuqu LoD, Iy pu(u) for any 0 < A+ p < A%
Ekeland’s variational principle comblned Wlth “the standard computation leads
to the following lemma.

Lemma 4.7. For each 1 < i <k, there is a (PS),: -sequence {(un,vn)} C Dj u
e )
in B for J .

Proof of Theorem , From Lemma H, for each 1 < i < k, there is a (PS),Y; _
. s
sequence {(un,vn)} C D} , in E for Jy ,. And from (4.9), we have

’Y}\,[L < N(Saﬁ) /p.

Lemma implies Jy, satisfies the (PS).-condition for ¢ € (—o00, %(Sa,5)V/?)
in E. Thus, we obtain that Jy , has at least k critical points in N , for any
0<A+p<A*.

Set uy = max{u,0} and vy = max{v,0}, then replace [, f(z)lu|* \v|5dz and
Jo(Ag(2)|ul?® + ph(2)[v]9)dz of the functional Jy, by the terms [, f(2)ulv]dz

and fQ()\g(z)uj_ + ph(z)vd)dz respectively. Thereby, we have that (1.1) has k
nonnegative solutions. By the maximum principle, we obtain that (1.1)) admits k
positive solutions. Thus, the proof is complete. (I
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