INFINITE SEMIPOSITONE PROBLEMS WITH INDEFINITE WEIGHT AND ASYMPTOTICALLY LINEAR GROWTH FORCING-TERMS

GHASEM A. AFROUZI, SALEH SHAKERI

Abstract

In this work, we study the existence of positive solutions to the singular problem $$
\begin{gathered} -\Delta_{p} u=\lambda m(x) f(u)-u^{-\alpha} \quad \text { in } \Omega, \\ u=0 \quad \text { on } \partial \Omega, \end{gathered}
$$ where λ is positive parameter, Ω is a bounded domain with smooth boundary, $0<\alpha<1$, and $f:[0, \infty] \rightarrow \mathbb{R}$ is a continuous function which is asymptotically p-linear at ∞. The weight function is continuous satisfies $m(x)>m_{0}>0$, $\|m\|_{\infty}<\infty$. We prove the existence of a positive solution for a certain range of λ using the method of sub-supersolutions.

1. Introduction

In this article, we consider the positive solution to the boundary-value problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda m(x) f(u)-\frac{1}{u^{\alpha}} \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where λ is positive parameter, $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p>1, \Omega$ is a bounded domain with smooth boundary $\partial \Omega, 0<\alpha<1$, and $f:[0, \infty] \rightarrow \mathbb{R}$ is a continuous function which is asymptotically p-linear at ∞. The weight function $m(x)$ satisfies $m(x) \in C(\Omega)$ and $m(x)>m_{0}>0$ for $x \in \Omega$ and also $\|m\|_{\infty}=l<\infty$. We prove the existence of a positive solution for a certain range of λ.

We consider problem (1.1) under the following assumptions.
(H1) There exist $\sigma_{1}>0, k>0$ and $s_{0}>1$ such that $f(s) \geq \sigma_{1} s^{p-1}-k$ for all $s \in\left[0, s_{0}\right]$;
(H2) $\lim _{s \rightarrow+\infty} \frac{f(s)}{s^{p-1}}=0$ for some $\sigma>0$.
Let $F(u):=\lambda m(x) f(u)-\frac{1}{u^{\alpha}}$. The case when $F(0)<0$ (and finite) is referred to in the literature as a semipositone problem. Finding a positive solution for a semipositone problem is well known to be challenging (see [2, 10]). Here we consider the more challenging case when $\lim _{u \rightarrow 0^{+}} F(u)=-\infty$. which has received attention

[^0]very recently and is referred to as an infinite semipositone problem. However, most of these studies have concentrated on the case when the nonlinear function satisfies a sublinear condition at ∞ (see [11, 12, 14). The only paper to our knowledge dealing with an infinite semipositone problem with an asymptotically linear nonlinearity is [7], where the author is restricted to the case $p=2$. Also here the existence of a positive solution is focused near λ_{1} / σ, where λ_{1} is the first eigenvalue of $-\Delta$. See also [1, 15], where asymptotically linear nonlinearities have been discussed in the case of a nonsingular semipositone problem and an infinite positone problem. Recently, in the case when $m(x)=1$ problem (1.1) has been studied by Shivaji et al [8. The purpose of this paper is to improve the result of [8] with weight m. We shall establish our existence results via the method of sub and super-solutions.

Definition 1.1. We say that (ψ) (resp. Z) in $W^{1, p}(\Omega) \cap C(\bar{\Omega})$ are called a subsolution (resp. super-solution) of (1.1), if ψ satisfies

$$
\begin{gather*}
\int_{\Omega}|\nabla \psi(x)|^{p-2} \nabla \psi(x) . \nabla w(x) d x \leq \int_{\Omega}\left(\lambda m(x) f(\psi)-\frac{1}{\psi^{\alpha}}\right) w(x) d x \quad \forall w \in W \\
\psi>0 \quad \text { in } \Omega \tag{1.2}\\
\psi=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

and

$$
\begin{gather*}
\int_{\Omega}|\nabla Z|^{p-2} \nabla Z \cdot \nabla w(x) d x \geq \int_{\Omega}\left(\lambda m(x) f(Z)-\frac{1}{Z^{\alpha}}\right) w(x) d x \quad \forall w \in W \\
Z>0 \quad \text { in } \Omega \tag{1.3}\\
Z=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $W=\left\{\xi \in C_{0}^{\infty}(\Omega): \xi \geq 0\right.$ in $\left.\Omega\right\}$
The following lemma was established by Cui [3.
Lemma 1.2 ([3). If there exist sub-supersolutions ψ and Z, respectively, such that $\psi \leq Z$ on Ω, Then (1.1) has a positive solution u such that $\psi \leq u \leq Z$ in Ω.

In next Section, we will state and prove the existence of a positive solution for a certain range of λ.

2. Main Result

Our main result for problem (1.1) reads as follows.
Theorem 2.1. Assume (H1)-(H2). If there exist constants $s_{0}^{*}(\sigma, \Omega), J(\Omega), \underline{\lambda}$, and $\hat{\lambda}>\underline{\lambda}$ such that if $s_{0} \geq s_{0}^{*}$ and $m_{0} \sigma_{1} /(l \sigma) \geq J$, then (1.1) has a positive solution for $\lambda \in[\underline{\lambda}, \hat{\lambda}]$. Here μ_{1} is the principal eigenvalue of operator $-\Delta_{p}$ with zero Dirichlet boundary condition.

Proof. By Anti-maximum principle [13], there exists $\xi=\xi(\Omega)>0$ such that the solution z_{μ} of

$$
\begin{gathered}
-\Delta_{p} z-\mu|z|^{p-2} z=-1 \quad \text { in } \Omega \\
z=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

for $\mu \in\left(\mu_{1}, \mu_{1}+\xi\right)$, is positive in Ω and is such that $\frac{\partial z_{\mu}}{\partial \nu}<0$ on $\partial \Omega$, where ν is outward normal vector at $\partial \Omega$.

Since $z_{\mu}>0$ in Ω and $\frac{\partial z_{\mu}}{\partial \nu}<0$ there exist $m>0, A>0$, and $\delta>0$ such that $\left|\nabla z_{\mu}\right| \geq m$ in $\bar{\Omega}_{\delta}$ and $z_{\mu} \geq A$ in $\Omega \backslash \bar{\Omega}_{\delta}$, where $W=\{x \in \Omega: d(x, \partial \Omega) \leq \delta\}$.

We prove the existence of a solution by the comparison method [4]. It is easy to see that any sub-solution of

$$
\begin{gather*}
-\Delta_{p} u=\lambda m_{0} f(u)-\frac{1}{u^{\alpha}} \quad \text { in } \Omega \tag{2.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

is a sub-solution of 1.1. Also any super-solution of

$$
\begin{gather*}
-\Delta_{p} u=\lambda l f(u)-\frac{1}{u^{\alpha}} \quad \text { in } \Omega \tag{2.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

is a super-solution of (1.1), where l is as defined above.
We first construct a supersolution for 1.1). Let $Z=M_{\lambda} e_{p}$, where $M_{\lambda} \gg 1$ and e_{p} is the unique positive solution of

$$
\begin{gathered}
-\Delta_{p} e_{p}=1 \quad \text { in } \Omega \\
e_{p}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Let $\tilde{f}(s)=\max _{t \in[0, s]} f(t)$. Then $f(s) \leq \tilde{f}(s), \tilde{f}(s)$ is increasing, and

$$
\lim _{u \rightarrow+\infty} \frac{\tilde{f}(u)}{u^{p-1}}=0
$$

Hence, we can choose $M_{\lambda} \gg 1$ such that

$$
2 \sigma \geq \frac{\tilde{f}\left(M_{\lambda}\left\|e_{p}\right\|_{\infty}\right)}{\left(M_{\lambda}\left\|e_{p}\right\|_{\infty}\right)^{p-1}}
$$

Now let $\hat{\lambda}=1 /\left(2 l \sigma\left\|e_{p}\right\|_{\infty}^{p-1}\right)$. For $\lambda \leq \hat{\lambda}$,

$$
-\Delta_{p} Z=M_{\lambda}^{p-1} \geq \frac{\tilde{f}\left(M_{\lambda}\left\|e_{p}\right\|_{\infty}\right)}{2 \sigma\left\|e_{p}\right\|_{\infty}^{p-1}} \geq \lambda l \tilde{f}\left(M_{\lambda} e_{p}\right) \geq \lambda l f\left(M_{\lambda} e_{p}\right) \geq \lambda l f(Z)-\frac{1}{Z^{\alpha}}
$$

Thus, Z is a supersolution of 2.2 ; therefore Z is a supersolution of (1.1) Define

$$
\psi:=k_{0} z_{\mu}^{\frac{p}{p-1+\alpha}}
$$

where $k_{0}>0$ is such that

$$
\frac{1}{k_{0}^{p-1+\alpha}}\left(1+\frac{k k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}}{2 l \sigma\left\|e_{p}\right\|_{\infty}^{p-1}}\right) \leq \min \left\{\left(\frac{m^{p}(1-\alpha)(p-1) p^{p-1}}{(p-1+\alpha)^{p}}\right),\left(\frac{p}{p-1+\alpha}\right)^{p-1} A\right\} .
$$

Then

$$
\nabla \psi=k_{0}\left(\frac{p}{p-1+\alpha}\right) z_{\mu}^{\frac{1-\alpha}{p-1+\alpha}} \nabla z_{\mu}
$$

and

$$
\begin{align*}
-\Delta_{p} \psi= & -\operatorname{div}\left(|\nabla \psi|^{p-2} \nabla \psi\right) \\
= & -k_{0}^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \operatorname{div}\left(z_{\mu}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}}\left|\nabla z_{\mu}\right|^{p-2} \nabla z_{\mu}\right) \\
= & -k_{0}^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left\{\left(\nabla z_{\mu}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}}\right) \cdot\left|\nabla z_{\mu}\right|^{p-2} \nabla z_{\mu}\right. \\
& \left.+z_{\mu}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}} \Delta_{p} z_{\mu}\right\} \\
= & -k_{0}^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1}\left\{\frac{(1-\alpha)(p-1)}{p-1+\alpha} z_{\mu}^{\frac{-\alpha p}{p-1+\alpha}}\left|\nabla z_{\mu}\right|^{p}\right. \tag{2.3}\\
& \left.+z_{\mu}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}}\left(1-\mu z_{\mu}^{p-1}\right)\right\} \\
= & k_{0}^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \mu z_{\mu}^{\frac{p(p-1)}{p-1+\alpha}}-k_{0}^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} z_{\mu}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}} \\
& -\frac{k_{0}^{p-1} p^{p-1}(1-\alpha)(p-1)\left|\nabla z_{\mu}\right|^{p}}{(p-1+\alpha)^{p} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}} .}
\end{align*}
$$

Now we let $s_{0}^{*}(\sigma, \Omega)=k_{0}\left\|z_{\mu}^{\frac{p}{p-1+\alpha}}\right\|_{\infty}$. If we can prove that

$$
\begin{equation*}
-\Delta_{p} \psi \leq \lambda m_{0} \sigma_{1} k_{0}^{p-1} z_{\mu}^{\frac{p(p-1)}{p-1+\alpha}}-\lambda k-\frac{1}{k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}} \tag{2.4}
\end{equation*}
$$

then (H1) implies that $-\Delta_{p} \psi \leq \lambda m_{0} f(\psi)-\frac{1}{\psi^{\alpha}}$, and ψ will be a subsolution of (1.1).

We will now prove (2.4) by comparing terms in (2.3) and (2.4). Let $\underline{\lambda}=$ $\frac{\mu\left(\frac{p}{p-1+\alpha}\right)^{p-1}}{m_{0} \sigma_{1}}$. For $\lambda \geq \underline{\lambda}$,

$$
\begin{equation*}
k_{0}^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} \mu z_{\mu}^{\frac{p(p-1)}{p-1+\alpha}} \leq \lambda m_{0} \sigma_{1} k_{0}^{p-1} z_{\mu}^{\frac{p(p-1)}{p-1+\alpha}} \tag{2.5}
\end{equation*}
$$

Also since $\lambda \leq \hat{\lambda}=\frac{1}{2 l \sigma\left\|e_{p}\right\|_{\infty}^{p-1}}$,

$$
\begin{align*}
\lambda k+\frac{1}{k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}} & \leq \frac{1}{k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}}+\frac{k}{2 l \sigma\left\|e_{p}\right\|_{\infty}^{p-1}} \\
& =\frac{k_{0}^{p-1}}{z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}}\left[\frac{1}{k_{0}^{p-1+\alpha}}\left(1+\frac{k k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}}{2 l \sigma\left\|e_{p}\right\|_{\infty}^{p-1}}\right)\right] \tag{2.6}
\end{align*}
$$

Now in Ω_{δ}, we have $\left|\nabla z_{\mu}\right| \geq m$, and by 2.2 ,

$$
\left.\frac{1}{k_{0}^{p-1+\alpha}}\left(1+\frac{k k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}}{2 l \sigma\left\|e_{p}\right\|_{\infty}^{p-1}}\right)\right] \leq \frac{m^{p}(1-\alpha)(p-1) p^{p-1}}{(p-1+\alpha)^{p}}
$$

Hence

$$
\begin{equation*}
\lambda k+\frac{1}{k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}} \leq \frac{k_{0}^{p-1} p^{p-1}(1-\alpha)(p-1)\left|\nabla z_{\mu}\right|^{p}}{(p-1+\alpha)^{p} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}} \quad \text { in } \Omega_{\delta} \tag{2.7}
\end{equation*}
$$

From 2.5, 2.7) it can be seen that 2.4 holds in Ω_{δ}.

We will now prove 2.4 holds also in $\Omega \backslash \Omega_{\delta}$. Since $z_{\mu} \geq A$ in $\Omega \backslash \Omega_{\delta}$ and by 2.2 and 2.6 we obtain

$$
\begin{equation*}
\lambda k+\frac{1}{k_{0}^{\alpha} z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}} \leq \frac{k_{0}^{p-1}}{z_{\mu}^{\frac{\alpha p}{p-1+\alpha}}}\left(\frac{p}{p-1+\alpha}\right)^{p-1} z_{\mu} \leq k_{0}^{p-1}\left(\frac{p}{p-1+\alpha}\right)^{p-1} z_{\mu}^{\frac{(1-\alpha)(p-1)}{p-1+\alpha}} \tag{2.8}
\end{equation*}
$$

in $\Omega \backslash \Omega_{\delta}$.
From (2.5) and (2.8), (2.4) holds also in $\Omega \backslash \bar{\Omega}_{\delta}$. Thus ψ is a positive subsolution of 1.1 if $\lambda \in[\underline{\lambda}, \hat{\lambda}]$. We can now choose $M_{\lambda} \gg 1$ such that $\psi \leq Z$. Let $J(\Omega)=$ $2\left\|e_{p}\right\|_{\infty}^{p-1} \mu\left(\frac{p}{p-1+\alpha}\right)^{p-1}$. if $\frac{m_{0} \sigma_{1}}{l \sigma} \geq J$ it is easy to see that $\underline{\lambda} \leq \hat{\lambda}$, and for $\lambda \in[\underline{\lambda}, \hat{\lambda}]$ we have a positive solution. This completes the proof

References

[1] A. Ambrosetti, D. Arcoya, B. Buffoni; Positive solutions for some semi-positone problems via bifurcation theory, Diff. Int. Eqs, 7 (1994), 655-663.
[2] H. Berestycki, L. A. Caffarelli, L. Nirenberg; Inequalities for second order elliptic equations with applications to unbounded domains, Duke Math. J., A Celebration of John F. Nash Jr, 81 (1996), 467-494.
[3] S. Cui; Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Anal., 41 (2000), 149-176.
[4] P. Drabek, P. Kerjci, P. Takac; Nonlinear differential equations, Chapman and Hall/CRC, 1999.
[5] M. Ghergu, V. Radulescu; Multi-parameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edin, 135(A) (2005), 6183.
[6] M. Ghergu, V. Radulescu; Singular elliptic problems: bifurcation and asymptotic analysis, Oxford Lecture Series in Mathematics and its Applications, 37. The Clarendon Press, Oxford University Press, Oxford (2008).
[7] D. D. Hai; On an asymptotically linear singular boundary value problem, Topo. Meth. in Nonlin. Anal, 39 (2012), 83-92.
[8] D. D. Hai, L. Sankar, R. Shivaji; Infinite semipositone problem with asymptotically linear growth forcing terms, Differential Integral Equations, 25(12) (2012), 1175-1188.
[9] T. Laetsch; The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13.
[10] P. L. Lion; On the existence of positive solutions of semilinear elliptic equations, SIAM Rev, 24 (9) (1982), 441-467.
[11] Eunkyoung Lee, R. Shivaji, J. Ye; Positive solutions for elliptic equations involving nonlinearities with falling zeros, Applied Mathematics Letters, 22 (12) (2009), 846-851.
[12] Eunkyoung Lee, R. Shivaji, J. Ye; Classes of infinite semipositone systems,, Proc. Roy. Soc. Edin, 139(A) (2009), 815-853.
[13] Takac Peter; Degenerate elliptic equations in ordered Banach spaces and applications, Nonlinear differential equations, 404 II Chapman, Hall/CRC, Research Notes in Mathematic, 119-196.
[14] M. Ramaswamy, R. Shivaji, J. Ye; Positive solutions for a class of infinite semipositone problems, Differential Integral Equations, 20(12) (2007), 1423-1433.
[15] Z. Zhang; Critical points and positive solutions of singular elliptic boundary value problems,, J. Math. Anal. Appl, 302 (2005), 476-483.

Ghasem Alizadeh Afrouzi
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: afrouzi@umz.ac.ir

Saleh Shakeri
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: s.shakeri@umz.ac.ir

[^0]: 2000 Mathematics Subject Classification. 35J55, 35J25.
 Key words and phrases. Infinite semipositone problem; indefinite weight; forcing term;
 asymptotically linear growth; sub-supersolution method.
 (C) 2013 Texas State University - San Marcos.

 Submitted September 17, 2012. Published July 8, 2013.

