Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 156, pp. 1-8.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

HYERS-ULAM STABILITY FOR GEGENBAUER DIFFERENTIAL
EQUATIONS

SOON-MO JUNG

ABSTRACT. Using the power series method, we solve the non-homogeneous
Gegenbauer differential equation

(1 — 22y (z) + n(n — Dy(z) = Zamz

Also we prove the Hyers-Ulam stability for the Gegenbauer differential equa-
tion.

1. INTRODUCTION

Let Y be a normed linear space and I be an open subinterval of R. If for any
function f : I — Y satisfying the differential inequality

lan(@)y™ (@) + an—1 (@)y " (@) + - + a1 (2)y (2) + ao(2)y(z) + h(z)|| <&

for all z € I and for some ¢ > 0, there exists a solution fy : I — Y of the differential
equation

an(2)y™ (@) + an—1(@)y "V (@) + -+ ar(@)y (2) + ao(2)y(@) + h(z) =

such that || f(z) — fo(z)|| < K(g) for any « € I, where K(¢) depends on & only,
then we say that the above differential equation satisfies the Hyers-Ulam stability
(or the local Hyers-Ulam stability if the domain I is not the whole space R). We
may apply these terminologies for other differential equations. For more detailed
definition of the Hyers-Ulam stability, refer the reader to |2, [3] [7].

Apparently Obloza [12] T3] was the first author who investigated the Hyers-Ulam
stability of linear differential equations. Here, we cite a result by Alsina and Ger
[1]: If a differentiable function f: I — R is a solution of the differential inequality
ly'(z) —y(x)| < e, where I is an open subinterval of R, then there exists a solution
fo : I — R of the differential equation y'(x) = y(x) such that | f(z) — fo(z)| < 3e for
any « € I. This result by Alsina and Ger was generalized by Takahasi, Miura and
Miyajima [I6]. They proved that the Hyers-Ulam stability holds for the Banach
space valued differential equation y'(z) = Ay(x) (see also [10} [1T], [15]).
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Using the conventional power series method, the author investigated the general

solution of the inhomogeneous linear first-order differential equation
oo
y(@) = y() = D am(e o)
m=0

where A is a complex number and the convergence radius of the power series is pos-
itive. This result was applied for proving an approximation property of exponential
functions in a neighborhood of ¢ (see [6] and [4, [5]).

Throughout this article, we assume that p; is a positive real number or infinity.
In Section 2, using an idea from [0], we investigate the general solution of the
inhomogeneous Gegenbauer differential equation

(1—2*)y"(z) + n(n—1)y Zamm (1.1)

where the power series has a radius of convergence greater than or equal to p;.
Moreover, we prove the Hyers-Ulam stability of the Gegenbauer differential equation
(2.1) in a certain class of analytic functions.

2. GENERAL SOLUTION OF (1.1J

For an integer n > 2, the second-order ordinary differential equation

(1—2%)y"(z) + n(n — )y(z) =0 (2.1)
is a kind of the ultraspherical or Gegenbauer differential equation and has a gen-
eral solution of the form y(x) = Cy1J,(z) + CoHy(z), where we denote by J,(x)
and H,(z) the Gegenbauer functions which are expressed by using the Legendre
functions of the first and second kind as follows:

Pn—Z(x) - Pn(x) Qn—Q(x) - Qn(:r')
n = 5 Hn = .
Inl®) on — 1 (@) o — 1
The Gegenbauer differential equation (2.1)) is encountered in hydrodynamics when
describing axially symmetric Stokes flows [I4]. We recall that p; is a positive real
number or infinity.

Theorem 2.1. Let n be an integer greater than 1 and let py be the radius of
convergence of power series y _, amx™. Define p := min{l,p1}. Then every
solution y : (—p,p) — C of the mhomogeneous Gegenbauer differential equation
(1.1) can be expressed as

y(@) = yn(z) + Z Cmx™ (2.2)

where the coefficients ¢y, ’s are given by
m—1 m—1
(Qk)!agk . .
Com = Z WH (26 —n)(2i+n—1),
k=0 i=k+1
-1

m—1 m
(2k + 1)!a2k+1 . .
Comi1 = E Temi1 H (2t —n+1)(2i +n)
k=0 i=k+1

for each m € N and yp(z) is a solution of the Gegenbauer differential equation

2.
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Proof. Since each solution of (|1.1)) can be expressed as a power series in x, we put

y(x) = > °_ o cma™ in (L.1]) to obtain
(1— 22)y"(x) + nn — y(z)

[(m+2)(m+ 1)emi2 — (m—n)(m+n—1)cy|a™

1M 10
S
3

from which we obtain the recurrence formula

(m+2)(m+ Depyz — (m—n)(m+n—1)cm = am (2.3)
for all m € Ng.
Now we prove that the formula

k=0 o i=k+1 (24)
+ (2(;;)' H (20 —n)(2i+n—1)
=0

holds for any m € N: If we set m = 1 in (2.4, then we obtain 2c¢o +n(n—1)cy = ag
which coincides with (2.3) when m = 0. We assume that the formula (2.4) is true
for some m € N. Then, it follows from (2.3) and the induction hypothesis that

a2m 2m—-n)2m+n—1)

mtr T o )em 1) | @m+2)@m+1)
m—1 m
B (2m+;)2(ném+ n* Z m _:kHH(Qi —m(@itn =)
mH (2 —n)(2i +n—1)
i) ;’jf;’“ ﬁrl(2in)(2i+n1)
2m+2'H n)(2t +n —1),

which can be obtained provided we replace m in (2.4) with m + 1. Hence, we

conclude that the formula (2.4)) is true for all m € N. Similarly, we can prove the
validity of the formula

m—1 m—1
Qk‘ + 1 'a2k+1 H . .
(2t —n+1)(2i +n)
S @2m+1) el 25)
m—1 :

+m E}(2i—n+1)(2i+n)

Com—+1
k=0

for all m € N.
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Indeed, we can set ¢ = ¢; = 0 in (2.4) and (2.5). Under this assumption, we

have

Com = Z (2(];:)’”;;?]6 H_ (21*71)(22%’71,7 1)

k=0 i=k+1
[n/2]-1 m—1
(2k)!a2k . .
Z m)! H (20 —n)(2i+n—-1)
k=0 i=k+1
m—1 (2]{5)'@ m—1
+ 2‘?‘“ [T @i-n@i+n-1)
k=[n/2] (2m)! i=k+1
n/2]-1 [n/2] m-1
2k)!

_ (2k)! af’“( I1 (2i—n)(2i+n—1))( I1 (2i—n)(2i+n—1))
k=0 (2m)! i=k+1 i=[n/2]+1
m—1 m—1

2k)a . .

+ ((Q)m)f’“ [T @i—n)@i+n-1).

k=[n/2] i=k+1

Hence, since |2i — n||2i +n — 1] < 2i(2i — 1) for i > [n/2], we obtain
[n/2]-1

@OMazl T s i T
|cam| < kzjo W(H |22—n|\21+n—1|>< H (2@)(22—1))

= i=k+1 i=[n/2]+1

< (2K)!|az] T oo
@T)%Oln(k) H (20)(2i — 1)

k i=[n/2]+1

=0
N~ C0axl T g0 v0r 1
> o Ll @)ei-u,

k=[n/2] i=k+1
where o, (k) := Hln/,ﬂ_l |20 —n||2i +n — 1] for k € {0,1,...,[n/2] — 1}. Moreover,
taking into account that []:" k+1(22)(22 —1)=(2m-— 2)'/( k)!, we have

| < [n/2]-1 o () |z . m—1 el ) 1 m=l | az| 20
Com| < E — E < — , .
2 2m(2m — 1) 2m(2m —1) — m 2(2m —1)
k=0 k=[n/2] k=0
for all m € N, where o, := max{®,(0), a,(1),...,a,([n/2] —1),1}. Similarly, we
obtain
ﬂn|a2k+1|
m 2.
|cam1| < E 2em+1) (2.7)

for any m € N, where 3, = max{ﬁn( ), ﬁn( )yoees Bn([n/2] = 1),1} and G, (k) =
12 120 —n+ 1||22 —l—n| for k € {0,1,...,[n/2] — 1}.
It follows from (2.6, (2-7), and [9, Problem 8.8.1 (p)] that

1 a |asg| Q| a2m 2]
hm su Com| < lim sup — = < limsu % < lim sup |ag,,—
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and

1 jlls B |a2k+1| B \Cl2 —1\
limsup |c < limsup — g LT < limsup =220 < lim sup |agy,—
m,—>oop| 2m+1| - m—>oop m =0 2(2m+ ]-) - m—>oop 2(2m+ ]-) B m—>oop| 2m 1|

which imply that the radius ps of convergence of the power series Y =~ _, c,z™ is
not less than the radius p; of the power series > °_ a,,z™.

If we define p3 := min{po, p1, p2}, where py = 1 is the radius of convergence of
the general solution to , then p = p3. According to [8, Theorem 2.1] and our
assumption that c¢p = ¢; = 0, every solution y : (—ps, p3) — C of the inhomogeneous
Gegenbauer differential equation can be expressed by . O

3. HYERS-ULAM STABILITY FOR (2.1)

Let n be an integer larger than 1 and let p; be a positive real number larger
than 1 or infinity. We denote by C the set of all functions f : (—1,1) — C with the
following properties:

(a) f(z) is expressible by a power series > -_ b,x™ whose radius of conver-
gence is at least pq;

(b) There exists a constant K > 0 such that > °_ [ama™] < K| Y °_ ama™|
for all x € (—p1, p1), where a,,, = (m+2)(m+1)byp2—(m—n)(m+n—1)b,
for all m € Np.

If we define

(y1 +y2)(@) =y1(2) +y2(z) and  (Ay1)(x) = Ayi(z)

for all y1,y2 € C and A € C, then C is a vector space over the complex numbers.
We remark that the set C' is a vector space.

In the following theorem, we investigate the Hyers-Ulam stability of the Gegen-
bauer differential equation for functions in C.

Theorem 3.1. If a function y € C satisfies the differential inequality
|(1=2)y"(z) + n(n—Dy(z)| <e (3.1)

for all z € (—=1,1) and for some € > 0, then there exist constants C1,Cs > 0 and a
solution yp, : (=1,1) — C of the Gegenbauer differential equation (2.1) such that

1+ || 1+ ||
_ < _
() = (@) < Caleln 3= 0 Ca(In g 10 = 20l

for any x € (—1,1).

Proof. According to (a), y(x) can be expressed as y(z) = > -_, bma™ and it follows
from (a) and (b) that
(1= 22)y" (@) + n(n — Dy()
= Z [(m 4 2)(m 4 D)bmyz — (m —n)(m +n — )by, 2™
m=0 (32)
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for all z € (—1,1). By considering (3.1) and (3.2)), we have

oo
‘ Z amxm’ <e
m=0
for any x € (—1,1). This inequality, together with (b), yields that

Z ‘amxm’ < K‘ Z amxm‘ < Ke (3.3)
m=0 m=0
for all x € (—1,1).
Now, it follows from Theorem , and that there exists a solution
yn : (=1,1) — C of the Gegenbauer differential equation such that

o0 oo oo
y@) = (@) | 3 ema™| < leamllal™ + D leamallaf™
m=2 m=1

m=1

for all z € (—1,1). By (2.6) and (2.7), we moreover have

ly(z) — yn(x)|
> m—1 o) m—1
|.,L.|2m 1 |x|2m+1 1 (34)
< - L e
= 2 5@m - )m kZ_O [a2e] + Bn mZ:1 22m + 1) m kz_o [@2k+1]

for all z € (—1,1). (See the proof of Theorem [2.1|for the definitions of c, and 3,).
In view of (a) and (b), the radius of convergence of the power series > ™
is p1 which is larger than 1. This fact implies that

oo o0 o0
D laml =D lask| + ) lasks| < oo,
m=0 k=0 k=0

which again implies that
lim |a2k| = O, lim \a2k+1| =0.
k—oo k—oo

According to [9, Theorem 2.8.6], the sequences {|azx|} and {|azk41|} are (C,1)
summable to 0; i.e.,

1 m—1 1 m—1
lim — E |a2k| = 07 lim — E |a2k+1| =0.
m—oo M m—oo M
k=0 k=0

Thus, there exists a constant C' > 0 such that

1 m—1 1 m—1
EZM%‘SC’ EZ"Q’CH'SC
k=0 k=0

for any m € N.
Hence, from (3.4)) it follows that

anC X |z BC X Pt
— <
) =)l < =573 50 T X G (3:5)

m=1 m=1

for all x € (—1,1). Since

1.1+ [z &
—1 = =
2 T | DI e ) Dl
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for z € (—1,1), it holds that

1+ |z] 1+ ||
[y(@) = yn(@)] < Crlal n T + Co (In =1 = 2la)
— || 1 — |a]
for any x € (—1,1), where we set
an,C 6,.C
C, == Co =
1 4 ) 2 4 )
which completes the proof. ([

According to the previous theorem, each approximate solution of the Gegenbauer
differential equation (2.1)) can be well approximated by an exact solution of the
Gegenbauer differential equation in a (small) neighborhood of 0.

Corollary 3.2. If a function y € C satisfies the differential inequality (13.1) for all
x € (—1,1) and for some € > 0, then there exists a solution yp, : (—1,1) — C of the
Gegenbauer differential equation (2.1) such that

(@) — yn(2)| = O(2?)

as x — 0, where O(-) denotes the Landau symbol (big-O).

Proof. According to Theorem [3.1]and (B.5), there exists a solution y;, : (—=1,1) — C
of the Gegenbauer differential equation (2.1)) such that
|2m 2 |27n 2

9(&) — (o) < PZ . I3Z S

for any « € (=1, 1), where we see the proof of Theorem [3.1] for the definition of C,
which completes our proof. O
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