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HYERS-ULAM STABILITY FOR GEGENBAUER DIFFERENTIAL
EQUATIONS

SOON-MO JUNG

Abstract. Using the power series method, we solve the non-homogeneous

Gegenbauer differential equation

(1− x2)y′′(x) + n(n− 1)y(x) =

∞X
m=0

amx
m.

Also we prove the Hyers-Ulam stability for the Gegenbauer differential equa-

tion.

1. Introduction

Let Y be a normed linear space and I be an open subinterval of R. If for any
function f : I → Y satisfying the differential inequality∥∥an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) + h(x)

∥∥ ≤ ε
for all x ∈ I and for some ε ≥ 0, there exists a solution f0 : I → Y of the differential
equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) + h(x) = 0

such that ‖f(x) − f0(x)‖ ≤ K(ε) for any x ∈ I, where K(ε) depends on ε only,
then we say that the above differential equation satisfies the Hyers-Ulam stability
(or the local Hyers-Ulam stability if the domain I is not the whole space R). We
may apply these terminologies for other differential equations. For more detailed
definition of the Hyers-Ulam stability, refer the reader to [2, 3, 7].

Apparently Ob loza [12, 13] was the first author who investigated the Hyers-Ulam
stability of linear differential equations. Here, we cite a result by Alsina and Ger
[1]: If a differentiable function f : I → R is a solution of the differential inequality
|y′(x)− y(x)| ≤ ε, where I is an open subinterval of R, then there exists a solution
f0 : I → R of the differential equation y′(x) = y(x) such that |f(x)−f0(x)| ≤ 3ε for
any x ∈ I. This result by Alsina and Ger was generalized by Takahasi, Miura and
Miyajima [16]. They proved that the Hyers-Ulam stability holds for the Banach
space valued differential equation y′(x) = λy(x) (see also [10, 11, 15]).
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Using the conventional power series method, the author investigated the general
solution of the inhomogeneous linear first-order differential equation

y′(x)− λy(x) =
∞∑

m=0

am(x− c)m,

where λ is a complex number and the convergence radius of the power series is pos-
itive. This result was applied for proving an approximation property of exponential
functions in a neighborhood of c (see [6] and [4, 5]).

Throughout this article, we assume that ρ1 is a positive real number or infinity.
In Section 2, using an idea from [6], we investigate the general solution of the
inhomogeneous Gegenbauer differential equation(

1− x2
)
y′′(x) + n(n− 1)y(x) =

∞∑
m=0

amx
m, (1.1)

where the power series has a radius of convergence greater than or equal to ρ1.
Moreover, we prove the Hyers-Ulam stability of the Gegenbauer differential equation
(2.1) in a certain class of analytic functions.

2. General solution of (1.1)

For an integer n ≥ 2, the second-order ordinary differential equation(
1− x2

)
y′′(x) + n(n− 1)y(x) = 0 (2.1)

is a kind of the ultraspherical or Gegenbauer differential equation and has a gen-
eral solution of the form y(x) = C1Jn(x) + C2Hn(x), where we denote by Jn(x)
and Hn(x) the Gegenbauer functions which are expressed by using the Legendre
functions of the first and second kind as follows:

Jn(x) =
Pn−2(x)− Pn(x)

2n− 1
, Hn(x) =

Qn−2(x)−Qn(x)
2n− 1

.

The Gegenbauer differential equation (2.1) is encountered in hydrodynamics when
describing axially symmetric Stokes flows [14]. We recall that ρ1 is a positive real
number or infinity.

Theorem 2.1. Let n be an integer greater than 1 and let ρ1 be the radius of
convergence of power series

∑∞
m=0 amx

m. Define ρ := min{1, ρ1}. Then every
solution y : (−ρ, ρ) → C of the inhomogeneous Gegenbauer differential equation
(1.1) can be expressed as

y(x) = yh(x) +
∞∑

m=2

cmx
m, (2.2)

where the coefficients cm’s are given by

c2m =
m−1∑
k=0

(2k)!a2k

(2m)!

m−1∏
i=k+1

(2i− n)(2i+ n− 1),

c2m+1 =
m−1∑
k=0

(2k + 1)!a2k+1

(2m+ 1)!

m−1∏
i=k+1

(2i− n+ 1)(2i+ n)

for each m ∈ N and yh(x) is a solution of the Gegenbauer differential equation
(2.1).
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Proof. Since each solution of (1.1) can be expressed as a power series in x, we put
y(x) =

∑∞
m=0 cmx

m in (1.1) to obtain(
1− x2

)
y′′(x) + n(n− 1)y(x)

=
∞∑

m=0

[
(m+ 2)(m+ 1)cm+2 − (m− n)(m+ n− 1)cm

]
xm

=
∞∑

m=0

amx
m,

from which we obtain the recurrence formula

(m+ 2)(m+ 1)cm+2 − (m− n)(m+ n− 1)cm = am (2.3)

for all m ∈ N0.
Now we prove that the formula

c2m =
m−1∑
k=0

(2k)!a2k

(2m)!

m−1∏
i=k+1

(2i− n)(2i+ n− 1)

+
c0

(2m)!

m−1∏
i=0

(2i− n)(2i+ n− 1)

(2.4)

holds for any m ∈ N: If we set m = 1 in (2.4), then we obtain 2c2 +n(n−1)c0 = a0

which coincides with (2.3) when m = 0. We assume that the formula (2.4) is true
for some m ∈ N. Then, it follows from (2.3) and the induction hypothesis that

c2m+2 =
a2m

(2m+ 2)(2m+ 1)
+

(2m− n)(2m+ n− 1)
(2m+ 2)(2m+ 1)

c2m

=
a2m

(2m+ 2)(2m+ 1)
+

m−1∑
k=0

(2k)!a2k

(2m+ 2)!

m∏
i=k+1

(2i− n)(2i+ n− 1)

+
c0

(2m+ 2)!

m∏
i=0

(2i− n)(2i+ n− 1)

=
m∑

k=0

(2k)!a2k

(2m+ 2)!

m∏
i=k+1

(2i− n)(2i+ n− 1)

+
c0

(2m+ 2)!

m∏
i=0

(2i− n)(2i+ n− 1),

which can be obtained provided we replace m in (2.4) with m + 1. Hence, we
conclude that the formula (2.4) is true for all m ∈ N. Similarly, we can prove the
validity of the formula

c2m+1 =
m−1∑
k=0

(2k + 1)!a2k+1

(2m+ 1)!

m−1∏
i=k+1

(2i− n+ 1)(2i+ n)

+
c1

(2m+ 1)!

m−1∏
i=0

(2i− n+ 1)(2i+ n)

(2.5)

for all m ∈ N.
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Indeed, we can set c0 = c1 = 0 in (2.4) and (2.5). Under this assumption, we
have

c2m =
m−1∑
k=0

(2k)!a2k

(2m)!

m−1∏
i=k+1

(2i− n)(2i+ n− 1)

=
[n/2]−1∑

k=0

(2k)!a2k

(2m)!

m−1∏
i=k+1

(2i− n)(2i+ n− 1)

+
m−1∑

k=[n/2]

(2k)!a2k

(2m)!

m−1∏
i=k+1

(2i− n)(2i+ n− 1)

=
[n/2]−1∑

k=0

(2k)!a2k

(2m)!

( [n/2]∏
i=k+1

(2i− n)(2i+ n− 1)
)( m−1∏

i=[n/2]+1

(2i− n)(2i+ n− 1)
)

+
m−1∑

k=[n/2]

(2k)!a2k

(2m)!

m−1∏
i=k+1

(2i− n)(2i+ n− 1).

Hence, since |2i− n||2i+ n− 1| < 2i(2i− 1) for i > [n/2], we obtain

|c2m| ≤
[n/2]−1∑

k=0

(2k)!|a2k|
(2m)!

( [n/2]∏
i=k+1

|2i− n||2i+ n− 1|
)( m−1∏

i=[n/2]+1

(2i)(2i− 1)
)

+
m−1∑

k=[n/2]

(2k)!|a2k|
(2m)!

m−1∏
i=k+1

(2i)(2i− 1)

=
[n/2]−1∑

k=0

(2k)!|a2k|
(2m)!

αn(k)
m−1∏

i=[n/2]+1

(2i)(2i− 1)

+
m−1∑

k=[n/2]

(2k)!|a2k|
(2m)!

m−1∏
i=k+1

(2i)(2i− 1),

where αn(k) :=
∏[n/2]

i=k+1 |2i− n||2i+ n− 1| for k ∈ {0, 1, . . . , [n/2]− 1}. Moreover,
taking into account that

∏m−1
i=k+1(2i)(2i− 1) = (2m− 2)!/(2k)!, we have

|c2m| ≤
[n/2]−1∑

k=0

αn(k)|a2k|
2m(2m− 1)

+
m−1∑

k=[n/2]

|a2k|
2m(2m− 1)

≤ 1
m

m−1∑
k=0

αn|a2k|
2(2m− 1)

, (2.6)

for all m ∈ N, where αn := max{αn(0), αn(1), . . . , αn([n/2] − 1), 1}. Similarly, we
obtain

|c2m+1| ≤
1
m

m−1∑
k=0

βn|a2k+1|
2(2m+ 1)

(2.7)

for any m ∈ N, where βn := max{βn(0), βn(1), . . . , βn([n/2] − 1), 1} and βn(k) :=∏[n/2]
i=k+1 |2i− n+ 1||2i+ n| for k ∈ {0, 1, . . . , [n/2]− 1}.
It follows from (2.6), (2.7), and [9, Problem 8.8.1 (p)] that

lim sup
m→∞

|c2m| ≤ lim sup
m→∞

1
m

m−1∑
k=0

αn|a2k|
2(2m− 1)

≤ lim sup
m→∞

αn|a2m−2|
2(2m− 1)

≤ lim sup
m→∞

|a2m−2|
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and

lim sup
m→∞

|c2m+1| ≤ lim sup
m→∞

1
m

m−1∑
k=0

βn|a2k+1|
2(2m+ 1)

≤ lim sup
m→∞

βn|a2m−1|
2(2m+ 1)

≤ lim sup
m→∞

|a2m−1|

which imply that the radius ρ2 of convergence of the power series
∑∞

m=2 cmx
m is

not less than the radius ρ1 of the power series
∑∞

m=0 amx
m.

If we define ρ3 := min{ρ0, ρ1, ρ2}, where ρ0 = 1 is the radius of convergence of
the general solution to (2.1), then ρ = ρ3. According to [8, Theorem 2.1] and our
assumption that c0 = c1 = 0, every solution y : (−ρ3, ρ3)→ C of the inhomogeneous
Gegenbauer differential equation (1.1) can be expressed by (2.2). �

3. Hyers-Ulam stability for (2.1)

Let n be an integer larger than 1 and let ρ1 be a positive real number larger
than 1 or infinity. We denote by C̃ the set of all functions f : (−1, 1)→ C with the
following properties:

(a) f(x) is expressible by a power series
∑∞

m=0 bmx
m whose radius of conver-

gence is at least ρ1;
(b) There exists a constant K ≥ 0 such that

∑∞
m=0 |amx

m| ≤ K|
∑∞

m=0 amx
m|

for all x ∈ (−ρ1, ρ1), where am = (m+2)(m+1)bm+2−(m−n)(m+n−1)bm
for all m ∈ N0.

If we define

(y1 + y2)(x) = y1(x) + y2(x) and (λy1)(x) = λy1(x)

for all y1, y2 ∈ C̃ and λ ∈ C, then C̃ is a vector space over the complex numbers.
We remark that the set C̃ is a vector space.

In the following theorem, we investigate the Hyers-Ulam stability of the Gegen-
bauer differential equation (2.1) for functions in C̃.

Theorem 3.1. If a function y ∈ C̃ satisfies the differential inequality∣∣(1− x2
)
y′′(x) + n(n− 1)y(x)

∣∣ ≤ ε (3.1)

for all x ∈ (−1, 1) and for some ε ≥ 0, then there exist constants C1, C2 > 0 and a
solution yh : (−1, 1)→ C of the Gegenbauer differential equation (2.1) such that

|y(x)− yh(x)| ≤ C1|x| ln
1 + |x|
1− |x|

+ C2

(
ln

1 + |x|
1− |x|

− 2|x|
)

for any x ∈ (−1, 1).

Proof. According to (a), y(x) can be expressed as y(x) =
∑∞

m=0 bmx
m and it follows

from (a) and (b) that(
1− x2

)
y′′(x) + n(n− 1)y(x)

=
∞∑

m=0

[
(m+ 2)(m+ 1)bm+2 − (m− n)(m+ n− 1)bm

]
xm

=
∞∑

m=0

amx
m

(3.2)
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for all x ∈ (−1, 1). By considering (3.1) and (3.2), we have∣∣∣ ∞∑
m=0

amx
m
∣∣∣ ≤ ε

for any x ∈ (−1, 1). This inequality, together with (b), yields that
∞∑

m=0

∣∣amx
m
∣∣ ≤ K∣∣∣ ∞∑

m=0

amx
m
∣∣∣ ≤ Kε (3.3)

for all x ∈ (−1, 1).
Now, it follows from Theorem 2.1, (3.2), and (3.3) that there exists a solution

yh : (−1, 1)→ C of the Gegenbauer differential equation (2.1) such that

|y(x)− yh(x)| ≤
∣∣∣ ∞∑

m=2

cmx
m
∣∣∣ ≤ ∞∑

m=1

|c2m||x|2m +
∞∑

m=1

|c2m+1||x|2m+1

for all x ∈ (−1, 1). By (2.6) and (2.7), we moreover have

|y(x)− yh(x)|

≤ αn

∞∑
m=1

|x|2m

2(2m− 1)
1
m

m−1∑
k=0

|a2k|+ βn

∞∑
m=1

|x|2m+1

2(2m+ 1)
1
m

m−1∑
k=0

|a2k+1|
(3.4)

for all x ∈ (−1, 1). (See the proof of Theorem 2.1 for the definitions of αn and βn).
In view of (a) and (b), the radius of convergence of the power series

∑∞
m=0 amx

m

is ρ1 which is larger than 1. This fact implies that
∞∑

m=0

|am| =
∞∑

k=0

|a2k|+
∞∑

k=0

|a2k+1| <∞,

which again implies that

lim
k→∞

|a2k| = 0, lim
k→∞

|a2k+1| = 0.

According to [9, Theorem 2.8.6], the sequences
{
|a2k|

}
and

{
|a2k+1|

}
are (C, 1)

summable to 0; i.e.,

lim
m→∞

1
m

m−1∑
k=0

|a2k| = 0, lim
m→∞

1
m

m−1∑
k=0

|a2k+1| = 0.

Thus, there exists a constant C > 0 such that

1
m

m−1∑
k=0

|a2k| ≤ C,
1
m

m−1∑
k=0

|a2k+1| ≤ C

for any m ∈ N.
Hence, from (3.4) it follows that

|y(x)− yh(x)| ≤ αnC

2

∞∑
m=1

|x|2m

2m− 1
+
βnC

2

∞∑
m=1

|x|2m+1

2m+ 1
(3.5)

for all x ∈ (−1, 1). Since

1
2

ln
1 + |x|
1− |x|

=
∞∑

m=1

|x|2m−1

2m− 1
=
∞∑

m=0

|x|2m+1

2m+ 1
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for x ∈ (−1, 1), it holds that

|y(x)− yh(x)| ≤ C1|x| ln
1 + |x|
1− |x|

+ C2

(
ln

1 + |x|
1− |x|

− 2|x|
)

for any x ∈ (−1, 1), where we set

C1 =
αnC

4
, C2 =

βnC

4
,

which completes the proof. �

According to the previous theorem, each approximate solution of the Gegenbauer
differential equation (2.1) can be well approximated by an exact solution of the
Gegenbauer differential equation in a (small) neighborhood of 0.

Corollary 3.2. If a function y ∈ C̃ satisfies the differential inequality (3.1) for all
x ∈ (−1, 1) and for some ε ≥ 0, then there exists a solution yh : (−1, 1)→ C of the
Gegenbauer differential equation (2.1) such that

|y(x)− yh(x)| = O
(
x2
)

as x→ 0, where O(·) denotes the Landau symbol (big-O).

Proof. According to Theorem 3.1 and (3.5), there exists a solution yh : (−1, 1)→ C
of the Gegenbauer differential equation (2.1) such that

|y(x)− yh(x)| ≤ αnC

2
|x|2

∞∑
m=1

|x|2m−2

2m− 1
+
βnC

2
|x|3

∞∑
m=1

|x|2m−2

2m+ 1

for any x ∈ (−1, 1), where we see the proof of Theorem 3.1 for the definition of C,
which completes our proof. �
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