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PROPERTIES OF SOLUTIONS OF FOURTH-ORDER
NONLINEAR EVOLUTION EQUATIONS

NING DUAN, XIAOPENG ZHAO, BO LIU

Abstract. In this article, we consider the existence and uniqueness of global

solutions for a fourth-order nonlinear evolution equation which models the
formation of facets and corners in the course of kinetically controlled crystal

growth. Moreover, the existence of global attractor in H2 and Hk (k ≥ 0)

space is also considered.

1. Introduction

In the study of the formation of facets and corners in the course of kinetically
controlled crystal growth [2], there arises the fourth-order nonlinear evolution equa-
tion

ht +m∇2h+ ν∇4h =
1
2

(∇h)2 + hxx[ah2
x + bh2

y] + hyy[bh2
x + ah2

y] + chxyhxhy.

Such equation is derived for the faceting of crystal surfaces with unstable orien-
tations when there is no surface growth. The linear damping coefficient ν > 0
characterizes the stabilizing effect of the additional energy of edges and determines
their widths. The coefficient m > 0 characterize the linear faceting instability of
the thermodynamically unstable surface, and the coefficients of the nonlinear terms
determine the stable orientations of the appearing facets and the symmetry of the
faceted structure. The coefficients a, b and c characterizing the stable orientation
of facets are also taken to be positive.

In this article, we consider the 1D case of the above equation

ut + νuxxxx +muxx −
1
2

(ux)2 − a(ux)2uxx = 0, in QT , (1.1)

with the Newmann boundary conditions

ux(0, t) = ux(1, t) = uxxx(0, t) = uxxx(1, t) = 0, (1.2)

and the initial condition

u(x, 0) = u0(x), in (0, 1), (1.3)

where QT = (0, 1)× (0, T ), ν, m and a are also positive constants.
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This article is organized as follows. In the next section, we establish the existence
and uniqueness of global weak solution in the space H4,1(QT ); In Section 3, by
uniform a priori estimates methods, we show the existence of the global attractor
in the space H2(0, 1); In the last section, based on the iteration technique and
regularity estimates for the semigroups, we study the existence of global attractor
for problem (1.1)-(1.3) in a more generalized space Hk(0, 1), where 0 ≤ k <∞.

For notational convenience, we denote by ‖ · ‖ the norm of L2(0, 1) with the
usual inner product (·, ·), ‖ · ‖p denotes the norm of Lp(0, 1) for 1 ≤ p ≤ +∞
(‖ · ‖2 = ‖ · ‖), ‖ · ‖Y denotes the norm of any Banach space Y . In the following,
C, Ci, C ′i, (i = 1, 2 · · · ) will represent generic positive constants that may change
from line to line even if in the same inequality.

2. Existence and uniqueness of global solutions

In this section, we consider the existence and uniqueness of global weak solutions
of the problem (1.1)-(1.3). First of all, we define

L∞(0, 1) = {v; ‖v‖L∞ = ess, supx∈(0,1) |v| < +∞},
H2
E(0, 1) = {v ∈ H2(0, 1); vx(0, t) = vx(1, t) = 0},

H4
E(0, 1) = {v ∈ H4(0, 1); vx(x, t) = vxxx(x, t) = 0, x = 0, 1},

H4,1(QT ) = {v; vt ∈ L2(QT ), v, vx, vxx, vxxx, vxxxx ∈ L2(QT )}.

Definition 2.1. A function u(x, t) is called a weak solution to problem (1.1)-(1.3),
if u ∈ H4,1(QT ), and it satisfies∫∫

QT

utv dx dt+
∫∫

QT

(νuxxxx+muxx−
1
2
u2
x−au2

xuxx)v dx dt = 0, ∀v ∈ L2(QT ).

From the classical approach, it is not difficult to conclude that (1.1)-(1.3) admits
a unique solution local in time. So, to obtain the result on the global solution, it is
sufficient to make a priori estimates.

Theorem 2.2. Assume that u0 ∈ H2
E(0, 1) and T > 0, then problem (1.1)-(1.3)

admits one and only one solution u ∈ H4,1(QT ).

Proof. Multiplying both sides of (1.1) by u, then integrating resulting relation with
respect to x over (0, 1), we obtain

1
2
d

dt
‖u‖2 + ν‖uxx‖2 −m‖ux‖2 −

1
2

∫ 1

0

u2
xu dx− a

∫ 1

0

u2
xuxxu dx = 0.

Note that

a

∫ 1

0

u2
xuxxu dx = −a

3
‖ux‖44,

1
2

∫ 1

0

u2
xu dx ≤

a

3
‖ux‖44 +

3
16a
‖u‖2,

m‖ux‖2 = −m(uxx, u) ≤ ν

2
‖uxx‖2 +

m2

2ν
‖u‖2.

Summing up, we derive that

d

dt
‖u‖2 + ν‖uxx‖2 ≤ (

3
8a

+
m2

ν
)‖u‖2. (2.1)
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By Gronwall’s inequality, we obtain

‖u‖2 ≤ e( 3
8a+m2

ν )t‖u0‖2 ≤ C, ∀t ∈ (0, T ). (2.2)

Integrating (2.1) over (0, T ), using (2.2), we deduce that∫ T

0

‖uxx‖2dt ≤
1
ν

(
(

3
8a

+
m2

ν
)
∫ T

0

‖u‖2dt+ ‖u0‖2
)
≤ C. (2.3)

Multiplying both sides of equation (1.1) by −uxx, then integrating with respect to
x over (0, 1), we obtain

1
2
d

dt
‖ux‖2 + ν‖uxxx‖2 −m‖uxx‖2 +

1
2

∫ 1

0

u2
xuxxdx+ a

∫ 1

0

u2
xu

2
xxdx = 0.

Note that ∫ 1

0

u2
xuxxdx = −2

∫ 1

0

u2
xuxxdx = 0,

m‖uxx‖2 = −m(uxxx, ux) ≤ ν

2
‖uxxx‖2 +

m2

2ν
‖ux‖2.

Then, summing up, we derive that

d

dt
‖ux‖2 + ν‖uxxx‖2 ≤

m2

ν
‖ux‖2. (2.4)

By Gronwall’s inequality, we obtain

‖ux‖2 ≤ e
m2
ν t‖ux0‖2 ≤ C, ∀t ∈ (0, T ). (2.5)

Integrating (2.4) over (0, T ), using (2.5), we deduce that∫ T

0

‖uxxx‖2dt ≤
1
ν

(m2

ν

∫ T

0

‖ux‖2dt+ ‖ux0‖2
)
≤ C. (2.6)

Here, using Sobolev’s embedding theorem, by (2.2) and (2.5), we have

‖u‖∞ = sup
x∈[0,1]

|u(x, t)| ≤ C, ∀t ∈ (0, T ). (2.7)

Multiplying both sides of (1.1) by uxxxx, then integrating with respect to x over
(0, 1), we obtain

1
2
d

dt
‖uxx‖2 + ν‖uxxxx‖2 −m‖uxxx‖2 −

1
2

∫ 1

0

u2
xuxxxxdx− a

∫ 1

0

u2
xuxxuxxxxdx = 0.

Using Nirenberg’s inequality, we have

‖ux‖4 ≤ C ′1‖uxxxx‖1/12‖ux‖11/12 + C ′2‖ux‖,

‖ux‖8 ≤ C ′1‖uxxxx‖1/8‖ux‖7/8 + C ′2‖ux‖,

‖uxx‖4 ≤ C ′1‖uxxxx‖5/12‖ux‖7/12 + C ′2‖ux‖.
Then

1
2

∫ 1

0

u2
xuxxxxdx ≤

ν

12
‖uxxxx‖2 +

3
2ν
‖ux‖44 ≤

ν

6
‖uxxxx‖2 + C1,

a

∫ 1

0

u2
xuxxuxxxxdx ≤

ν

12
‖uxxxx‖2 +

3a2

2ν
‖ux‖88 +

3a2

2ν
‖uxx‖44 ≤

ν

6
‖uxxxx‖2 + C2,

m‖uxxx‖2 = −m(uxxxx, uxx) ≤ ν

6
‖uxxxx‖2 +

3m2

2ν
‖uxx‖2.



4 N. DUAN, X. ZHAO, B. LIU EJDE-2013/163

Summing up, we derive that

d

dt
‖uxx‖2 + ν‖uxxxx‖2 ≤

3m2

ν
‖uxx‖2 + 2C1 + 2C2. (2.8)

By Gronwall’s inequality, we deduce that

‖uxx‖2 ≤ e3m
2t/ν‖uxx0‖2 +

2
ν

(C1 + C2) ≤ C, ∀t ∈ (0, T ). (2.9)

Integrating (2.8) over (0, T ), using (2.9), we deduce that∫ T

0

‖uxxxx‖2dt ≤
1
ν

(3m2

ν

∫ T

0

‖uxx‖2dt+ 2(C1 + C2)T + ‖uxx0‖2
)
≤ C. (2.10)

By Sobolev’s imbedding theorem, from (2.2), (2.5), (2.9) it follows that

‖ux‖∞ = sup
x∈[0,1]

|ux(x, t)| ≤ C, ∀t ∈ (0, T ). (2.11)

The a priori estimates (2.7), (2.6) and (2.10) complete the proof of global existence.
Because the proof of the uniqueness of the solution is easy, we omit it here. The
proof is complete. �

3. Global attractor in H2(0, 1)

The dynamic properties of diffusion equations such as the global attractors and
global asymptotic behavior of solutions are important for the study of diffusion
model. There are many studies on the existence of global attractors for diffusion
equations, such as [1, 3, 4, 10] and so on. In this section, we are interested in the
existence of global attractors in the space H2(0, 1) for problem (1.1)-(1.3).

By Theorem 2.2, we can also obtain u(x, t) ∈ L∞(0, T ;H2(0, 1)). Define the
operator semigroup {S(t)}t≥0 in H2(0, 1) space as

S(t)u0 = u(t), ∀u0 ∈ H2
E(0, 1), t ≥ 0, (3.1)

where u(t) is the solution of (1.1)-(1.3) corresponding to initial value u0.
Notice that the total mass is conserved for all time; we let

U =
{
u ∈ H2

E(0, 1) :
∫ 1

0

u dx = 0
}
. (3.2)

It is sufficient to see that the restriction of {S(t)} on the affined space U is a well
defined semigroup.

Now, we give the result on the existence of global attractor for problem (1.1)-
(1.3) in H2(0, 1).

Theorem 3.1. Assume that ν is sufficiently large, then the semiflow associated
with the solution u of (1.1)-(1.3) possesses in U a global attractor A which attracts
all the bounded sets in U .

To prove Theorem 3.1, we establish some a priori estimates for the solution u
of (1.1)-(1.3). In this section we always assume that {S(t)}t≥0 is the semigroup
generated by the weak solutions of equation (1.1) with initial data u0 ∈ H2

E(0, 1).
We have the following lemmas.

Lemma 3.2. For initial data u0 varying in a bounded set B ⊂ U , there exists a
t0(B) > 0 such that

‖u(t)‖H2(0,1) ≤ C, t ≥ t0(B).
which implies that {S(t)}t≥0 has a bounded absorbing set in U .
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Proof. We prove this lemma in the following three steps.
Step 1. Based on Poincaré’s inequality, we have

‖u‖2 ≤ 1
2
‖ux‖2, (3.3)

Hölder’s inequality gives

‖ux‖2 ≤
1
2
‖u‖2 +

1
2
‖uxx‖2. (3.4)

Adding (3.3) and (3.4) together gives

‖u‖2 ≤ 1
3
‖uxx‖2. (3.5)

Using (2.1) and (3.5), we immediately obtain the following inequality

d

dt
‖u‖2 + 3ν‖u‖2 ≤ (

3
8a

+
m2

ν
)‖u‖2;

that is,
d

dt
‖u‖2 + (3ν − 3

8a
− m2

ν
)‖u‖2 ≤ 0,

where ν is sufficiently large, which satisfies 3ν − 3
8a −

m2

ν > 0. By Gronwall’s
inequality, we get

‖u‖2 ≤ e−(3ν− 3
8a−

m2
ν )t‖u0‖2. (3.6)

Thus, for initial data in any bounded set B ⊂ U , there is a uniform time t1(B)
depending on B such that for t ≥ t1(B),

‖u‖2 ≤ C. (3.7)

Step 2. By (3.3) and (3.4), we can also obtain

‖ux‖2 ≤
2
3
‖uxx‖2. (3.8)

Adding (2.4) and (3.8) gives

d

dt
‖ux‖2 +

3
2
ν‖ux‖2 ≤

m2

ν
‖ux‖2;

that is,
d

dt
‖ux‖2 + (

3ν
2
− m2

ν
)‖ux‖2 ≤ 0,

where ν is sufficiently large, which satisfies 3ν
2 −

m2

ν > 0. By Gronwall’s inequality,
we deduce that

‖ux‖2 ≤ e−( 3ν
2 −

m2
ν )t‖ux0‖2. (3.9)

Thus, for initial data in any bounded set B ⊂ U , there is a uniform time t2(B)
depending on B such that for t ≥ t2(B),

‖ux‖2 ≤ C. (3.10)

Step 3. For (2.8), applying the regularity theorem of elliptic operator, we have

d

dt
‖uxx‖2 + νC ′(‖uxx‖2 + ‖uxxx‖2) ≤ 3m2

ν
‖uxx‖2 + 2(C1 + C2),

which means
d

dt
‖uxx‖2 + (νC ′ − 3m2

ν
)‖uxx‖2 ≤ 2(C1 + C2), (3.11)



6 N. DUAN, X. ZHAO, B. LIU EJDE-2013/163

where ν is sufficiently large, which satisfies νC ′ − 3m2

ν > 0. Then, using Gronall’s
inequality, we derive that

‖uxx‖2 ≤ e(νC
′− 3m2

ν )t‖uxx0‖2 +
2ν(C1 + C2)
ν2C ′ − 3m2

. (3.12)

Thus, for initial data in any bounded set B ⊂ U , there is a uniform time t3(B)
depending on B such that for t ≥ t3(B),

‖uxx‖2 ≤
4ν(C1 + C2)
ν2C ′ − 3m2

. (3.13)

By Sobolev’s embedding theorem, we have

‖ux(x, t)‖∞ ≤ C.
Combining (3.7), (3.10) and (3.13) , we complete the proof. �

In the following, we prove the precompactness of the orbit in U .

Lemma 3.3. For initial data u0 varying in a bounded set B ⊂ U , there exists a
T (B) > 0 such that

‖u(t)‖H3(0,1) ≤ C, ∀t ≥ T > 0,
which implies that

⋃
t≥T u(t) is relatively compact in U .

Proof. The uniform bound of H2-norm of u(x, t) has been obtained in Lemma 3.2.
In what follows we derive the estimate on H3-norm.

Differentiating (1.1) with respect to x, then multiplying by uxxxxx and integrat-
ing on (0, 1), using the boundary conditions, we have

1
2
d

dt
‖uxxx‖2 + ν‖uxxxxx‖2 −m‖uxxxx‖2

− 1
2

∫ 1

0

(u2
x)xuxxxxxdx− a

∫ 1

0

(u2
xuxx)xuxxxxxdx = 0.

Note that

m‖uxxxx‖2 = −m
∫ 1

0

uxxxuxxxxxdx ≤
ν

3
‖uxxxxx‖2 +

3m2

4ν
‖uxxx‖2,

and
1
2

∫ 1

0

(u2
x)xuxxxxxdx =

∫ 1

0

uxuxxuxxxxxdx ≤ ‖ux‖∞‖uxx‖‖uxxxxx‖

≤ ν

3
‖uxxxxx‖2 +

3
4ν
‖ux‖2∞‖uxx‖2 ≤

ν

3
‖uxxxxx‖2 + C3.

On the other hand, Nirenberg’s inequality gives

‖uxx‖4 ≤ C ′1‖uxxxxx‖
1
12 ‖uxx‖

11
12 + C ′2‖uxx‖.

Hence

a

∫ 1

0

(u2
xuxx)xuxxxxxdx = 2a

∫ 1

0

uxu
2
xxuxxxxxdx+ a

∫ 1

0

u2
xuxxxuxxxxxdx

≤ 2a‖ux‖∞‖uxx‖24‖uxxxxx‖+ a‖ux‖2∞‖uxxx‖‖uxxxxx‖

≤ ν

6
‖uxxxxx‖2 + C‖uxx‖44 + C4‖uxxx‖2 + C

≤ ν

3
‖uxxxxx‖2 + C4‖uxxx‖2 + C5.
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Summing up, we have

d

dt
‖uxxx‖2 ≤ (

3m2

2ν
+ 2C4)‖uxxx‖2 + 2C3 + 2C5. (3.14)

Integrating (3.11) between t and t+ 1, using (3.13), we have∫ t+1

t

‖uxxx‖2dt ≤ C. (3.15)

Due to (3.14), (3.15), and the uniform Gronwall inequality in [10], we obtain that

‖uxxx‖2 ≤ C, ∀t ≥ 1.

The proof is complete. �

Proof of Theorem 3.1. By Lemmas 3.2-3.3 and [10, Theorem I.1.1], we conclude
that A = ω(B), the ω-limit set of absorbing set B is a global attractor in U .
By lemma 3.3, this global attractor is a bounded set in H3(0, 1). The proof is
complete. �

4. Attractor in Hk(0, 1)

We introduce the following spaces:

H = {u ∈ L2(0, 1) :
∫ 1

0

u(x, t)dx = 0},

H1/2 = H2
E(0, 1) ∩H = U ,

H1 = H4
E(0, 1) ∩H.

(4.1)

Define the linear operator L and the nonlinear operator G by
Lu = −νuxxxx,

Gu = g(u) = −muxx +
1
2

(ux)2 + a(ux)2uxx.
(4.2)

It is easy to check that L given by (4.2) is a sectorial operator and the tractional
power operator (−L)1/2 is given by (−L)1/2 = ν1/2 ∂2

∂x2 . The space H1/2 is the same
as (4.1), H 1

4
is given by H 1

4
= closure of H1/2 in H1(Ω) and Hk = H4k ∩ H1 for

k ≥ 1.
Based on [6], the solution u(t, u0) of the problem (1.1) can be written as

u(t, u0) = etLu0 +
∫ t

0

e(t−τ)LGudτ = etLu0 +
∫ t

0

e(t−τ)Lg(u)dτ. (4.3)

We introduce a result on the sectorial operator L in (4.2), which is important in
this section and can be found in [5, 6, 7, 8, 9, 11].

Lemma 4.1. Assume that L : H → H is a sectorial operator which generates an
analytic semigroup T (t) = etL. If all eigenvalues λ of L satisfy Reλ < −λ0 for
some real number λ0 > 0, then for Lκ(L = −L) we have

(C1) T (t) : H → H is bounded for all κ ∈ R1 and t > 0;
(C2) T (t)Lκx = LκT (t)x, ∀x ∈ H;
(C3) For each t > 0, LκT (t) : H → H is bounded, and

‖LκT (t)‖H ≤ Ct−κe−δt;
where some δ > 0 and C > 0 is a constant depending only on κ;
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(C4) The H−norm can be defined by ‖x‖Hκ = ‖Lκx‖H .

Now, we give the main result of this section.

Theorem 4.2. Let u0 ∈ Hκ(0, 1) and ν is sufficiently large. Then, for any κ ≥ 0,
the semigroup associated with the problem (1.1)-(1.3) possesses a global attractor in
Hκ(0, 1), which attracts all the bounded sets in the Hκ-norm.

To prove Theorem 4.2, we should prove the following two lemmas.

Lemma 4.3. Let u0 ∈ Hκ(0, 1) and ν is sufficiently large. Then for any κ ≥ 0, the
semigroup S(t) generated by the problem (1.1)-(1.3) is uniformly compact in Hκ.

Proof. It suffices to prove that for any bounded set U ⊂ Hκ, there exists C > 0
such that

‖u(t, u0)‖Hκ ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hκ, κ ≥ 0. (4.4)
For κ = 1/2, this follows form Theorem 3.1; i.e., for any bounded set U ⊂ H1/2,
there is a constant C > 0 such that

‖u(t, u0)‖H1/2 ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H1/2. (4.5)

Then, we shall prove (4.4) for any κ > 1
2 , which will be proved in the following

steps.
Step 1. We prove that for any bounded set U ⊂ Hκ ( 1

2 < κ < 1), there is a
constant C > 0 such that

‖u(t, u0)‖Hκ ≤ C, ∀t ≥ 0, u0 ∈ U,
1
2
< κ < 1. (4.6)

By the embedding theorem, we have

H1/2(0, 1) ↪→W 1,4(0, 1), H1/2(0, 1) ↪→W 1,∞(0, 1).

Hence

‖g(u)‖H =
∫ 1

0

(−muxx +
1
2
u2
x + au2

xuxx)2dx

≤ C
∫ 1

0

(u2
xx + u4

x + u4
xu

2
xx)dx

≤ C(‖u‖2H1/2
+ ‖u‖4W 1,4 + ‖u‖4W 1,∞‖u‖2H1/2

)

≤ C(‖u‖2H1/2
+ ‖u‖4H1/2

+ ‖u‖6H1/2
) ≤ C.

which implies that g : H1/2 → H is bounded. Hence,

‖u(t, u0)‖Hκ = ‖etLu0 +
∫ t

0

e(t−τ)Lg(u)dτ‖Hκ

≤ C‖u0‖Hκ +
∫ t

0

‖(−L)κe(t−τ)Lg(u)‖Hdτ

≤ C‖u0‖Hκ +
∫ t

0

‖(−L)κe(t−τ)L‖ · ‖g(u)‖Hdτ

≤ C‖u0‖Hκ + C

∫ t

0

τ−κe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H,

(4.7)

where 0 < κ < 1. Then, (2.4) holds.
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Step 2. We prove that for any bounded set U ⊂ Hκ (1 ≤ κ < 5
4 ), there is a

constant C > 0 such that

‖u(t, u0)‖Hκ ≤ C, ∀t ≥ 0, u0 ∈ U, 1 ≤ κ < 5
4
. (4.8)

In fact, by the embedding theorems, we derive that

Hκ(0, 1) ↪→ H3(0, 1), H3(0, 1) ↪→W 1,∞(0, 1), H3(0, 1) ↪→W 2,4(0, 1),

where 3
4 ≤ κ < 1. Then, using (1.1), we obtain

‖g(u)‖21
4

=
∫ 1

0

(g(u)x)2dx

=
∫ 1

0

(−muxxx + uxuxx + 2auxu2
xx + au2

xuxxx)2dx

≤ C
∫ 1

0

(u2
xxx + u2

xu
2
xxx + u2

xu
4
xx + u4

xu
2
xxx)dx

≤ C(‖u‖2H3 + ‖u‖2W 1,∞‖u‖2H3 + ‖u‖2W 1,∞‖u‖4W 2,4 + ‖u‖4W 1,∞‖u‖2H3)

≤ C(‖u‖2Hκ + ‖u‖4Hκ + ‖u‖6Hκ + ‖u‖6Hκ) ≤ C,
(4.9)

which implies that g : Hκ → H 1
4

is bounded for 3
4 ≤ κ < 1. Hence,

‖u(t, u0)‖Hκ = ‖etLu0 +
∫ t

0

e(t−τ)Lg(u)dτ‖Hκ

≤ C‖u0‖Hκ +
∫ t

0

‖(−L)κe(t−τ)Lg(u)‖Hdτ

≤ C‖u0‖Hκ +
∫ t

0

‖(−L)κ−
1
4 e(t−τ)L‖ · ‖g(u)‖H 1

4
dτ

≤ C‖u0‖Hκ + C

∫ t

0

τ−εe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H,

where ε = κ− 1
4 (0 < ε < 1). Then, (2.5) holds.

Step 3. We prove that for any bounded set U ⊂ Hκ (5/4 ≤ κ < 3/2), there is a
constant C > 0 such that

‖u(t, u0)‖Hκ ≤ C, ∀t ≥ 0, u0 ∈ U,
5
4
≤ κ < 3

2
. (4.10)

In fact, by the embedding theorems, we have

Hκ(0, 1) ↪→ H4(0, 1), H4(0, 1) ↪→W 1,∞(0, 1), H4(0, 1) ↪→W 2,4(0, 1),

H4(0, 1) ↪→W 3,4(0, 1), H4(0, 1) ↪→W 2,6(0, 1),
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where 1 ≤ κ < 5/4. Then,

‖g(u)‖2H1/2

=
∫ 1

0

(g(u)xx)2dx

=
∫ 1

0

(−muxxxx + uxuxxxx + uxxuxxx + 2au3
xx

+ 6auxuxxuxxx + au2
xuxxxx)2dx

≤ C
∫ 1

0

(u2
xxxx + u2

xu
2
xxxx + u4

xx + u4
xxx + u6

xx + u4
xu

4
xx + u4

xu
2
xxxx)dx

≤ C(‖u‖2H4 + ‖u‖2W 1,∞‖u‖2H4 + ‖u‖4W 2,4 + ‖u‖4W 3,4 + ‖u‖6W 2,6

+ ‖u‖4W 1,∞‖u‖4W 2,4 + ‖u‖4W 1,∞‖u‖2H4)

≤ C(‖u‖2Hκ + ‖u‖4Hκ + ‖u‖6Hκ + ‖u‖8Hκ) ≤ C.

(4.11)

which implies that g : Hκ → H1/2 is bounded for κ ≥ 3
4 . Hence,

‖u(t, u0)‖Hκ = ‖etLu0 +
∫ t

0

e(t−τ)Lg(u)dτ‖Hκ

≤ C‖u0‖Hκ +
∫ t

0

‖(−L)κ−
1
2 e(t−τ)L‖ · ‖g(u)‖H1/2dτ

≤ C‖u0‖Hκ + C

∫ t

0

τ−εe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H,

(4.12)

where ε = κ− 1
2 (0 < ε < 1). Then, (4.10) holds.

Step 4. We prove that for any bounded set U ⊂ Hκ (3/2 ≤ α < 7/4), there exists
a constant C > 0 such that

‖u(t, u0)‖Hκ ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H,
3
2
≤ κ < 7

4
. (4.13)

Based on the following embedding theorems, we deduce that

Hκ(0, 1) ↪→ H5(0, 1), H5(0, 1) ↪→W 1,∞(0, 1), H5(0, 1) ↪→W 2,4(0, 1),

H5(0, 1) ↪→W 4,4(0, 1), H5(0, 1) ↪→W 2,8(0, 1), H5(0, 1) ↪→W 3,2(0, 1),

H5(0, 1) ↪→W 3,4(0, 1), H5(0, 1) ↪→W 1,8(0, 1),

where 5/4 ≤ α < 3/2. Then

‖g(u)‖2H3/4

=
∫ 1

0

(g(u))2xxxdx

=
∫ 1

0

(−muxxxxx + uxuxxxxx + 2uxxuxxxx + u2
xxx + 12au2

xxuxxx

+ 6auxu2
xxx + 8auxuxxuxxxx + au2

xuxxxxx)2dx

≤ C
∫ 1

0

(u2
xxxxx + u2

xu
2
xxxxx + u4

xx + u4
xxxx + u2

xxx + u8
xx + u4

xxx

+ u2
xu

4
xxx + u4

xxxx + u8
x + u8

xx + u4
xu

2
xxxxx)dx
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≤ C(‖u‖2H5 + ‖u‖2W 1,∞‖u‖2H5 + ‖u‖4W 2,4 + ‖u‖4W 4,4 + ‖u‖8W 2,8 + ‖u‖2W 3,2

+ ‖u‖4W 3,4 + ‖u‖2W 1,∞‖u‖4W 3,4 + ‖u‖8W 1,8 + ‖u‖4W 1,∞‖u‖2H5)

≤ C(‖u‖2Hκ + ‖u‖4Hκ + ‖u‖8Hκ + ‖u‖6Hκ) ≤ C.

which implies that g : Hκ → H3/4 is bounded for κ ≥ 1. Hence,

‖u(t, u0)‖Hκ = ‖etLu0 +
∫ t

0

e(t−τ)Lg(u)dτ‖Hκ

≤ C‖u0‖Hκ +
∫ t

0

‖(−L)κ−
3
4 e(t−τ)L‖ · ‖g(u)‖H3/4dτ

≤ C‖u0‖Hκ + C

∫ t

0

τ−εe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H,

(4.14)

where ε = κ− 3
4 (0 < ε < 1). Then, (2.8) holds.

In the same way as in the proof of (4.13), by iteration we can prove that for
any bounded set U ⊂ Hκ (κ ≥ 0) there exists a constant C > 0 such that (4.4)
holds; i.e., for all κ ≥ 0 the semigroup S(t) generated by problem (1.1) is uniformly
compact in Hκ. The proof is complete. �

Lemma 4.4. Let u0 ∈ Hκ(0, 1) and ν is sufficiently large. Then for any κ ≥ 0,
the problem (1.1)-(1.3) has a bounded absorbing set in Hκ.

Proof. It suffices to prove that for any bounded set U ⊂ Hκ (κ ≥ 0), there exist
T > 0 and a constant C > 0 independent of u0, such that

‖u(t, u0)‖Hκ ≤ C, ∀t ≥ T, u0 ∈ U ⊂ Hκ. (4.15)

For κ = 1/2, this follows from Theorem 3.1. So we shall prove (4.15) for any
κ > 1/2. We prove it in the following steps:
Step 1. We prove that for any 1

2 < κ < 1, problem (1.1)-(1.3) has a bounded
absorbing set in Hκ. By (4.3), we deduce that

u(t, u0) = e(t−T )Lu(T, u0) +
∫ t

T

e(t−τ)Lg(u)dτ. (4.16)

Suppose that B is a bounded absorbing set of problem (1.1)-(1.3), which satisfies
B ⊂ H1/2, we also assume T0 > 0 such that

u(t, u0) ∈ B, ∀t > T0, u0 ∈ U ⊂ Hκ, κ >
1
2
. (4.17)

It is easy to check that

‖etL‖ ≤ Ce−λ
2
1t,

where λ1 > 0 is the first eigenvalue of the equation

−ν1/2uxx = λu,

ux(0, t) = ux(1, t) = 0.
(4.18)

Thus, for any given T > 0 and u0 ∈ U ⊂ Hκ (κ > 1/2), we deduce that

lim
t→∞

‖e(t−T )Lu(T, u0)‖Hκ = 0. (4.19)
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Using (4.16), (4.17) and (4.19), we have

‖u(t, u0)‖Hκ ≤ ‖e(t−T0)Lu(T0, u0)‖Hκ +
∫ t

T0

‖(−L)κe(t−T )L‖ · ‖g(u)‖Hdτ

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C

∫ t

T0

‖(−L)κe(t−T )L‖

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C

∫ T−T0

0

τ−κe−δτdτ

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C,

(4.20)

where C > 0 is a constant independent of u0. Then (4.15) holds for all 1/2 < κ < 1.
Step 2. We shall show that for any 1 ≤ κ < 5/4, problem (1.1)-(1.3) has a bounded
absorbing set in Hκ. Using (4.16) and (4.9), we deduce that

‖u(t, u0)‖Hκ ≤ ‖e(t−T0)Lu(T0, u0)‖Hκ +
∫ t

T0

‖(−L)κ−
1
4 e(t−τ)L‖ · ‖g(u)‖H 1

4
dτ

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C

∫ t

T0

‖(−L)κ−
1
4 e(t−τ)L‖dx

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C

∫ T−T0

0

τ−(κ− 1
4 )e−δτdτ

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C,

where C > 0 is a constant independent of u0. Then, (2.9) holds for all 1 ≤ κ < 5/4.
Step 3. We shall show that for any 5/4 ≤ κ < 3/2, problem (1.1)-(1.3) has a
bounded absorbing set in Hκ. Using (4.16) and (4.11), we deduce that

‖u(t, u0)‖Hκ ≤ ‖e(t−T0)Lu(T0, u0)‖Hκ +
∫ t

T0

‖(−L)κ−
1
2 e(t−τ)L‖ · ‖g(u)‖H1/2dτ

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C

∫ t

T0

‖(−L)κ−
1
2 e(t−τ)L‖dx

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C

∫ T−T0

0

τ−(κ− 1
2 )e−δτdτ

≤ ‖e(t−T0)Lu(T0, u0)‖Hκ + C,

where C > 0 is a constant independent of u0. Then (2.9) holds for all 5/4 ≤ κ < 3/2.
By the iteration method, we have that (4.15) holds for all κ > 1/4. The proof is

complete. �

Proof of Theorem 4.2. By Lemma 4.3 and Lemma 4.4, we immediately conclude
that the statement of the theorem. �

Remark 4.5. Since the tools used work for the periodic boundary values, the
results of this article are also valid for equation (1.1) with the periodic boundary
conditions in the sense [10], That is, for any u0 ∈ Hk

per(0, 1), there exists a global
unique weak solution u(x, t), a global attractor in Hk (0 ≤ k < ∞) space for
equation (1.1) under the initial value condition (1.3) and the periodic boundary
conditions

ϕ|x=0 = ϕ|x=1,

for u and the derivatives of u at least of order ≤ 3.
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