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OSCILLATION OF SOLUTIONS TO NONLINEAR FORCED
FRACTIONAL DIFFERENTIAL EQUATIONS

QINGHUA FENG, FANWEI MENG

Abstract. In this article, we study the oscillation of solutions to a nonlinear

forced fractional differential equation. The fractional derivative is defined in

the sense of the modified Riemann-Liouville derivative. Based on a transforma-
tion of variables and properties of the modified Riemann-liouville derivative,

the fractional differential equation is transformed into a second-order ordinary
differential equation. Then by a generalized Riccati transformation, inequali-

ties, and an integration average technique, we establish oscillation criteria for

the fractional differential equation.

1. Introduction

Recently, research on oscillation of various equations including differential equa-
tions, difference equations and dynamic equations on time scales has been a hot
topic in the literature. Much effort has been done to establish oscillation criteria
for these equations; see for example the references in this article. We notice that in
these publications very little attention is paid to oscillation of fractional differential
equations.

In this article, we are concerned with the oscillation of solutons to the nonlinear
forced fractional differential equation

Dα
t [r(t)ψ(x(t))Dα

t x(t)] + q(t)f(x(t)) = e(t), t ≥ t0 > 0, 0 < α < 1, (1.1)

where Dα
t (·) denotes the modified Riemann-Liouville derivative [15] with respect to

the variable t, the functions r ∈ Cα([t0,∞), R+), which is the set of functions with
continuous derivative of order α, the functions q, e belong to C([t0,∞), R), and the
functions f, ψ belong to C(R,R), 0 < ψ(x) ≤ m for some positive constant m, and
xf(x) > 0 for all x 6= 0.

The definition and some important properties for the Jumarie’s modified Riemann-
Liouville derivative of order α are listed next (see also in [10, 29, 30]):

Dα
t f(t) =

{
1

Γ(1−α)
d
dt

∫ t
0
(t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1,

(f (n)(t))(α−n), 1 ≤ n ≤ α < n+ 1.
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Dα
t t
r =

Γ(1 + r)
Γ(1 + r − α)

tr−α, (1.2)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (1.3)

Dα
t f [g(t)] = f ′g[g(t)]Dα

t g(t) = Dα
g f [g(t)](g′(t))α. (1.4)

A solution of (1.1) is called oscillatory if it has arbitrarily large zeros, otherwise
it is called non-oscillatory. Equation (1.1) is called oscillatory if all its solutions are
oscillatory.

For the sake of convenience, in this article, we denote:

ξ0 =
tα0

Γ(1 + α)
, ξ =

tα

Γ(1 + α)
, ρ̃(ξ) = ρ(t), r̃(ξ) = r(t),

q̃(ξ) = q(t), ξai =
aαi

Γ(1 + α)
, ξbi =

bαi
Γ(1 + α)

, R+ = (0,∞).

Let h1, h2, H ∈ C([ξ0,∞), R) satisfy

H(ξ, ξ) = 0, H(ξ, s) > 0, ξ > s ≥ ξ0.

Let H have continuous partial derivatives ∂H(ξ,s)
∂ξ and ∂H(ξ,s)

∂s on [ξ0,∞) such that

∂H(ξ, s)
∂ξ

= −h1(ξ, s)
√
H(ξ, s),

∂H(ξ, s)
∂s

= −h2(ξ, s)
√
H(ξ, s).

For s, ξ ∈ [ξ0,∞), denote

Q1(s, ξ) = h1(s, ξ)− ρ̃′(s)
ρ̃(s)

√
H(s, ξ), Q2(ξ, s) = h2(ξ, s)− ρ̃′(s)

ρ̃(s)

√
H(ξ, s),

We organize this article as follows. In Section 2, we establish some new oscillation
criteria for (1.1) under the condition that f(x) is increasing. In Section 3, we
establish oscillation criteria for (1.1) without the condition f(x) being increasing.
In the proof for the main results in Sections 2 and 3, we use a generalized Riccati
transformation method. This Riccati transformation and the function H defined
above are widely used for proving oscillation of ordinary differential equations of
integer order; see for example [13, 18, 26, 27, 28]. Yet this approach has scarcely
been used to prove oscillation of fractional differential equations. In Section 4, we
present some examples that apply the results established. Finally, some conclusions
are presented at the end of this article.

2. Oscillation criteria when f(x) is increasing

Theorem 2.1. Assume f ′(x) exists and f ′(x) ≥ µ for some µ > 0 and for all
x 6= 0. Also assume that for any T ≥ t0, there exist a1, b1, a2, b2 such that T ≤
a1 < b1 ≤ a2 < b2 satisfying

e(t)

{
≤ 0, t ∈ [a1, b1],
≥ 0, t ∈ [a2, b2].

(2.1)

If there exist yi ∈ (ξai , ξbi) and ρ ∈ Cα([t0,∞),R+) such that

1
H(yi, ξai)

∫ yi

ξai

ρ̃(s)[H(s, ξai)q̃(s)−
r̃(s)
4k1

Q2
1(s, ξai)]ds

+
1

H(ξbi , yi)

∫ ξbi

yi

ρ̃(s)[H(ξbi , s)q̃(s)−
r̃(s)
4k1

Q2
2(ξbi , s)]ds > 0

(2.2)
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for i = 1, 2, where k1 = µ/m, then every solution of (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) be a non-oscillatory solution of (1.1), say
x(t) 6= 0 on [T0,∞) for some sufficient large T0 ≥ t0. Define the following Riccati
transformation function:

ω(t) = ρ(t)
r(t)ψ(x(t))Dα

t x(t)
f(x(t))

, t ≥ T0. (2.3)

Then for t ≥ T0, from (1.2)-(1.4) we deduce that

Dα
t ω(t) = −ρ(t)q(t) +

Dα
t ρ(t)
ρ(t)

ω(t)− f ′(x(t))
ρ(t)r(t)ψ(x(t))

ω2(t) +
e(t)ρ(t)
f(x(t))

≤ −ρ(t)q(t) +
Dα
t ρ(t)
ρ(t)

ω(t)− k1
ω2(t)
ρ(t)r(t)

+
e(t)ρ(t)
f(x(t))

.

(2.4)

By assumption, if x(t) > 0, then we can choose a1, b1 ≥ T0 with a1 < b1 such that
e(t) ≤ 0 on the interval [a1, b1]. If x(t) < 0, then we can choose a2, b2 ≥ T0 with
a2 < b2 such that e(t) ≥ 0 on the interval [a2, b2]. So e(t)ρ(t)

f(x(t)) ≤ 0, t ∈ [ai, bi], i = 1, 2,
and from (2.4) one can deduce that

Dα
t ω(t) ≤ −ρ(t)q(t) +

Dα
t ρ(t)
ρ(t)

ω(t)− k1
ω2(t)
ρ(t)r(t)

, t ∈ [ai, bi], i = 1, 2. (2.5)

Let w(t) = w̃(ξ). ThenDα
t w(t) = w̃′(ξ) andDα

t ρ(t) = ρ̃′(ξ). So (2.5) is transformed
into

ω̃′(ξ) ≤ −ρ̃(ξ)q̃(ξ) +
ρ̃′(ξ)
ρ̃(ξ)

ω̃(ξ)− k1
ω̃2(ξ)
ρ̃(ξ)r̃(ξ)

, ξ ∈ [ξai , ξbi ], i = 1, 2. (2.6)

Let ci be an arbitrary point in (ξai , ξbi). Substituting ξ with s, multiplying both
sides of (2.6) by H(ξ, s) and integrating it over [ci, ξ) for ξ ∈ [ci, ξbi), i = 1, 2, we
obtain∫ ξ

ci

H(ξ, s)ρ̃(s)q̃(s)ds

≤ −
∫ ξ

ci

H(ξ, s)ω̃′(s)ds+
∫ ξ

ci

H(ξ, s)
[ ρ̃′(s)
ρ̃(s)

ω̃(s)− k1
ω̃2(s)
ρ̃(s)r̃(s)

]
ds

= H(ξ, ci)ω̃(ci)−
∫ ξ

ci

ω̃(s)h2(ξ, s)
√
H(ξ, s)ds

+
∫ ξ

ci

H(ξ, s)
[ ρ̃′(s)
ρ̃(s)

ω̃(s)− k1
ω̃2(s)
ρ̃(s)r̃(s)

]
ds

= H(ξ, ci)ω̃(ci)−
∫ ξ

ci

[(H(ξ, s)k1

ρ̃(s)r̃(s)

)1/2

ω̃(s)− 1
2

( ρ̃(s)r̃(s)
k1

)1/2

Q2(ξ, s)
]2
ds

+
∫ ξ

ci

ρ̃(s)r̃(s)
4k1

Q2
2(ξ, s)ds

≤ H(ξ, ci)ω̃(ci) +
∫ ξ

ci

ρ̃(s)r̃(s)
4k1

Q2
2(ξ, s)ds.

(2.7)
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Letting ξ → ξ−bi and dividing it by H(ξbi , ci), we obtain

1
H(ξbi , ci)

∫ ξbi

ci

H(ξbi , s)ρ̃(s)q̃(s)ds

≤ ω̃(ci) +
1

H(ξbi , ci)

∫ ξbi

ci

ρ̃(s)r̃(s)
4k1

Q2
2(ξbi , s)ds.

(2.8)

On the other hand, substituting ξ by s, multiplying both sides of (2.6) by H(s, ξ)
and integrating it over (ξ, ci) for ξ ∈ [ξai , ci), we obtain∫ ci

ξ

H(s, ξ)ρ̃(s)q̃(s)ds

≤ −
∫ ci

ξ

H(s, ξ)ω̃′(s)ds+
∫ ci

ξ

H(s, ξ)
[ ρ̃′(s)
ρ̃(s)

ω̃(s)− k1
ω̃2(s)
ρ̃(s)r̃(s)

]
ds

= −H(ξ, ci)ω(ci)−
∫ ci

ξ

ω̃(s)h1(s, ξ)
√
H(s, ξ)ds

+
∫ ci

ξ

H(s, ξ)
[ ρ̃′(s)
ρ̃(s)

ω̃(s)− k1
ω̃2(s)
ρ̃(s)r̃(s)

]
ds

≤ −H(ci, ξ)ω̃(ci) +
∫ ci

ξ

ρ̃(s)r̃(s)
4k1

Q2
1(s, ξ)ds.

(2.9)

Letting ξ → ξ+
ai and dividing by H(ci, ξai), we obtain

1
H(ci, ξai)

∫ ci

ξai

H(s, ξai)ρ̃(s)q̃(s)ds ≤ −ω̃(ci) +
1

H(ci, ξai)

∫ ci

ξai

ρ̃(s)r̃(s)
4k1

Q2
1(s, ξai)ds.

A combination of (2.8) and the above inequality yields

1
H(ci, ξai)

∫ ci

ξai

H(s, ξai)ρ̃(s)q̃(s)ds+
1

H(ξbi , ci)

∫ ξbi

ci

H(ξbi , s)ρ̃(s)q̃(s)ds

≤ 1
4H(ci, ξai)

∫ ci

ξai

ρ(s)r̃(s)
k1

Q2
1(s, ξai)ds+

1
4H(ξbi , ci)

∫ ξbi

ci

ρ(s)r̃(s)
k1

Q2
2(ξbi , s)ds.

which contradicts to (2.2) since ci is arbitrary in (ξai , ξbi). The proof is complete.
�

Theorem 2.2. Under the conditions of Theorem 2.1, suppose (2.2) does not hold,
and q̃(ξ) > 0 for any ξ ≥ ξ0. If for some u ∈ C[ξai , ξbi ] satisfying u′ ∈ L2[ξai , ξbi ],
u(ξai) = u(ξbi) = 0, i = 1, 2, and u is not identically zero, there exists ρ ∈
C1([ξ0,∞), R+) such that∫ ξbi

ξai

{
u2(s)ρ̃(s)q̃(s)−

[ ρ̃(s)r̃(s)
k1

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2}
ds > 0 (2.10)

for i = 1, 2, where ρ̃, r̃, q̃, ξai , ξbi , k1 are defined as in Theorem 2.1, then (1.1) is
oscillatory.

Proof. Suppose to the contrary that x(t) be a non-oscillatory solution of (1.1), say
x(t) 6= 0 on [T0,∞) for some sufficient large T0 ≥ t0. Let ω̃ be defined as in Theorem
2.1. Then we obtain (2.6). Substituting ξ by s, multiplying both sides of (2.6) by
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u2(s), integrating it with respect to s from ξai to ξbi and using u(ξai) = u(ξbi) = 0,
we obtain∫ ξbi

ξai

u2(s)ρ̃(s)q̃(s)ds

≤ −
∫ ξbi

ξai

u2(s)ω̃′(s)ds+
∫ ξbi

ξai

u2(s)
[ ρ̃′(s)
ρ̃(s)

ω̃(s)− k1
ω̃2(s)
ρ̃(s)r̃(s)

]
ds

= 2
∫ ξbi

ξai

ω̃(s)u(s)u′(s)ds+
∫ ξbi

ξai

u2(s)
[ ρ̃′(s)
ρ(s)

ω̃(s)− k1
ω̃2(s)
ρ̃(s)r̃(s)

]
ds

= −
∫ ξbi

ξai

[√ k1

ρ̃(s)r̃(s)
u(s)ω̃(s)−

√
ρ̃(s)r̃(s)
k1

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2
ds

+
∫ ξbi

ξai

[ ρ̃(s)r̃(s)
k1

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2
ds.

∫ ξbi

ξai

{
u2(s)ρ̃(s)q̃(s)−

[ ρ̃(s)r̃(s)
k1

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2}
ds ≤ 0

which contradicts to (2.10). So every solution of (1.1) is oscillatory. The proof is
complete. �

Corollary 2.3. Under the conditions of Theorem 2.1, suppose that (2.2) does not
hold, and q̃(ξ) > 0 for any ξ ≥ ξ0. If for each r ≥ ξ0,

lim sup
ξ→∞

∫ ξ

r

{ρ̃(s)(ξ − s)2(s− r)2q̃(s)

−
[ ρ̃(s)r̃(s)

k1

(
(ξ + r − 2s) +

1
2

(ξ − s)(s− r) ρ̃
′(s)
ρ̃(s)

)]2
}ds > 0,

(2.11)

then (1.1) is oscillatory.

The proof of the above corollary is done by setting u(s) = (ξbi − s)(s − ξai) in
the proof of Theorem 2.2.

Remark 2.4. The results established above provide sufficient conditions for oscil-
lation of (1.1) with f(x) increasing. These results are similar to those for ordinary
differential equations of integer order. The Riccati transformation methods are
similar, However, they are essentially different. The most significant difference lies
in the fact that the functions ρ̃, r̃, q̃ are compound functions, the variable ξ has
a special form ξ = tα

Γ(1+α) . The main difficulty to overcome in using the Riccati
transformation for (1.1) can be summarized in two aspects. One is the computation
of the α-order derivative for the Riccati transformation function ω(t), in which two
important properties (1.3) and (1.4) for the modified Riemann-Liouville derivative
are used The other is how to transform (2.5) into (2.6), in which the property (1.4)
for the modified Riemann-Liouville derivative and a suitable variable transforma-
tion from the original variable t to a new variable ξ denoted by ξ = tα

Γ(1+α) are
used. In summary, the oscillation criteria presented above are established under
the combination of the Riccati transformation method and the properties of the
modified Riemann-Liouville derivative.
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3. Oscillation criteria with f(x) not necessarily increasing

Theorem 3.1. Suppose f(x)/x ≥ k2 > 0 for all x 6= 0, and for any T ≥ ξ0, there
exist T ≤ a1 < b1 ≤ a2 < b2 such that (2.1) holds. If there exist yi ∈ (ξai , ξbi) and
ρ ∈ C1([ξ0,∞), R+) such that

1
H(yi, ξai)

∫ yi

ξai

H(s, ξai)k2ρ̃(s)q̃(s)ds+
1

H(ξbi , yi)

∫ ξbi

yi

H(ξbi , s)k2ρ̃(s)q̃(s)ds

>
1

4H(yi, ξai)

∫ yi

ξai

mρ(s)r̃(s)Q2
1(s, ξai)ds

+
1

4H(ξbi , yi)

∫ ξbi

yi

mρ(s)r̃(s)Q2
2(ξbi , s)ds.

(3.1)
for i = 1, 2, where Q1, Q2, q̃, r̃, ρ̃, ξai , ξbi are defined as in Theorem 2.1. Then every
solution of (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) be a non-oscillatory solution of (1.1),
say x(t) 6= 0 on [T0,∞) for some sufficient large T0 ≥ t0. Define the Riccati
transformation function

ω(t) = ρ(t)
r(t)ψ(x(t))Dα

t x(t)
x(t)

, t ≥ T0. (3.2)

Then for t ≥ T0, from (1.2)-(1.4) we deduce that

Dα
t ω(t)

= −f(x(t))ρ(t)q(t)
x(t)

+
Dα
t ρ(t)
ρ(t)

ω(t)− 1
ρ(t)r(t)ψ(x(t))

ω2(t) +
e(t)ρ(t)
x(t)

≤ −k2ρ(t)q(t) +
Dα
t ρ(t)
ρ(t)

ω(t)− ω2(t)
mρ(t)r(t)

+
e(t)ρ(t)
x(t)

.

(3.3)

By assumption, if x(t) > 0, then we can choose a1, b1 ≥ T0 with a1 < b1 such
that e(t) ≤ 0 on the interval [a1, b1]. If x(t) < 0, then we can choose a2, b2 ≥ T0

with a2 < b2 such that e(t) ≥ 0 on the interval [a2, b2]. So e(t)ρ(t)
x(t) ≤ 0, t ∈ [ai, bi],

i = 1, 2, and from (3.3) one can deduce that

Dα
t ω(t) ≤ −k2ρ(t)q(t) +

Dα
t ρ(t)
ρ(t)

ω(t)− ω2(t)
mρ(t)r(t)

, t ∈ [ai, bi], i = 1, 2. (3.4)

Let w(t) = w̃(ξ). Then we have Dα
t w(t) = w̃′(ξ) and Dα

t ρ(t) = ρ̃′(ξ). So (3.4) is
transformed into

ω̃′(ξ) ≤ ρ̃′(ξ)
ρ̃(ξ)

ω̃(ξ)− k2ρ̃(ξ)q̃(ξ)− 1
mρ̃(ξ)r̃(ξ)

ω̃2(ξ), ξ ∈ [ξai , ξbi ], i = 1, 2. (3.5)

Let ci be selected from (ξai , ξbi) arbitrarily. Substituting ξ with s, multiplying
both sides of (3.5) by H(ξ, s) and integrating it over [ci, ξ) for ξ ∈ [ci, ξbi), after
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similar computation to (2.7), we obtain∫ ξ

ci

H(ξ, s)k2ρ̃(s)q̃(s)ds

≤ −
∫ ξ

ci

H(ξ, s)ω̃′(s)ds+
∫ ξ

ci

H(ξ, s)
[ ρ̃′(s)
ρ̃(s)

ω̃(s)− ω̃2(s)
mρ̃(s)r̃(s)

]
ds

≤ H(ξ, ci)ω̃(ci) +
∫ ξ

ci

mρ̃(s)r̃(s)
4

Q2
2(ξ, s)ds.

(3.6)

Letting ξ → ξ−bi in (3.6) and dividing it by H(ξbi , ci), we obtain

1
H(ξbi , ci)

∫ ξbi

ci

H(ξbi , s)k2ρ̃(s)q̃(s)ds

≤ ω̃(ci) +
1

H(ξbi , ci)

∫ ξbi

ci

mρ̃(s)r̃(s)
4

Q2
2(ξbi , s)ds.

(3.7)

On the other hand, substituting ξ with s, multiplying both sides of (3.5) by
H(s, ξ), and integrating it over (ξ, ci) for ξ ∈ [ξai , ci), we deduce that∫ ci

ξ

H(s, ξ)k2ρ̃(s)q̃(s)ds ≤ −H(ci, ξ)ω̃(ci) +
∫ ci

ξ

mρ̃(s)r̃(s)
4

Q2
1(s, ξ)ds

Letting ξ → ξ+
ai and dividing by H(ci, ξai), we obtain

1
H(ci, ξai)

∫ ci

ξai

H(s, ξai)k2ρ̃(s)q̃(s)ds

≤ −ω̃(ci) +
1

H(ci, ξai)

∫ ci

ξai

mρ̃(s)r̃(s)
4

Q2
1(s, ξai)ds.

(3.8)

A combination of (3.7) and (3.8) yields the inequality

1
H(ci, ξai)

∫ ci

ξai

H(s, ξai)k2ρ̃(s)q̃(s)ds+
1

H(ξbi , ci)

∫ ξbi

ci

H(ξbi , s)k2ρ̃(s)q̃(s)ds

≤ 1
4H(ci, ξai)

∫ ci

ξai

mρ(s)r̃(s)Q2
1(s, ξai)ds+

1
4H(ξbi , ci)

∫ ξbi

ci

mρ̃(s)r̃(s)Q2
2(ξbi , s)ds,

which contradicts to (3.1) since ci is selected from (ξai , ξbi) arbitrarily. Therefore,
every solution of (1.1) is oscillatory, and the proof is complete. �

Theorem 3.2. Under the conditions of Theorem 3.1, furthermore, suppose (3.1)
does not hold, and q̃(ξ) > 0 for any ξ ≥ ξ0. If for some u ∈ C[ξai , ξbi ] satisfying
u′ ∈ L2[ξai , ξbi ], u(ξai) = u(ξbi) = 0, i = 1, 2, and u is not identically zero, there
exists ρ ∈ C1([ξ0,∞), R+) such that∫ ξbi

ξai

{
u2(s)k2ρ̃(s)q̃(s)−

[
mρ̃(s)r̃(s)

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2}
ds > 0 (3.9)

for i = 1, 2, then (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) be a non-oscillatory solution of (1.1), say
x(t) 6= 0 on [T0,∞) for some sufficient large T0 ≥ t0. Let ω be defined as in Theorem
3.1. Then we obtain (3.5). Substituting ξ by s, multiplying both sides of (3.5) by
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u2(s), integrating it with respect to s from ξai to ξbi and using u(ξai) = u(ξbi) = 0,
we deduce that∫ ξbi

ξai

u2(s)k2ρ̃(s)q̃(s)ds

≤ −
∫ ξbi

ξai

u2(s)ω̃′(s)ds+
∫ ξbi

ξai

u2(s)
[ ρ̃′(s)
ρ̃(s)

ω̃(s)− ω̃2(s)
mρ̃(s)r̃(s)

]
ds

= −
∫ ξbi

ξai

[√ 1
mρ̃(s)r̃(s)

u(s)ω̃(s)−
√
mρ̃(s)r̃(s)

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2
ds

+
∫ ξbi

ξai

[
mρ̃(s)r̃(s)

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2
ds.

Then ∫ ξbi

ξai

{
u2(s)k2ρ̃(s)q̃(s)−

[
mρ̃(s)r̃(s)

(
u′(s) +

1
2
u(s)

ρ̃′(s)
ρ̃(s)

)]2}
ds ≤ 0,

which contradicts (3.9). The proof is complete. �

The following corollary has a proof similar to the one of Corollary 2.3.

Corollary 3.3. Under the conditions of Theorem 3.2, if for each r ≥ ξ0,

lim sup
ξ→∞

∫ ξ

r

{
k2ρ̃(s)(ξ − s)2(s− r)2q̃(s)

−
[
mρ̃(s)r̃(s)

(
(ξ + r − 2s) +

1
2

(ξ − s)(s− r) ρ̃
′(s)
ρ̃(s)

)]2}
ds > 0,

then (1.1) is oscillatory.

4. Applications

Example 4.1. Consider the nonlinear fractional differential equation with forced
term

Dα
t

(
sin2(

tα

Γ(1 + α)
)e−x

2(t)Dα
t x(t)

)
+ (x(t) + x3(t)) = sin(

tα

Γ(1 + α)
), (4.1)

t ≥ 2, 0 < α < 1. This corresponds to (1.1) with t0 = 2, r(t) = sin2( tα

Γ(1+α) ),

ψ(x) = e−x
2
, q(t) ≡ 1, f(x) = x + x3, e(t) = sin( tα

Γ(1+α) ). Therefore, ψ(x) ≤ 1,

f ′(x) = 1 + 3x2 ≥ 1, which implies µ = m = 1. Since ξ = tα

Γ(1+α) , it follows that

r̃(ξ) = r(t) = sin2( tα

Γ(1+α) ) = sin2 ξ.
In (2.10), we have k1 = µ/m = 1. Furthermore, letting u(s) = sin s, ξai =

(2k + i)π, ξbi = (2k + i)π + π such that ξai , ξbi is sufficiently large, we obtain
u(ξai) = u(ξbi) = 0, and considering q̃(s) ≡ 1, ρ̃(s) ≡ 1, it holds that∫ (2k+i)π+π

(2k+i)π

(
sin2 s− sin2 s cos2 s

)
ds =

∫ (2k+i)π+π

(2k+i)π

sin4 sds > 0.

On the other hand, by the connection between ai, bi and ξai , ξbi we have

ai = [Γ(1 + α)(2k + i)π]
1
α , bi = [Γ(1 + α)(2k + i)π + π]

1
α .
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So for e(t) = sin( tα

Γ(1+α) ), one can see (2.1) holds with k selected enough large.
Therefore, by Theorem 2.2 Equation (4.1) is oscillatory.

Example 4.2. Consider the nonlinear fractional differential equation with forced
term:

Dα
t

(
sin2(

tα

Γ(1 + α)
)

1
1 + x2(t)

Dα
t x(t)

)
+
x(t)(2 + x2(t))

1 + x2(t)
= sin(

tα

Γ(1 + α)
), (4.2)

t ≥ 2, 0 < α < 1. This corresponds to (1.1) with t0 = 2, r(t) = sin2( tα

Γ(1+α) ),

ψ(x) = 1
1+x2 , q(t) ≡ 1, f(x) = 2x+x3

1+x2 , e(t) = sin( tα

Γ(1+α) ).

Therefore, r̃(ξ) = r(t) = sin2( tα

Γ(1+α) ) = sin2 ξ, ψ(x) ≤ 1, which implies m = 1.
Furthermore, we notice that it is complicated in obtaining the lower bound of f ′(x).
So Theorems 2.1 and 2.2 are not applicable, while one can easily see f(x)/x ≥ 1,
which implies k2 = 1. Then by Theorem 3.2, and analysis similar to the last
paragraph in Example 4.1, Equation (4.2) is oscillatory.

Conclusions. We have established some new oscillation criteria for a nonlinear
forced fractional differential equation. As one can see, the variable transforma-
tion used in ξ is very important, transforms a fractional differential equation into
an ordinary differential equation of integer order, whose oscillation criteria can be
established using a generalized Riccati transformation, inequalities, and an inte-
gration average technique. Finally, we note that this approach can also be applied
to the oscillation for other fractional differential equations involving the modified
Riemann-liouville derivative.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their valuable suggestions on improving the content of this article.
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[20] A. özbekler, A. Zafer; Oscillation of solutions of second order mixed nonlinear differential
equations under impulsive perturbations, Comput. Math. Appl. 61 (2011) 933–940.

[21] N. Parhi; Oscillation and non-oscillation of solutions of second order difference equations

involving generalized difference, Appl. Math. Comput. 218 (2011) 458–468.
[22] S. H. Saker; Oscillation of third-order functional dynamic equations on time scales, Science

China(Mathematics), 12 (2011) 2597–2614.

[23] S. H. Saker; Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput.
148 (2004) 81–91.

[24] Y. Sun, Z. Han, Y. Sun and Y. Pan; Oscillation theorems for certain third order nonlinear

delay dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 75 (2011)
1–14.

[25] Y. Sun, Q. Kong; Interval criteria for forced oscillation with nonlinearities given by Riemann-
Stieltjes integrals, Comput. Math. Appl. 62 (2011) 243–252.

[26] Y. Sun and J. S. W. Wong; Oscillation criteria for second order forced ordinary differential

equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007) 549–560.
[27] A. Tiryaki; Oscillation of Second-Order Nonlinear Different ial Equations with Nonlinear

Damping, Math. Comput. model. 39 (2004) 197–208.

[28] Q. Zhang, S. Liu, L. Gao; Oscillation criteria for even-order half-linear functional differential
equations with damping, Applied Mathematics Letters 24 (2011) 1709–1715.

[29] S. Zhang, H. Zhang; Fractional sub-equation method and its applications to nonlinear frac-

tional PDEs, Phys. Lett. A 375 (2011) 1069–1073.
[30] B. Zheng; (G’/G)-Expansion Method for Solving Fractional Partial Differential Equations

in the Theory of Mathematical Physics, Commun. Theor. Phys. (Beijing, China) 58 (2012)

623–630.

5. Addendum posted on November 17, 2016

In response to a message from a reader, the authors want to point out that the
first equality in (1.4) is the chain rule for Jumarie’s modified Riemann-Liouville
derivative obtained in [15]. However. this rule is icorrect, a shown in the article

Cheng-shi Liu; Counterexamples on Jumaries two basic fractional calculus for-
mulae, Commun Nonlinear Sci Numer Simulat 22 (2015) 9294.

Therefore the main result of this article is icorrect. End of addendum.

Qinghua Feng
School of Science, Shandong University of Technology, Zibo, Shandong, 255049, China

E-mail address: fqhua@sina.com

Fanwei Meng

School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China
E-mail address: fwmeng163@163.com


	1. Introduction
	2. Oscillation criteria when f(x) is increasing
	3. Oscillation criteria with f(x) not necessarily increasing
	4. Applications
	Conclusions
	Acknowledgements

	References
	5. Addendum posted on November 17, 2016

