THE FORM OF THE SPECTRAL FUNCTION ASSOCIATED WITH STURM-LIOUVILLE PROBLEMS FOR SMALL VALUES OF THE SPECTRAL PARAMETER

B. J. HARRIS

Abstract. We study the linear second-order differential equation

$$
-y^{\prime \prime}+q(x) y=\lambda y
$$

where, amongst other conditions, $q \in L^{1}[0, \infty)$. We obtain a convergent series expansion for the spectral function which is valid for small values of λ. We also derive an asymptotic representation.

1. Introduction

We consider the linear, second-order differential equation

$$
\begin{gather*}
-y^{\prime \prime}+q(x) y=\lambda y \text { for } x \in[0, \infty) \tag{1.1}\\
y(0)=0 \tag{1.2}
\end{gather*}
$$

in the case where q is a real-valued member of $L^{1}[0, \infty)$. It is well known, see for example [5] that under these circumstances the spectral function $\rho_{0}(\lambda)$ associated with (1.1), (1.2) is such that $\rho_{0}^{\prime}(\lambda)$ exists and is continuous on $(0, \infty)$. In recent years many papers have investigated the form of $\rho_{0}(\lambda)$ for large values of λ. In particular we mention the asymptotic results in [1, 2] and the explicit representations derived in [3, 4, 6] which are valid for all $\lambda \geq \Lambda_{0}$ where Λ_{0} is computable. In [4] the condition $q \in L^{1}[0, \infty)$ was relaxed to the requirement that q be of Wigner-von Neumann type or be slowly decreasing. The situation for small values of λ is somewhat more complicated as the form of the derived series will show. In particular the conditions on q and the form of the series representation are in terms of the solution of a particular Riccati equation. A necessary condition for the existence of such a solution on $(0, \infty)$ is the finiteness of $\int_{0}^{\infty}(1+t)^{2} q(t) d t$. It follows that the results require q to be small at infinity. A consequence of our main result is a representation of $\lim _{\lambda \rightarrow 0^{+}} \rho_{0}^{\prime}(\lambda)$. We also, in $\$ 4$, show that the convergent series may be truncated and an asymptotic representation obtained.

[^0]
2. Results

We assume the existence of a solution, $v_{0}(x)$, of the Riccati equation

$$
\begin{equation*}
v_{0}^{\prime}=q(x)-v_{0}^{2} \tag{2.1}
\end{equation*}
$$

which is defined on $[0, \infty)$ and satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x v_{0}(x)=0 \tag{2.2}
\end{equation*}
$$

We further assume that

$$
\begin{equation*}
(1+t)\left|v_{0}(t)\right| \in L^{1}[0, \infty) \tag{2.3}
\end{equation*}
$$

Under these conditions it will be shown that there exists a sequence of functions $\left\{v_{n}(x, \lambda)\right\}$ defined recursively as follows:

$$
\begin{equation*}
v_{1}(x, \lambda):=2 i \lambda^{1 / 2} \int_{x}^{\infty} e^{2 i \lambda^{1 / 2}(t-x)-2 \int_{x}^{t} v_{0}(s) d s} v_{0}(t) d t \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}(x, \lambda):=\int_{x}^{\infty} e^{2 i \lambda^{1 / 2}(t-x)-2 \int_{x}^{t} v_{0}(s) d s}\left(v_{n-1}^{2}+2 v_{n-1} \sum_{m=1}^{n-2} v_{m}\right) d t \tag{2.5}
\end{equation*}
$$

Theorem 2.1. Under conditions (2.1)-(2.3) there exists $\Lambda>0$ so that for $\lambda \in$ $(0, \Lambda)$

$$
\begin{equation*}
\rho_{0}^{\prime}(\lambda)=\frac{1}{\pi}\left\{\lambda^{1 / 2}+\operatorname{Im} \sum_{n=1}^{\infty} v_{n}(0, \lambda)\right\} \tag{2.6}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0^{+}} \rho_{0}^{\prime}(\lambda)=0 \tag{2.7}
\end{equation*}
$$

Example 2.2. If $q(x):=-e^{-x}\left(1-e^{-x}\right)$ then it is easy to see that $v_{0}(x)=e^{-x}$ satisfies 2.1, 2.2), and 2.3 and $\lim _{\lambda \rightarrow 0^{+}} \rho_{0}^{\prime}(\lambda)=0$.
Remark 2.3. If v_{0} satisfies (2.1) then

$$
(1+t)^{2} v_{0}^{\prime}(t)=(1+t)^{2} q(t)-(1+t)^{2} v_{0}(t)^{2}
$$

and an integration by parts and 2.2 gives

$$
-v_{0}(0)-2 \int_{0}^{\infty}(1+t) v_{0}(t) d t=\int_{0}^{\infty}(1+t)^{2} q(t) d t-\int_{0}^{\infty}(1+t)^{2} v_{0}(t)^{2}
$$

The boundedness of $\int_{0}^{\infty}(1+t)^{2} q(t) d t$ now follows from 2.1-2.3).
Remark 2.4. It is shown below that the requirements 2.1-2.3) ensure that $v_{0}(x)$ is real-valued.

3. Proof of Theorem 2.1

Following the analysis employed in [5], we seek a solution of the Riccati equation

$$
\begin{equation*}
v^{\prime}=-\lambda+q-v^{2} \tag{3.1}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} v(x, \lambda)=i \lambda^{1 / 2} \tag{3.2}
\end{equation*}
$$

Then, from [5, (4.4)],

$$
\begin{equation*}
\rho_{0}^{\prime}(\lambda)=\frac{1}{\pi} \operatorname{Im}\{v(\lambda)\} \tag{3.3}
\end{equation*}
$$

We try for a solution of 3.1 a series of the form

$$
\begin{equation*}
v(x, \lambda)=i \lambda^{1 / 2}+v_{0}(x)+\sum_{n=1}^{\infty} v_{n}(x, \lambda) \tag{3.4}
\end{equation*}
$$

If term by term differentiation of the terms of the series of 3.4 is justified, substitution of (3.4 into (3.1) leads to a choice of the $\left\{v_{n}\right\}$ such that

$$
\begin{equation*}
v_{1}^{\prime}+\left(2 i \lambda^{1 / 2}+v_{0}\right) v_{1}=-2 i \lambda^{1 / 2} v_{0} \tag{3.5}
\end{equation*}
$$

and for $n=2,3, \ldots$,

$$
\begin{equation*}
v_{n}^{\prime}+2\left(i \lambda^{1 / 2}+v_{0}\right) v_{n}=-v_{n-1}^{2}-2 v_{n-1} \sum_{m=1}^{n-2} v_{m} \tag{3.6}
\end{equation*}
$$

It is straightforward to check that the functions defined in 2.4 and 2.5 satisfy (3.5) and (3.6). We now bound the $\left\{v_{n}\right\}$ and show that the series $\sum v_{n}^{\prime}$ is absolutely uniformly convergent on compact subsets of $[0, \infty)$ which is sufficient to justify the term by term differentiation.

Lemma 3.1. Let

$$
\begin{equation*}
K:=\sup _{0 \leq x \leq t<\infty}\left|e^{-2 \int_{x}^{t} v_{0}(s) d s}\right| \tag{3.7}
\end{equation*}
$$

and suppose there exists $a(x)$ which is a decreasing member of $L^{1}[0, \infty)$ such that

$$
\begin{equation*}
\left|v_{1}(x, \lambda)\right| \leq \lambda^{1 / 2} a(x) \tag{3.8}
\end{equation*}
$$

for $x \in[0, \infty)$ and $\lambda \in[0, \Lambda]$ where Λ is so small that $10 K \lambda^{1 / 2} \int_{0}^{\infty} a(t) d t \leq 1$ for $\lambda \in[0, \Lambda]$. Then $\left|v_{n}(x, \lambda)\right| \leq \frac{\lambda^{1 / 2} a(x)}{2^{n-1}}$ for $x \in[0, \lambda)$ and $\lambda \in[0, \Lambda]$.
Proof. We use induction on n. When $n=1$, the result follows from the hypothesis (3.8). Suppose now the result is true for all subscripts up to the $(n-1)$ st. Then from (2.4), (3.7), and the induction hypothesis:

$$
\begin{aligned}
\left|v_{n}(x, \lambda)\right| & \leq K \int_{x}^{\infty}\left|v_{n-1}\right|^{2}+2\left|v_{n-1}\right| \sum_{m=1}^{n-2}\left|v_{m}\right| d t \\
& \leq K \int_{x}^{\infty} \frac{\lambda a(t)^{2}}{2^{2 n-4}}+\frac{2 \lambda a(t)^{2}}{2^{n-2}} \sum_{m=1}^{n-2} \frac{1}{2^{m-1}} d t \\
& \leq \frac{\lambda^{1 / 2} a(x)}{2^{n-1}} \lambda^{1 / 2}\left\{\frac{1}{2^{n-3}}+8\right\} \int_{0}^{\infty} a(t) d t
\end{aligned}
$$

since $a(\cdot)$ is a decreasing function. The result now follows from the choice of Λ.
It may now be seen from the Lemma and 3.6 that the series $\sum v_{n}^{\prime}$ is absolutely uniformly convergent which justifies the term by term differentiation. To complete the proof of the theorem we observe that, since $v_{0}(\cdot) \in L^{1}[0, \infty)$, there exists a K which satisfies (3.7) and also, from (2.4), that

$$
\left|v_{1}(x, \lambda)\right| \leq 2 \lambda^{1 / 2} K \int_{x}^{\infty}\left|v_{0}(t)\right| d t
$$

We now choose $a(x):=2 K \int_{x}^{\infty}\left|v_{0}(t)\right| d t$ and note that

$$
\int_{0}^{\infty} a(x) d x=\int_{0}^{\infty} 2 K \int_{x}^{\infty}\left|v_{0}(t)\right| d t d x=2 K \int_{0}^{\infty} t\left|v_{0}(t)\right| d t
$$

The first part of the theorem now follows.
It remains to show that, under the assumptions 2.1 - 2.3), v_{0} is real-valued. Suppose not; if $v_{0}(t)=u(t)+i w(t)$ then upon substitution into 2.1 and the separation of real and imaginary parts we see that

$$
w^{\prime}=-2 u w
$$

whence

$$
w(t)=C e^{-2 \int_{0}^{t} u(s) d s}
$$

The requirement $\lim _{t \rightarrow \infty} v_{0}(t)=0$ then requires either $C=0$ or $\lim _{t \rightarrow \infty} \int_{0}^{t} u(s) d s=$ ∞. But the latter case contradicts 2.3 which requires that $(1+t) v_{0}(t)$ and hence $(1+t) u(t) \in L^{1}[0, \infty)$, so the only possibility is that v_{0} is real-valued.

4. An Asymptotic expansion

The bounds derived in Lemma 3.1 lead to estimates for the $\left\{v_{n}\right\}$ which show that $\sum_{n=1}^{\infty} v_{n}(x, \lambda)$ is uniformly, absolutely convergent for $x \in[0, \infty)$ and $0 \leq \lambda<\Lambda$ for some Λ which is, in principle at least, computable. In terms of λ however the bounds are all of order $\lambda^{1 / 2}$. We now show that the terms of the series are decreasing asymptotically with increasing powers of λ.
Lemma 4.1. With K as in (3.7) and with v_{1} satisfying (3.8) there exist sequences of constants $\left\{C_{n}\right\}$ and $\left\{\Lambda_{n}\right\}$ so that for $x \in[0, \infty)$ and $0 \leq \lambda \leq \Lambda_{n} \leq \Lambda_{n-1}$

$$
\begin{equation*}
\left|v_{n}(x, \lambda)\right| \leq C_{n} \lambda^{n / 2} a(x) \tag{4.1}
\end{equation*}
$$

Proof. We proceed by induction. From 2.5,

$$
\begin{aligned}
\left|v_{2}(x, \lambda)\right| & \leq \int_{x}^{\infty} e^{-2 \int_{x}^{t} v_{0}(s) d s}\left|v_{1}(t, \lambda)\right|^{2} d t \\
& \leq \lambda K \int_{x}^{\infty} a(t)^{2} d t \leq \lambda a(x) K \int_{0}^{\infty} a(t) d t
\end{aligned}
$$

Suppose the result is true up to $n \geq 2$, then from 2.5):

$$
\begin{aligned}
\left|v_{n+1}(x, \lambda)\right| & \leq K \int_{x}^{\infty}\left|v_{n}\right|^{2}+2\left|v_{n}\right| \sum_{m=1}^{n-1}\left|v_{m}\right| d t \\
& \leq K \int_{x}^{\infty} C_{n}^{2} \lambda^{n} a(t)^{2}+2 C_{n} \lambda^{n / 2} a(t) \sum_{m=1}^{n-1} C_{m} \lambda^{m / 2} a(t) d t \\
& \leq K \lambda^{\frac{n+1}{2}} a(x)\left\{C_{n}^{\frac{n-1}{2}} \lambda-2 C_{n} \sum_{m=1}^{n-1} C_{m} \lambda^{\frac{m-1}{2}}\right\} \int_{0}^{\infty} a(t) d t
\end{aligned}
$$

since the Λ_{n} form a decreasing sequence. The result now follows.
In consequence of Lemma 4.1 we have that for every N,

$$
\rho_{0}^{\prime}(\lambda)=\frac{1}{\pi}\left\{\lambda^{1 / 2}+\operatorname{Im} \sum_{n=1}^{N} v_{n}(0, \lambda)\right\}+O\left(\lambda^{\frac{N+1}{2}}\right)
$$

as $\lambda \rightarrow 0^{+}$and, in particular,

$$
\rho_{0}^{\prime}(\lambda)=\frac{\lambda^{1 / 2}}{\pi}\left\{1+2 \int_{0}^{\infty} \cos \left(2 \lambda^{1 / 2} t\right) e^{-2 \int_{0}^{t} v_{0}(s) d s} v_{0}(t) d t\right\}+O(\lambda)
$$

as $\lambda \rightarrow 0^{+}$.

References

[1] M. S. P. Eastham; The asymptotic nature of the spectral functions in Sturm-Liouville problems with continuous spectra. J. Math. Anal. Appl. 213 (1997), 573-582.
[2] M. S. P. Eastham; On the location of spectral concentration for Sturm-Liouville problems with rapidly decaying potential. Mathematika 45 (1998), 25-36.
[3] D. J. Gilbert, B. J. Harris; Bounds for the spectral concentration of Sturm-Liouville problems. Mathematica 47 (2000), 327-337.
[4] D. J. Gilbert, B. J. Harris, S. M. Riehl; The spectral function for Sturm-Liouville problems where the potential is of von-Neumann-Wigner type or slowly decaying. J. Diff. Eqns. 201 (2004), 139-159.
[5] D. J. Gilbert, B. J. Harris, S. M. Riehl; Higher derivatives of spectral functions associated with one-dimensional Schrödinger operators. Operator Theory: Advances and Applications 186 (2008), 217-228.
[6] B. J. Harris; The form of the spectral functions associated with Sturm-Liouville problems with continuous spectra. Mathematika 44 (1997), 149-161.

Bernie J. Harris
Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 601152888, USA

E-mail address: harris@math.niu.edu

[^0]: 2000 Mathematics Subject Classification. 34E05.
 Key words and phrases. Sturm Liouville equation; spectral function; small eigenparameter. (C) 2013 Texas State University - San Marcos.

 Submitted July 9, 2012. Published January 21, 2013.

