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EXISTENCE AND BLOW-UP OF SOLUTIONS FOR A
SEMILINEAR FILTRATION PROBLEM

EVANGELOS A. LATOS, DIMITRIOS E. TZANETIS

Abstract. We first examine the existence and uniqueness of local solutions to

the semilinear filtration equation ut = ∆K(u) + λf(u), for λ > 0, with initial
data u0 ≥ 0 and appropriate boundary conditions. Our main result is the

proof of blow-up of solutions for some λ. Moreover, we discuss the existence
of solutions for the corresponding steady-state problem. It is found that there

exists a critical value λ∗ such that for λ > λ∗ the problem has no stationary

solution of any kind, while for λ ≤ λ∗ there exist classical stationary solutions.
Finally, our main result is that the solution for λ > λ∗, blows-up in finite

time independently of u0 ≥ 0. The functions f,K are positive, increasing and

convex and K′/f is integrable at infinity.

1. Introduction

Our purpose in this work is to examine the existence and uniqueness for λ > 0
and prove the blow-up of local solutions for λ > λ∗, for some λ∗, of the following
initial boundary value problem:

ut = ∆K(u) + λf(u), x ∈ Ω, t > 0,

B(K(u)) ≡ ∂K(u)
∂n

+ β(x)K(u) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

 (1.1)

where u = u(x, t), n is the outward pointing normal vector field on ∂Ω and Ω is a
bounded domain of RN , N ≥ 1, with sufficiently smooth boundary ∂Ω and having
the interior sphere property, [13]. We impose non-negative initial data in order to
get non-negative solutions of (1.1). Moreover, taking f(u) > 0 for u ≥ 0 (f(0) > 0,
the forced case), we avoid degenerating solutions, hence we get classical solutions.
To get classical solutions it is enough to have u0 ∈ L∞(Ω); for more results and
methods concerning semilinear heat and porous medium problems, see [18, 22].
We introduce homogeneous boundary conditions: B(·) = 0. This type of boundary
condition is a consequence of Fourier’s law for diffusion and conservation of mass, or
heat conduction and conservation of energy. The usual type of boundary condition:
B(u) = ∂u/∂n+β(x)u = 0, seems to have no physical significance. Instead, one can
consider boundary conditions of the form ∂K(u)/∂n+β(x)u = 0, which physically
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means zero flux on the boundary. Here β, 0 ≤ β = β(x) ≤ ∞, is C1+α(∂Ω), α > 0,
whenever it is bounded (β ≡ 0, β ≡ ∞, 0 < β < ∞ means Neumann, Dirichlet
and Robin boundary condition respectively). The function K = K(s) ∈ C3([0,∞))
satisfies,

K(s) > 0 for s > 0 and K(0) = 0, K ′(s), K ′′(s) > 0, for s ≥ 0, (1.2)

(see also [13, Ch. VI], [21]). Moreover, functions f,K are assumed to satisfy,

f(s) > 0, f ′(s) > 0, f ′′(s) > 0, for s ≥ 0, (1.3)

(a)
∫ ∞

0

K ′(s)
f(s)

ds <∞, which implies (b)
∫ ∞

0

ds

f(s)
<∞ . (1.4)

Concerning (1.4)(a), see also below, Subsection 4.1, this is a necessary condition
for blow-up of solutions for the equation zt = ∆z + g(z) where z = K(v), with
g(z) = f(v). This is easily verified for the problem K ′(v)vt = ∆K(v)+f(v), with v
independent of x. In this case, the v problem reduces to vt = f(v)/K ′(v), v = v(t),
t > 0, v(0) = v0 ≥ 0 and (1.4)(a) implies blow-up of v = K−1(z) and also of z.

Problem (1.1) is a local semilinear filtration problem. If K(u) = uq, q > 1, then
problem (1.1) is the so-called semilinear porous medium problem.

Now, due to λ > 0 and because of the form of functions f and K, as we shall see
in Section 3, there exists a critical value of λ , say λ∗, such that for each λ ∈ (0, λ∗)
the corresponding steady-state problem of (1.1),

∆K(w) + λf(w) = 0, x ∈ Ω, B(K(w)) = 0, x ∈ ∂Ω, (1.5)

has at least one (classical) solution w = w(x) = w(x;λ) ∈ C2(Ω)∩C(Ω), (∆K(w) =
K ′′(w)|∇w|2 +K ′(w)∆w).

The response (bifurcation) diagram of (1.5) can be obtained by performing the
“pressure transformation”,

z = K(w) with g(z) = f(w); (1.6)

thus we derive the following problem,

∆z + λg(z) = 0, x ∈ Ω, B(z) =
∂z

∂n
+ β(x)z = 0, x ∈ ∂Ω, (1.7)

where g(σ) = f(K−1(σ)) = (f ◦K−1)(σ) = f(s) with σ = K(s) ≥ 0.
From (1.7), on using the pressure transformation (1.6), we can extract many

qualitative properties of problem (1.5). Also, several results and methods for the
semilinear filtration problem for bounded or unbounded domains can be applied,
see [6, 7, 8, 20]. Here, we have to mention that this transformation constrains
the function f . This is due to the convexity and the growth requirement on g(z)
since f(w) = f(K−1(z)) = g(z). We need, in some cases, for g(z) to be increasing
and convex, thus a new condition emerges for f . Actually if g(z), g′(z), g′′(z) are
positive then f(w), f ′(w),K ′(w) and (f ′′(w)K ′(w)−f ′(w)K ′′(w)) are positive while
the integrability at infinity implies

∫∞
0
K ′(w)dw/f(w) =

∫∞
K(0)

dz/g(z) < ∞. To
avoid such limitations, wherever possible, one can study directly problem (1.5),
and substituting these constraints by other conditions on f and K, see Section 3.
Thus, without the use of the pressure transformation (1.6), we deduce properties
for problem (1.5) from the well known problem (1.7).

For problem (1.7), we know from [1, 9, 10, 19], that if g, g′ > 0 with g superlinear,
then there exists a critical value λ∗ < ∞ of the parameter λ such that if λ > λ∗

problem (1.7) does not have any kind of solutions while for 0 < λ ≤ λ∗ it has
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solutions (unique or multiple solutions), see the ‖z‖-diagrams (‖ · ‖ = supΩ |(·)|) in
Section 3. At the critical value of the parameter λ = λ∗, in the “closed spectrum”
case (0, λ∗], there exists at least one solution z∗ while in the “open spectrum”
case (0, λ∗), there is no classical solution and there exists only a weak solution,
(‖z(·;λ)‖ → ∞, z(x;λ)→ z∗(x)− as λ→ λ∗− with z∗(x) = λ∗

∫
Ω
G(x, y)g(z(y))dy

where G is the Green’s function for −∆ with appropriate boundary conditions, see
[12]).

The response ‖w‖-diagram near λ∗ is equivalent to the ‖z‖-diagram. This is
because z = K(w), (w = K−1(z)) and K satisfies (1.2). In what follows, the
steady-state problem (1.5) will be studied extensively.

The main purpose, in this work, is to prove that for λ > λ∗ the solution to
problem (1.1) becomes infinite in finite time (blows up) for any u0(x) ≥ 0. Here,
we work on the case that λ∗ lies in the spectrum of the stationary problem, similar
to the semilinear heat equation, as in [11], also called spectral method; alternatively
to [11], one may use concavity arguments, as in [3], or energy methods as in [4]. In
addition, it can also be proved that blow-up of solutions occur for sufficiently large
initial data and for λ ∈ (0, λ∗), [11] and [15, p. 183].

Finally, this work is organized as follows. In Section 2 we briefly discuss the
local existence and uniqueness of the time-dependent problem. In Section 3, we
examine the steady-state problem, which is the key to our analysis and introduce
the corresponding linearized problem (an auxiliary problem that helps us to prove
our result). In Section 4, we prove blow-up for large λ by using Kaplan’s method;
moreover the main result is the blow-up of solutions for λ > λ∗ and for any u0 ≥ 0.
We end with the Discussion in Section 5.

2. Existence, uniqueness of the time-dependent problem

In this section we study the existence and uniqueness of solutions of problem
(1.1) (time-dependent) using (direct) comparison methods.

We give the proof in detail, since, as far as we are aware, it does not appear in the
literature. For problem (1.1) the maximum principle holds. Therefore, in order to
prove existence and uniqueness we can use comparison techniques (see [2, 14, 19]).
Actually, we introduce a system of two iteration schemes which satisfy the problem
and on using a proper system of solutions, we get two monotone sequences of
solutions. Then, we introduce a weak form of the problem and use the monotone
convergence theorem as well as some regularity arguments, we derive that the limits
u, u (u ≤ u), of the two mentioned sequences, are classical solutions to the problem.
Finally, on using Lipschitz continuity and the maximum principle, we prove that
u ≥ u. This shows that the system coincides with problem (1.1) and gives local
existence and uniqueness.

We begin by proving the existence, therefore we define upper and lower solutions
to problem (1.1). Let z, v be such that z = z(x, t), v = v(x, t) ∈ C2+α,1+α/2

(ΩT ; R) ∩ Cα,0(ΩT ; R), 0 < α < 1, ΩT = Ω × (0, T ). Then z, v are called lower,
upper solutions respectively to problem (1.1), if they satisfy,

S(z) ≤ S(u) = 0 ≤ S(v), x ∈ Ω, 0 < t < T,

B(K(z)) ≤ B(K(u)) = 0 ≤ B(K(v)), x ∈ ∂Ω, 0 < t < T,

0 ≤ z(x, 0) = z0(x) ≤ u0(x) ≤ v(x, 0) = v0(x), x ∈ Ω,

 (2.1)
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where S(z) ≡ zt −∆K(z)− λf(z). If all the above inequalities are strict, then z, v
are called strict lower, upper solutions respectively to (1.1).

Moreover, we can prove that if the inequalities of problem (2.1) are strict, then
z < v, see [2, 18]. Therefore, we have the following lemma.

Lemma 2.1. Let z, v be a lower, upper solutions to problem (1.1), then z ≤ u ≤ v,
where u is a solution to (1.1).

Proof. We shall give the proof in two steps:
First step: Let z, v be strict lower, upper solutions to (1.1). We shall prove

that z < u < v. We give firstly the proof for u, v. For this case, problem (2.1)
holds, by substituting (<) at the places for (≤). We define d(x, t) = v(x, t)−u(x, t),
(see also [2, p. 88], or [18, p. 511, Prop. 52.7]). We assume that the conclusion
(d = v−u > 0) is false; then, there exists a first time t > 0 such that d(x, t) = 0 for
some x ∈ Ω. Assuming now that x ∈ ∂Ω then B(K(v)) = B(K(u)) = 0 at x, (we
have used Hopf’s boundary lemma and that Ω has the interior sphere property),
which contradicts the fact that B(K(v)) > 0. Therefore, we are free to assume
that x ∈ Ω. We also have that d(x, t) > 0 for (x, t) ∈ Ω × (0, t) and dt(x, t) ≤ 0.
Moreover, d(x, t) attains its minimum at x = x, so ∇d(x, t) = ∇v(x, t)−∇u(x, t) =
0 and ∆d(x, t) ≥ 0. Thus at (x, t), u(x, t) = v(x, t) and

0 ≥ dt(x, t) = vt(x, t)− ut(x, t)
> ∆K(v(x, t))−∆K(u(x, t)) + λ[f(v(x, t))− f(u(x, t))] = K ′(v)∆v

+K ′′(v)|∇v|2 −K ′(u)∆u−K ′′(u)|∇u|2 + λ[f(v(x, t))− f(u(x, t))]

= K ′(u)∆d(x, t) +K ′′(v)(|∇v|2 − |∇u|2) + λ[f(v(x, t))− f(u(x, t))]

≥ λ[f(v(x, t))− f(u(x, t))] = 0.

The term with the Laplacian is non-negative, the term with |∇(·)|2 is equal to
zero and the difference of the nonlinear terms equals zero. Thus, 0 ≥ dt(x, t) > 0,
which is a contradiction, therefore v > u. Similarly, we can prove that u > z.

Second step: Let now z, v be a lower, upper solution to (1.1) respectively,
we prove that z ≤ u ≤ v. Due to its regularity, f is also Lipschitz continuous,
in fact what we need is f to be one-sided Lipschitz continuous in [z, v], that is
f(a+ b)−f(b) ≤ La, where L is a positive constant and 0 < a < R for some R. We
set vε = v+εeσt > v for some ε, σ > 0 (similarly for zε), actually we use 0 < ε� 1,
εeσt < εeσT = R, for some σ and L constants, then (see also [2]):

S(vε) = vεt −∆K(vε)− λf(vε) = vt + εσeσt −K ′′(vε)|∇v|2 −K ′(vε)∆v
− λf(vε) ≥ vt −∆K(v)− λf(v) + εσeσt − λLεeσt

+ (K ′′(v)−K ′′(vε))|∇(v)|2 + (K ′(v)−K ′(vε))∆v = S(v)

+ εeσt[σ − λL−K ′′′(v)|∇v|2 −K ′′(v)∆v] +O(ε2) > S(v) ≥ S(u).

The last inequality holds since we can take σ large enough, so that the quantity
inside the brackets to become non-negative, while R and L are constants; the
function v is bounded in C2,1(ΩT ). Then, from the first step v > u and vε > u for
ε � 1. Now vε = v + εeσt > u for every 0 < ε � 1 and on taking ε → 0 we get
v ≥ u.

Similar inequality can be proved for the other pair z, u. This completes the
proof. �
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Next we show that such z, v exist.

Example 2.2. Such z, v exist; z = Z = 0 is a lower solution while as an upper
solution we choose v(x) = ŵ(x) = w(x; λ̂) a steady state (at least for some λ < λ∗),
with λ̂ = λ + ε < λ∗, ε > 0. For λ ≥ λ∗ (and also for any λ > 0), as an upper
solution we get u = V (t) satisfying T − λt =

∫∞
V (t)

ds/f(s), for some T such that
T =

∫∞
V (0)

ds/f(s) <
∫∞
u0
ds/f(s) <∞.

Now we define z, v to be lower, upper solutions and an iteration scheme, which
starts from u0(x, t) = Z = 0, u0(x, t) = V (t), of the form:

I n ≡ I(un) := unt −∆(K(un))− λf(un−1) = 0, x ∈ Ω, t > 0, (2.2)

In ≡ I(un) := unt −∆(K(un))− λf(un−1) = 0, x ∈ Ω, t > 0, (2.3)

B(K(un)) = B(K(un)) = 0, x ∈ ∂Ω, t > 0 (2.4)

un(x, 0) = un(x, 0) = u0(x), x ∈ Ω, (2.5)

for n = 1, 2, . . . .
Next we prove that if we have such an iteration scheme, we can construct two

monotone sequences which will converge to the solution of (1.1).

Proposition 2.3. Let z, v be lower, upper solutions respectively of (1.1) and un, un
satisfy (2.2), (2.4), (2.5) and (2.3), (2.4), (2.5) respectively, for n = 1, 2, . . . with
u0 = z = Z and u0 = v = V . Then

u0 < u1 < · · · < un−1 < un < · · · < un < un−1 < · · · < u1 < u0.

Proof. We prove this by using induction. First we show that un−1 < un and
un < un−1. Thus we have,

I1 = I(u1) = u1t −∆K(u1)− λf(u0) = 0 ≥ u0t −∆K(u0)− λf(u0),

and on using the maximum principle or Lemma 2.1, for the filtration operator
T (u) = ut−∆K(u), we get u1 ≥ u0. Similarly, u1 ≤ u0. For the nth-step we have:

In = unt −∆K(un)− λf(un−1) = 0

= u(n−1)t −∆K(un−1)− λf(un−2).

The above relation gives:

[unt −∆K(un)]− [u(n−1)t −∆K(un−1)] = λf(un−1)− λf(un−2) ≥ 0,

since un−1 ≥ un−2 and un−1 ≤ un−2. Again from maximum principle or Lemma
2.1, we get un > un−1 and un < un−1, n = 1, 2, . . . .

Now we prove un < un, again by induction:

In = unt −∆K(un)− λf(un−1) = 0,

In = unt −∆K(un)− λf(un−1) = 0,

thus,

[unt −∆K(un)]− [unt −∆K(un)] = λf(un−1)− λf(un−1) ≤ 0,

since un−1 ≤ un−1, which holds for n = 1, 2, . . . (for n = 1 see Lemma 2.1). This
completes the proof. �

Corollary 2.4. For the iteration schemes of problems (2.2)-(2.5) we have: un ↗ u,
un ↘ u pointwise as n→∞ and hence u ≤ u.
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Proof. This is a consequence of the monotonicity of Proposition 2.3 and that the
pair (Z, V ) is bounded. �

Next we prove that these solutions are indeed classical:

Proposition 2.5. Functions u, u are classical solutions to the problem

S(u) = S(u) = 0, x ∈ Ω, t > 0,

B(K(u)) = B(K(u)) = 0, x ∈ ∂Ω, t > 0,

u0(x, 0) = u0(x, 0) = u0(x), x ∈ Ω,

 (2.6)

with u, u ∈ C2,1(ΩT ).

Proof. We shall write down (2.2), (2.4), (2.5) and (2.3), (2.4), (2.5) in a weak form
(very weak solutions), see also [13, 22]. More precisely:

N(z(x, t))

≡
∫

Ω

[z(y, s)η(y, s)]t0dy −
∫ t

0

∫
Ω

z(y, s)ηt(y, s) dy ds−
∫ t

0

∫
Ω

K(z)∆η dy ds

= λ

∫ t

0

∫
Ω

f(z)η dy ds,

(2.7)

where K(z) ∈ V̇2(ΩT ) ≡ L∞((0, T );L2(ΩT )) ∩ L2((0, T );L2
loc(Ω)) and z, f(z) ∈

L2(ΩT ). The test function η ∈ W 2,1
c (ΩT ), (η can also be taken to belong to

C∞c (ΩT ), with compact support), η = η(x, t) ≥ 0 with ∆η < 0, ([13, p. 419],
[15]).

The weak version of problem (2.2), (2.4), (2.5) can be written as

N(un) = λ

∫ t

0

∫
Ω

f(un−1)η dy ds.

Now, passing to the limit as n→∞, using the monotonicity of un, un, the monotone
convergence theorem (due to the boundedness of z, v, we may also use Lebesgue’s
dominated convergence theorem) and the fact that τ < T , with T as in Example
2.2 (we only need that un is uniformly bounded) we get

N(u) = λ

∫ t

0

∫
Ω

f(u) η dy ds, and similarly, N(u) = λ

∫ t

0

∫
Ω

f(u) η dy ds.

Equivalently, in the distributional sense, we have:

S(u) = S(u) = 0, in D′(ΩT ). (2.8)

Regularity: In fact, the solutions found above are classical. By using standard
regularity theory, (see [13, p. 419]), we see that any bounded (very) weak solution
belongs to Cα,α/2(ΩT ) for some 0 < α ≤ 1 (Sobolev Embedding Lemma). By
bounded (very) weak solutions u, u, we mean functions which satisfy (2.8) and
‖u‖∞, ‖u‖∞ < ∞ in ΩT . Now, by bootstrapping arguments and Schauder type
estimates, we get that u, u ∈ C2+α,1+α/2(ΩT ). Finally, u, u ∈ C2,1(ΩT ). This
completes the proof. �

Up to this point, we have proved that u ≤ u, next we show that u = u.

Lemma 2.6. Let f be one-sided Lipschitz continuous: f(a+ b)− f(b) ≤ La where
L positive constant, 0 < a < R for some R and u, u ∈ C2,1(ΩT ). Then u ≥ u.
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Proof. Let uε = u+εeσt > u for some ε > 0 (similarly for uε), moreover 0 < ε� 1,
εeσt < εeσT = R and L constants, then as in Lemma 2.1, we obtain

S(uε) = uεt −∆K(uε)− λf(uε)

≥ S(u) + εeσt[σ − λL−K ′′′(u)|∇u|2 −K ′′(u)∆u] +O(ε2)

> S(u) = S(u).

The last inequality holds since σ is taken to be large enough, u is bounded in
C2,1(ΩT ), u ≤ u and uε ≤ u for ε � 1. On using now Lemma 2.1, we get
uε = u + εeσt > u for any 0 < ε � 1 and on taking ε → 0 we derive now that
u ≥ u. �

Finally, we have the next theorem which gives a result concerning the local
existence and uniqueness.

Theorem 2.7. Problem (1.1) has a unique classical solution u with C2,1(ΩT ) for
some T > 0.

Proof. This proof is a consequence of the previous Lemmas and Propositions. For
uniqueness see Corollary 2.4 and Lemma 2.6. �

Ending this section, we mention a couple of other works, such as [15, 17] that
are related to the local existence and uniqueness of solutions of type (1.1). More
precisely, the first work, Levine and Sacks [15], proves that the solution to (1.1) is
actually global in time under some extra assumption on f . The second work, Pao
[17], concerns the porous medium problem. In this work, the maximum principle
is used and a proper iteration scheme of a pair of solutions is constructed, giving
local existence and uniqueness.

3. The steady-state and the linearized problem

3.1. The steady-state problem. We recall (1.5) that the corresponding steady-
state problem of (1.1) is

∆(K(w(x))) + λf(w(x)) = 0, x ∈ Ω, B(K(w(x))) = 0, x ∈ ∂Ω, (3.1)

(problem (1.5) and (3.1) are exactly the same). We say that w = w(x) > 0 is
a classical solution of (3.1), if z = z(x) = K(w(x)) is a classical solution (z ∈
C2(Ω) ∩ C1(Ω̄)) of

∆z + λg(z) = 0, x ∈ Ω, B(z) = 0, x ∈ ∂Ω, (3.2)

where g(z) = f(K−1(z)) = f(w), z = K(w), (again problem (1.7) and (3.2) are
exactly the same). Condition (1.2) and especially the monotonicity property of K
suggest that both the above steady-state problems are equivalent with respect to
the existence and to the multiplicity of solutions (at least close to the supremum
of λ, say λ∗, where for λ < λ∗, problem (3.1) has a classical solution, see Figure
1(b)). The equivalence of both problems means that problem (3.1) has a classical
solution if and only if problem (3.2) has a classical solution.

On using the pressure transformation (1.6), z = K(w) or σ = K(s), we can get
many qualitative results, but it constrains the function f through the conditions
on g(σ); that is, g(σ) = f(s) = f(K−1(σ)) is a convex function with respect to
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σ; more precisely it is an increasing and convex function. This implies that the
following conditions on f and K should hold:

g′′(σ) =
f ′′(s)K ′(s)− f ′(s)K ′′(s)

(K ′(s))3
=

1
K ′(s)

( f ′(s)
K ′(s)

)′
> 0, s ∈ R. (3.3)

More completely, the functions g, f and K satisfy

g(σ) = f(s) > 0, g′(σ) =
f ′(s)
K ′(s)

> 0, g′′(σ) > 0, σ > 0. (3.4)

For problem (3.2), we know that if g, g′, g′′ > 0, (g convex) and (1.4) holds, then
there exists a critical value λ∗ <∞ such that if λ > λ∗ problem (3.2) does not have a
solution (of any kind) while for 0 < λ < λ∗ has at least one, (‖z‖-diagrams, Figures
1 (a) and (b)) see [1, 9, 10, 19]. Also a similar diagram holds for ‖w‖ = ‖K−1(z)‖.
Note especially in Figure 1(b) for λ in the interval (λ∗− ε, λ∗), for some 0 < ε� 1,
there exist (at least) two classical solutions. Actually, we are interested in the
solutions near λ∗ < ∞ and that (λ∗, ‖w∗‖) is a bending point of the response
diagram of the steady-state problem.

||z||

λλ*
λ* λ

||z||

(a) Open spectrum (b) Closed spectrum

Figure 1.

Therefore, we also suppose that for any λ ∈ (λ∗ − ε, λ∗), ε > 0, there exists a
constant C = C(ε) such that the following estimate holds:

‖w(x;λ‖ ≤ C or equivalently ‖z(x;λ)‖ = ‖K(w(x;λ) ≤ ‖ ≤ K(C). (3.5)

We note that in the closed spectrum case, at the critical value λ = λ∗ there exists
a unique classical solution z∗ = K(w∗), while in the open spectrum case a classical
solution does not exist but there exists only a weak singular one (see [12, 14]).

Now, if we want to relax f and K from condition (3.3)), we suppose either N = 1
or N ≥ 2 and replace (3.3) by the following condition, see [1],

lim inf
σ→∞

g(σ)
σ

> c > 0, g(σ) ≤ a+ b σν . (3.6)

Relation (3.6) for the functions g(σ) = f(s) and σ = K(s) gives

g(σ) = f(s) ≤ a+ bKν(s), σ = K(s), σ > 0, s ∈ R, (3.7)
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where ν < N/(N − 1− δ) and δ = 0 for the Dirichlet problem, while δ = 1 for the
Neumann and Robin problems, [1, p. 688].

Remarks. (a) The significance of (3.6) is that it controls the growth of g and
ensures the existence of the closed spectrum (0, λ∗] and that the solution w∗(x;λ∗)
to (3.1) is classical.

(b) Condition (3.6) or (3.7) does not contradict the conditions of superlinearity;
i.e.,

lim inf
σ→∞

g(σ)
σ

= lim inf
s→∞

f(s)
K(s)

> c > 0, or lim inf
s→∞

f(s)
sK ′(s)

> c > 0, (3.8)

for some c > 0, which is a consequence of the condition (integrability at ∞):∫ ∞
A=K−1(a)

ds

f(s)
<

∫ ∞
a

dσ

g(σ)
=
∫ ∞
A=K−1(a)

dK(s)
f(s)

=
∫ ∞
A

K ′(s)
f(s)

ds <∞, (3.9)

for some a or A ≥ 0. Let us now assume that (3.7) holds, taking into ac-
count the positivity, monotonicity of g(σ), f(s) and K(s), then on using similar
methods as in [10], and a proper successive approximation scheme of the form,
K(wn(x)) =

∫
Ω
G(x, y)f(wn−1(y))dy, (where G > 0 is the Green’s function for −∆

with appropriate boundary conditions and Dini’s theorem) we can get the following
existence result for w(x):

K(w(x)) = λ

∫
Ω

G(x, y)f(w(y))dy. (3.10)

Equation (3.10) is equivalent, provided that (3.5) holds, to the existence of the
classical steady-state solution of problem (3.1). The existence of a bounded λ; i.e.,
λ <∞ is given by [9], which is a consequence of superlinearity condition (3.8) that
is obtained by (3.9). On taking condition (3.6) or (3.7), we get the closed spectrum
diagram for problem (3.1) as in Figure 1(b), by replacing ‖z‖ with ‖w‖.

In what follows we consider the closed spectrum case, see Figure 1(b); that is,
there exists a unique classical solution z∗ = K(w∗) or equivalently w∗ = K−1(z∗),
at λ = λ∗, for both problems (3.1) and (3.2), and at least one solution (actually
two solutions) at each λ ∈ (λ∗ − ε, λ∗), 0 < ε � 1. In other words the response
diagram (bifurcation) is bending at λ∗ and (λ∗, ‖w∗‖) is the turning point of the
response diagram, see Figure 1(b).

3.2. Linearized problem. Now we introduce the corresponding linearized prob-
lem of (3.1) (or of (1.5)) setting (stability by using perturbations):

u(x, t) = w(x) + u1(x, t)ε+ u2(x, t)ε2 + . . . , or

u(x, t) = w(x) + φ(x)eµtε+ . . . , for 0 < ε� 1.

Next we substitute in equation (1.1):

εφeµtµ+ . . .

= ∆K(u) + λf(u) = ∆[K(u)−K(w)] + ∆K(w) + λf(u)

= ∆[K ′(w)φeµtε+
K ′′(w)

2
(u1ε+ . . . )2 + . . . ] + λ(f(u)− f(w))

= ∆[K ′(w)φeµtε+
K ′′(w)

2
(u1ε+ . . . )2 + . . . ] + λf ′(w)εφeµt + . . .

= εeµt∆(K ′(w)φ) + λf ′(w)εφeµt +O(ε2), x ∈ Ω, t > 0,
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B(K(u)) = B(K(w)) + eµtB(K ′(w)φ)ε+O(ε2) = 0, x ∈ ∂Ω, t > 0,

u0 = u0(x) = w(x) + φ(x)ε+O(ε2), x ∈ Ω.

The above procedure is an asymptotic expansion provided that ui(x, t), i = 1, 2, . . .
are uniformly bounded and of order one (O(1)), thus on taking terms of the same
order with respect to ε, we obtain (3.1) and the problem

ε : φeµtµ = [∆K ′(w)φ]eµt + λf ′(w)φeµt, x ∈ Ω,

ε : B(K ′(w)φ) = 0, x ∈ ∂Ω.

Thus we get the linearized problem of (3.1) (or of (1.5)):

∆[K ′(w)φ] + λf ′(w)φ = µφ, x ∈ Ω, B(K ′(w)φ) = 0, x ∈ ∂Ω. (3.11)

The above problem has a solution for each λ ∈ (0, λ∗]. This follows from a suitable
iteration scheme of the integral representations, [10]:

K ′(wn(x))φn(x) =
∫

Ω

(λf ′(wn−1(y))− µ)φn−1(y)G(x, y)dy,

provided that f ′(0) > µ/λ. Actually, wn → w > 0 (due to problem (1.5)), φn →
φ > 0 in Ω, uniformly as n→∞ and G > 0 is the Green’s function with appropriate
boundary conditions, (B(G) = 0).
Another way of getting such results is by using variational methods, [5, 10], or
functional analysis techniques [1]; one can get directly that, if λ < λ∗ then φ > 0.
Also, it can be obtained that the response diagram for problem (3.11) is as it appears
in Figure 2; as a result the sign and zeros of µ become known. Alternatively, to get
the sign and zeros of µ; i.e., Figure 2, we can also use the corresponding linearized
problem of (3.2); that is:

∆φ̂+ λg′(z)φ̂ = µ̂φ̂, x ∈ Ω, B(φ̂) = 0, x ∈ ∂Ω. (3.12)

Thus, it is known that if λ < λ∗ then φ̂ > 0, [1, 5, 10]. Moreover, the response
diagram for problem (3.12) is as it appears in Figure 2 (by replacing w with z

and µ with µ̂; the principal eigenpair (µ̂, φ̂) has φ̂ > 0 and the sign of µ̂ is as in
Figure 2). On replacing z = K(w) and g(z) = f(w), then problem (3.2) becomes
problem (3.1). Now, on multiplying problem (3.12) by K ′(w)φ > 0, problem (3.11)
by φ̂ > 0, subtracting these two problems and using Green’s identity we obtain

µ = µ̂

∫
Ω
φ φ̂K ′(w) dx∫

Ω
φ φ̂ dx

. (3.13)

Hence, the sign and zeros of µ coincide with those of µ̂, which implies the validity
of Figure 2.

In what follows we consider the closed spectrum case, see Figure 1(b), thus we
have the following theorem.

Theorem 3.1. Let f,K satisfy (1.2)-(1.4), and either (i) N = 1, or (ii) N ≥ 2
but now either (3.3) and (3.5) or (3.7) hold, then problem (3.1), has at least one
unique classical solution w∗ at λ = λ∗ and at least two solutions at each λ ∈
(λ∗ − ε, λ∗), 0 < ε � 1. In other words, the response diagram (bifurcation) has
at least one turning (bending) point at (λ∗, ‖w∗‖), see Figure 1(b). Moreover, for
every λ ∈ (0, λ∗), the minimal positive solution w is asymptotically stable and the
first eigenvalue µ(λ) of (3.11) is negative, while the next bigger classical solution w
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is unstable and the first eigenvalue µ(λ) of (3.11) is positive. The branch (λ, ‖w‖)
near (λ∗, ‖w∗‖) forms a continuously differentiable curve and the first eigenvalue
of (3.11) at λ = λ∗ is µ∗ = µ(λ∗) = 0.

Proof. The proof is described briefly below; we use the pressure transformation,
the results of problem (3.2) and the papers [1, 5, 9, 10]. Precisely, we can get the
response diagram of Figure 2, in which we also note, on using arrows, the stability
of steady-state solutions.

μ=μ*=0

Figure 2. Response diagram. Linearized stability.

Actually, at the lower branch we have µ < 0 (the minimal solution w is stable,
linearized stability) at the upper branch µ > 0 (the maximal solution w is unstable).
From the continuity of the spectrum [5], for λ > 0 or at least in a left region of λ∗,
we get that µ∗ = 0 at λ = λ∗, therefore we have the linearized problem:

∆(K ′(w∗)φ∗) + λ∗f ′(w∗)φ∗ = 0, w∗ = w∗(x), φ∗ = φ∗(x), x ∈ Ω,

B(K ′(w∗)φ∗) = 0, x ∈ ∂Ω.

}
(3.14)

Now, we consider the response diagram at the interval (λ∗ − ε, λ∗) with 0 < ε� 1.
This diagram is continuous and concerns classical solutions (this has been proven for
problem ∆z + λg(z) = 0, B(z) = 0, with g(z) = f(K−1(z)) = f(w) > 0, g′(z) > 0,
g′′(z) > 0, see [5]). We have to note that the response diagrams (λ, ‖z‖) and
(λ, ‖w‖) are similar around the bending point (λ∗, ‖w∗‖) due to the monotonicity
of K(z).

The stability-instability can be obtained by using upper and lower solutions
(Sattinger’s type arguments [19] and successive approximations). More precisely
these results can be obtained as follows. On choosing appropriate initial data
û0 and on using comparison methods, we prove that the lower branch (λ, ‖w‖)
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is asymptotically stable while the upper branch (λ, ‖w‖) is unstable, Figure 2.
Moreover for the linearized problem (3.11) we get that due to the continuity and the
monotonicity on each branch of the response diagram we derive: 0 > µ(λ)↗ µ∗−,
when λ→ λ∗− at the lower branch while 0 < µ(λ)↘ µ∗+, λ→ λ∗− at the upper
branch, therefore µ∗ = 0.

The proof of the stability is obtained by taking appropriate initial data û0(x) =
w(x) + εφ(x), w(x), φ(x) > 0, 0 < |ε| � 1. Particularly,

∆(K(û0)) + λf(û0)

= ∆[K(w + εφ)−K(w)] + ∆(K(w)) + λf(w) + λf ′(w)φ ε+
λ

2
f ′′(ξ)φ2ε2

= [∆(K ′(w)φ) + λf ′(w)φ]ε+
ε2

2
∆(K ′′(ξ)φ2) +

λ

2
f ′′(ξ)φ2ε2

= µφ ε+O(ε2) ≡ R,
sgn(R) = sgn(µφε) = sgn(µε).

From the previous relation we obtain (+), that is the sgn(R) or µ ε > 0; therefore,
û0 is a lower solution to (3.1); (−); that is, the sgn(R) or µε < 0, therefore û0 is an
upper solution to (3.1).

More precisely, on the upper branch at w, (the largest w), we get û0 = w + εφ,
µ > 0, ε > 0 and û0 is a lower solution of the steady-state problem; therefore,
ut(x, t; û0) = ût > 0. Finally, for 0 < λ ≤ λ∗, û = u(x, t; û0) is increasing with
respect to t and unbounded, otherwise, by standard arguments, u → ŵ− > w,
which is in contradiction to w being the largest solution, (see also below). Thus,
‖u‖ → ∞, t → T− ≤ ∞ and w is unstable from above. Similarly µ > 0, ε < 0
and again on the upper branch at w, then û0 is an upper solution; therefore, û is
decreasing with respect to t, hence w is unstable from below. Indeed, for every
ε > 0, there exists δ = δ(ε) : ‖u0 − w‖ < δ with ‖u(x, t;u0) − w(x)‖ > ε (we
interpolate properly û0: u0 > û0 > w, above w; u0 < û0 < w, below w).

Similarly, we work on the lower branch at w; say w, the minimal solution to
(1.5), µ < 0, ε < 0, so û = u(x, t; û0) is increasing with respect to time t and w
is stable from below. At w, for µ < 0, ε > 0, so û = u(x, t; û0) is decreasing with
respect to time t and w is stable from above.

Thus, w is asymptotically stable for any λ ∈ (λ∗ − ε, λ∗), as well as for any
λ ∈ (0, λ∗). Finally, we get that for every ε > 0, there exists δ = δ(ε) : ‖u0−w‖ < δ
with ‖u(x, t;u0)−w(x)‖ < ε and u(x, t;u0)→ w pointwise as t→∞; therefore, w
is asymptotically stable (we choose appropriate û0; that is below w, w > u0 > û0,
or above w, w < u0 < û0, and take equicontinuous sequences with respect to t). �

For an alternative way of getting similar results, the sign of µ, see also [5, 10].

4. Blow-up

In this section we give some blow-up results. We recall that (1.2)-(1.4) hold
and that K(0) = 0, K ′(0),K ′′(0) > 0. Firstly we show the unboundness of u; on
taking u0 to be a lower solution to (3.1); i.e., u0 = 0, then u is unbounded and
‖u(·, t;u0)‖ → ∞ as t → T− ≤ ∞ for any λ > λ∗. This is due to the fact that if
u was uniformly bounded for t > 0 it would converge to w i.e. u(x, tn) → w(x) as
tn → ∞. Then, by standard parabolic type arguments (ω-limit set, etc.), [16], see
also [17], w will be a stationary solution which is a contradiction for λ > λ∗. The
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same argument holds, for 0 < λ ≤ λ∗ with u0 = w(x)+εφ(x), φ(x) > 0, 0 < ε� 1
where w is the largest stationary solution to (3.1), u is unbounded.

4.1. Blow-up on using Kaplan’s method for λ � 1; K, f satisfy (4.2). An-
other necessary condition for blow-up of solutions of (1.1) is (1.4)(b) and can be
taken from the spatial version of the problem; i.e., u(x, t) = v(t). Now we consider
that u(x, t) is uniform with respect to x, so u(x, t) = v(t) and take the spatial
derivatives zero. Thus we get the ordinary differential equation

dv

dt
= λf(v), t > 0, v(0) = sup

Ω
u0(x),

then, due to (1.4)(b), λt <
∫ v(t)

v(0)
ds/f(s) ≤

∫∞
v(0)

ds/f(s) <∞. On the other hand,
a sufficient blow-up condition of problem (1.1) can be obtained by using Kaplan’s
method. We set the function ϕ = ϕ(x) to satisfy:

∆ϕ = −ν1ϕ, x ∈ Ω, B(ϕ) = 0, x ∈ ∂Ω, (4.1)

with
∫

Ω
ϕdx = 1 and (ν1, ϕ) the first eigenpair of (4.1), with ν1, ϕ(x) > 0.

At this point we can see the necessity of an extra comparison condition between
K(u) and f(u), therefore we additionally assume:∫

Ω

[K(u(x, t))− f(u(x, t))]ϕ(x)dx ≤ 0, t > 0, (4.2)

where u is the solution to (1.1) and ϕ satisfies (4.1).
The difference with the next subsection is that here we have blow-up for λ large

enough, namely for λ > ν1 ≥ λ∗, (for ν1 ≥ λ∗, see [5, 10],) and that (4.2) is satisfied.
Now we introduce the functional A(t) =

∫
Ω
u(x, t)ϕ(x)dx, multiply equation

(1.1) with a smooth function ϕ on Ω, integrate over Ω and obtain

A′(t) =
∫

Ω

ut(x, t)ϕ(x)dx =
d

dt

∫
Ω

u(x, t)ϕ(x)dx

=
∫

Ω

ϕ∆K(u)dx+ λ

∫
Ω

ϕf(u)dx.
(4.3)

Applying Green’s identity on (4.3) and using the auxiliary problem (4.1) we obtain

A′(t) = −ν1

∫
Ω

ϕK(u)dx+ λ

∫
Ω

ϕf(u)dx. (4.4)

Then (4.2) and (4.4) give

A′(t) ≥ |Ω|(λ− ν1)
∮

Ω

f(u)ϕdx, where
∮

Ω

= (1/|Ω|)
∫

Ω

.

On using now Jensen’s inequality, for λ > ν1, we derive:

A′(t) ≥ (λ− ν1)f(A).

The above relation implies blow-up of A and hence of u (A(t) ≤ C‖u(·, t‖) for
λ > ν1 due to (1.4). Moreover, ν1 ≥ λ∗, see [5, 10]; an alternative way to prove
the latter is the use of (4.2) by substituting u for w. This is a consequence of the
positivity and the monotonicity of K and f ; indeed, taking û0 = 0, then û0 is a
lower solution to (3.1) and ût = ut(x, t; û0) > 0. If now 0 ≤ û0 < u0 < w, then
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û < u < w and taking the limit as t→∞, we get that u(x, t)→ w(x;λ)−, λ ≤ λ∗,
and ∫

Ω

[K(w(x))− f(w(x))]ϕ(x)dx ≤ 0, ϕ > 0. (4.5)

Then, if we multiply (3.1) by ϕ, integrate, and use (4.5), for λ in the spectrum of
(3.1), we obtain

0 = −ν1

∫
Ω

K(w)ϕdx+ λ

∫
Ω

f(w)ϕ ≥ (λ− ν1)
∫

Ω

f(w)ϕdx,

which implies ν1 ≥ λ and then ν1 ≥ λ∗; for an alternative proof without the
requirement (4.5) see [5, 10].

4.2. Blow-up for λ > λ∗ and any non-negative initial data. In this para-
graph, we prove our main result, which is the blow-up of solutions of (1.1) when
λ > λ∗ and for any u0 ≥ 0. We mainly follow the method that was first applied by
Lacey in [11], also called the spectral method. Thus we have the following theorem.

Theorem 4.1. Let f,K satisfy (1.2)-(1.4) and either (3.3) or (3.7), then the
solution to (1.1) blows up in finite time t∗ < ∞ for any λ > λ∗ and any non-
negative initial data.

Proof. We consider problem (3.14); i.e., the linearized problem of (3.1), for λ = λ∗,
with first eigenpair (µ∗, φ∗) = (0, φ∗), φ∗ > 0 in Ω, see Theorem 3.1:

∆(K ′(w∗)φ∗) + λ∗f ′(w∗)φ∗ = 0, x ∈ Ω, B(K ′(w∗)φ∗) = 0, x ∈ ∂Ω. (4.6)

We multiply problem (1.1) by K ′(w∗)φ∗, and integrate over Ω,∫
Ω

utK
′(w∗)φ∗dx =

∫
Ω

K ′(w∗)φ∗(∆K(u))dx+ λ

∫
Ω

K ′(w∗)f(u)φ∗dx

=
∫

Ω

K ′(w∗)φ∗[∆(K(u)−K(w∗))

+ ∆K(w∗)]dx+ λ

∫
Ω

K ′(w∗)f(u)φ∗dx;

then we use the Green’s identity and from (4.6), we derive∫
Ω

utK
′(w∗)φ∗dx = −λ∗

∫
Ω

φ∗ f ′(w∗)[K(u)−K(w∗]dx+ λ

∫
Ω

K ′(w∗)f(u)φ∗dx

− λ∗
∫

Ω

K ′(w∗)f(w∗)φ∗dx.

We add and subtract λ∗
∫

Ω
f(u)K ′(w∗)φ∗dx and define α(t) =

∫
Ω
K ′(w∗)φ∗udx,

thus we obtain

α′(t) =
∫

Ω

K ′(w∗)φ∗utdx

= (λ− λ∗)
∫

Ω

K ′(w∗)φ∗f(u)dx− λ∗
∫

Ω

φ∗ f ′(w∗)[K(u)−K(w∗]dx

+ λ∗
∫

Ω

φ∗K ′(w∗)[f(u)− f(w∗)]dx

≥ (λ− λ∗)IB + λ∗
∫

Ω

[K ′(w∗)(f(u)− f(w∗))− f ′(w∗)(K(u)−K(w∗))]φ∗dx,

where IB = inft
∫

Ω
K ′(w∗)φ∗f(u)dx =

∫
Ω
K ′(w∗)φ∗ inft f(u)dx > 0.
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We set now u = u(x, t) = w∗ + v = w∗(x) + v(x, t), and use for simplicity, in
some parts of calculations s as a general variable, instead of v; i.e., u = w∗ + s.
Next we shall construct a function h(s) such that h(0) = 0, h(s) > 0 for s ∈ R∗, h
convex and h(s) = Λ[f(s)−f(0)−sf ′(0)] ≤ infx∈Ω[f(w∗+s)−f(w∗)−sf ′(w∗)] for
s ≥ uB −M , where uB = infΩ u0(x) ≥ 0, maxx∈Ω w

∗(x) = M < ∞, 0 < Λ ≤ 1/2
and

∫∞
b
ds/h(s) <∞ for every b ≥ 0, see [11, p. 1355]. Therefore,

F = F (s;w∗) ≡ [f(w∗ + s)− f(w∗)]K ′(w∗)− [K(w∗ + s)−K(w∗)]f ′(w∗)

=

{
F1(s;w∗), for 0 ≤ w∗ + s ≤ w∗ or s ≤ 0,
F2(s;w∗), for w∗ + s > w∗ or s > 0,

with s a general variable and 0 ≤ m = minx∈Ω w
∗(x) ≤ w∗(x) ≤ maxx∈Ω w

∗(x) =
M <∞.

Interval I:. For s ≤ 0, so that uB−M ≤ s ≤ 0, that is w∗+s ≤ w∗, and extending
the domain of f and K to be defined also for negative values, we obtain

F = F1(s;w∗) = [f(w∗ + s)− f(w∗)]K ′(w∗)− [K(w∗ + s)−K(w∗)]f ′(w∗)

= F1(0;w∗) + F ′1(0;w∗)s+ F ′′1 (η;w∗)s2/2 = F ′′1 (η;w∗)s2/2

= [f ′′(w∗ + η)K ′(w∗)−K ′′(w∗ + η)f ′(w∗)]s2/2, for s < η < 0.

(4.7)

In the previous expression, F1 has been expanded with respect to s as a Taylor
series about 0, F ′1(0;w∗) = [ ddsF1(s;w∗)]s=0, etc. and F1(0;w∗) = F ′1(0;w∗) = 0.
From relation (3.3), θ = w∗ + η ≤ w∗ with uB −M ≤ η ≤ 0, thus we have

f ′′(θ)
K ′′(θ)

>
f ′(θ)
K ′(θ)

and
f ′′(w∗)
K ′′(w∗)

>
f ′(w∗)
K ′(w∗)

>
f ′(θ)
K ′(θ)

, θ ∈ R. (4.8)

If now f ′′(θ)
K′′(θ) = f ′′(w∗+η)

K′′(w∗+η) ≤
f ′(w∗)
K′(w∗) , for any η ≤ 0, then on taking η → 0− we

obtain f ′′(w∗)
K′′(w∗) ≤

f ′(w∗)
K′(w∗) , contradicting (4.8); therefore

f ′′(θ)
K ′′(θ)

=
f ′′(w∗ + η)
K ′′(w∗ + η)

>
f ′(w∗)
K ′(w∗)

, s ≤ η ≤ 0. (4.9)

Hence, relations (4.7) and (4.9) (replacing w∗ with l0 and η with η0) imply that

F = F1(s;w∗) ≥ inf
η

[f ′′(w∗ + η)K ′(w∗)−K ′′(w∗ + η)f ′(w∗)]s2/2

≥ min
x∈Ω

[f ′′(w∗ + η0)K ′(w∗)−K ′′(w∗ + η0)f ′(w∗)]s2/2

= [f ′′(l0 + η0)K ′(l0)−K ′′(l0 + η0)f ′(l0)]s2/2 = Λ1s
2,

where l0 = w∗(x0), for some x0 ∈ Ω and some η0 ∈ [s, 0]; moreover Λ1 > 0 due to
(4.8).

So there is a Λ2 > 0 small enough such that

F = F1(s;w∗) ≥ Λ1s
2 ≥ Λ2[f(s)− f(0)− sf ′(0)], uB −M < s ≤ 0. (4.10)

Interval II: For s > 0, but now s < S, for some S (see below (4.14)), and
w∗ < w∗ + s, we have

F = F2(s;w∗) = [f(w∗ + s)− f(w∗)]K ′(w∗)− [K(w∗ + s)−K(w∗)]f ′(w∗)

= F2(0;w∗) + F ′2(0;w∗)s+ F ′′2 (η;w∗)s2/2 = F ′′2 (η;w∗)s2/2

= [f ′′(w∗ + η)K ′(w∗)−K ′′(w∗ + η)f ′(w∗)]s2/2, for 0 < η < s ≤ S,
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Relation (3.3) now gives:

f ′′(θ)
K ′′(θ)

>
f ′(θ)
K ′(θ)

>
f ′(w∗)
K ′(w∗)

, θ = w∗ + η > 0, with 0 ≤ η ≤ S. (4.11)

Hence, from (4.11), we have

F2(s;w∗) = [f ′′(w∗ + η)K ′(w∗)−K ′′(w∗ + η)f ′(w∗)]s2/2

≥ inf
η

[f ′′(w∗ + η)K ′(w∗)−K ′′(w∗ + η)f ′(w∗)]s2/2

= [f ′′(w∗ + η1)K ′(w∗)−K ′′(w∗ + η1)f ′(w∗)]s2/2

≥ min
x∈Ω

[f ′′(w∗ + η1)K ′(w∗)−K ′′(w∗ + η1)f ′(w∗)]s2/2

= [f ′′(l1 + η1)K ′(l1)−K ′′(l1 + η1)f ′(l1)]s2/2

= Λ3s
2 > 0, l1 = w∗(x1), x1 ∈ Ω,

for some x1; moreover Λ3 > 0 due to (4.11). So there is a Λ4 > 0 small enough
such that

F = F2(s;w∗) ≥ Λ3s
2 ≥ Λ4[f(s)− f(0)− sf ′(0)], 0 < s < S. (4.12)

Interval III: For s > 0, actually for s > S for some S > 0 and w∗ < w∗ + s we
get that

F (s;w∗) = F2(s;w∗) = A(s;w∗)−B(s;w∗)

= [f(w∗ + s)− f(w∗)]K ′(w∗)− [K(w∗ + s)−K(w∗)]f ′(w∗)

≥ K ′(w∗)[f(w∗ + s)− f(w∗)− Λ5sK
′(w∗ + s)]

(4.13)

where Λ5 = f ′(M)/K ′(m), (K ′(m) > 0, m ≥ 0). From the growth condition
(1.4)(a), we have

f(s)
K ′(s)

> c1s+ c2, s > S = S(c1, c2); (4.14)

for any c1, c2 > 0, there exists S = S(c1, c2) ≥ 0 which is the largest root of the
equation f(s)/K ′(s) = c1s+ c2. Relation (4.14) implies

f(w∗ + s)
K ′(w∗ + s)

> c1(w∗ + s) + c2 for s > S, (4.15)

where w∗ + s ≥ s > S. From relation (4.15) we get that

f(w∗ + s) > c1(w∗ + s)K ′(w∗ + s) + c2K
′(w∗ + s)

≥ c1sK ′(w∗ + s) + c2K
′(m)

= 2[Λ5sK
′(w∗ + s) + f(M)],

(4.16)
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on taking c1 = 2Λ5 = 2f ′(M)/K ′(m) and c2 = 2f(M)/K ′(m). From (4.13), (4.16)
we derive:

F2(s;w∗) ≥ K ′(w∗)[f(w∗ + s)− f(M)− Λ5sK
′(w∗ + s)]

≥ K ′(w∗)[f(w∗ + s)− 1
2
f(w∗ + s)]

≥ K ′(w∗)1
2
f(w∗ + s)

≥ K ′(w∗)1
2
f(s) ≥ K ′(m)

1
2
f(s)

> Λ6[f(s)− f(0)− sf ′(0)] > 0,

(4.17)

where 0 < Λ6 < K ′(m)/2.

Remarks. (a) We remind the reader that parameter λ∗ is fixed and w∗ = w∗(x) =
w∗(x;λ∗) ∈ C2(Ω) ∩ C1(Ω) is a fixed unique solution to (3.1) at λ = λ∗. This
implies that infx w∗(x) = m ≥ 0, (depending on the boundary conditions) and
supx w∗(x) = M. Therefore m and M are fixed and Λ5 = Λ5(m,M).

(b) Before going further, it is worth noting that from interval III, we shall get the
blow-up of solutions, while from intervals I, II together with III we shall get an upper
bound for the blow-up time t∗. More precisely, intervals I, II are used for finding
a better estimate of the upper bound of t∗; while in these intervals u is uniformly
bounded with respect to x, with t < T for some T > 0, i.e. u = u(x, t) < M +S. It
is remarkable that condition (3.3) is used only on the intervals I, II and contributes
to better estimation of the upper bound of blow-up time.

Next, on using (4.10), (4.12) and (4.17) we take h = h(s) such that

h(s) = Λ[f(s)− f(0)− sf ′(0)] > 0, (4.18)

where Λ = min{Λ2,Λ4,Λ6} depending upon K ′; moreover h satisfies

h(s) > 0, s ∈ R∗, h′(s) > 0, h(0) = h′(0) = 0, h′′(s) > 0, s ∈ R, (4.19)

and its minimum is (0, h(0)) = (0, 0).
Thus, for v = u− w∗, A(t) =

∫
Ω
K ′(w∗)φ∗vdx = α(t)−

∫
Ω
K ′(w∗)φ∗w∗dx, with

a(t) =
∫

Ω
K ′(w∗)φ∗udx, normalizing

∫
Ω
K ′(w∗)φ∗dx = 1, using (4.19) and Jensen’s

inequality, then for λ > λ∗, we have

α′(t)

= A′(t) =
∫

Ω

K ′(w∗)φ∗vtdx

≥ (λ− λ∗)IB + λ∗
∫

Ω

{K ′(w∗)[(f(u)− f(w∗)]− f ′(w∗)[K(u)−K(w∗))]φ∗}dx

≥ (λ− λ∗)IB + λ∗
∫

Ω

K ′(w∗)Λ[f(v)− f(0)− vf ′(0)]φ∗dx

≥ (λ− λ∗)IB + λ∗
∫

Ω

K ′(w∗)h(v)φ∗dx

≥ λ∗
∫

Ω

K ′(w∗)h(v)φ∗dx ≥ λ∗h(A). (4.20)

Thus, A′(t) ≥ λ∗h(A), which implies, due to (1.4) and (4.19), blow-up of A(t) and
since A(t) ≤ ‖v(·, t)‖, blow-up of v at t∗v and hence of u at t∗ < ∞ where t∗ ≤ t∗v,
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since u = w∗ + v > v in Ω and w∗ is bounded. This completes the proof of the
theorem. �

Upper bound for the blow-up time: Now following [11], we give an upper
bound for the blow-up time: Again from (3.3) and (4.20), we obtain

A′(t) =
∫

Ω

K ′(w∗)φ∗vtdx

≥ (λ− λ∗)IB + λ∗
∫

Ω

K ′(w∗)h(v)φ∗dx

≥ (λ− λ∗)IB + λ∗h(A).

(4.21)

If

A0 =
∫

Ω

K ′(w∗)v0φ
∗dx =

∫
Ω

K ′(w∗)(u0 − w∗)φ∗dx

and A1 < min{0, A0}, we choose A2 such that 0 ≤ A2 ≤ −A1. Then, from (4.21)
and noting that H(s) ≡ [(λ − λ∗)IB + λ∗h(s)]−1 < (λ∗h(s))−1, h is defined by
(4.18), we obtain

0 < t =
∫ A(t)

A1

H(s)ds < t∗v =
∫ ∞
A1

H(s)ds

<

∫ −A2

A1

H(s)ds+
∫ A2

−A2

H(s)ds+
∫ ∞
A2

H(s)ds

≤ 1
λ∗

∫ −A2

A1

ds

h(s)
+
∫ ∞
−∞

[(λ− λ∗)IB + C1s
2]−1ds+

1
λ∗

∫ ∞
A2

ds

h(s)

≤ C2 + π [(λ− λ∗)IBC1]−1/2 ≡ TB ,

where C1 = 1
2λ
∗ inf |s|<A2 h

′′(s) > 0 and

C2 =
1
λ∗

[
∫ −A2

A1

(h(s))−1ds+
∫ ∞
A2

(h(s))−1ds].

For the integral in the middle, we use (4.19), the fact that the maximum of H(s) is
taken at s = 0 and that

∫
|s|>A2

H(s)ds�
∫
|s|<A2

H(s)ds, as well as
∫ A2

−A2
H(s)ds .∫∞

−∞H(s)ds. Moreover,∫ A2

−A2

[(λ− λ∗)IB + C1s
2]−1ds .

∫ ∞
−∞

[(λ− λ∗)IB + C1s
2]−1ds

= π[(λ− λ∗)IBC1]−1/2,

for 0 < (λ− λ∗)� 1. Finally, the solution u blows up in finite time t∗ ≤ t∗v ≤ TB ,
where TB is an upper bound of t∗.

Discussion

In this work, our essential outcome is the proof of the blow-up of solutions under
some particular conditions. Beforehand, we discuss the local existence and unique-
ness of solutions of (1.1) using comparison methods. We examine the stationary
solutions of (3.1), following mainly [1, 10] and choose the case of a response (bi-
furcation) diagram with at least one turning point. For a turning point (λ∗, ‖w∗‖)
(limit of minimal solution w(x;λ)), we consider that the critical value λ∗ lies in the
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spectrum of (3.1) and that a solution w∗ exists; actually the existence of a bounded
w∗ is the key of this work. If λ∗ does not lie in the spectrum, i.e. there is no clas-
sical bounded solution w∗, then the proof of blow-up of u, in general, is an open
question, see also [11]. Due to the fact that f(0) > 0, and f(s), f ′(s), f ′′(s) > 0,
s ∈ R, the u-solutions are classical and do not degenerate. Our main result is that
for K(s) > 0, s > 0, K ′(s),K ′′(s) > 0, s ≥ 0, K(0) = 0, and for any non-negative
initial data, the u-solutions blow up in finite time for any λ > λ∗. For the proof
of this result, we use spectral properties of the stationary problem and of corre-
sponding linearized problem. Following similar ideas as in [11] (spectral method),
for the semilinear heat equation, we construct a proper function and through this
function we prove blow-up for a functional, from which we obtain the blow-up of
u. The requirement that λ∗ lies in the spectrum (this has the form (0, λ∗]) of (1.1)
may not be necessary, [2, 3]; for the semilinear heat problem, this requirement has
been replaced by a concavity assumption, see [3]. Moreover, we also give an upper
bound estimate for the blow-up time.

Some other blow-up results, especially when K(0) = K ′(0) = K ′′(0) = 0, or for
the degenerate problems, as well as blow-up with respect to the initial data, will
be presented in a forthcoming work.
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