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EXPONENTIAL STABILITY OF TRAVELING FRONTS FOR A
2D LATTICE DELAYED DIFFERENTIAL EQUATION WITH

GLOBAL INTERACTION

SHI-LIANG WU, TIAN-TIAN LIU

Abstract. The purpose of this paper is to study traveling wave fronts of
a two-dimensional (2D) lattice delayed differential equation with global in-

teraction. Applying the comparison principle combined with the technical

weighted-energy method, we prove that any given traveling wave front with
large speed is time-asymptotically stable when the initial perturbation around

the wave front need decay to zero exponentially as i cos θ + j sin θ → −∞,
where θ is the direction of propagation, but it can be allowed relatively large

in other locations. The result essentially extends the stability of traveling wave

fronts for local delayed lattice differential equations obtained by Cheng et al
[1] and Yu and Ruan [16].

1. Introduction

The purpose of this paper is to consider the exponential stability of traveling
wave fronts for a stage structured population model on a 2D spatial lattice. The
population model can be described by the delayed lattice differential equation with
global interaction (see Cheng et al [1] and Weng et al [13]):

dui,j(t)
dt

= Dm[ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t)]− dmui,j(t)

+
$

4π2

∑
m,n∈Z

βα(i−m)γα(j − n)b
(
um,n(t− τ)

)
, i, j ∈ Z, t > 0,

(1.1)
where Dm and dm represent the diffusion coefficient and the death rate of the
matured population, respectively, d(s) and D(s) are the death rate and diffusion
rate of the immature population, respectively, at age s ∈ (0, τ), $ = e

R τ
0 d(s)ds and

α =
∫ τ
0
D(s)ds represent the impact of the death rate for immature and the effect

of the dispersal rate of immature on the mature population, respectively, and

βα(l) = 2e−2α

∫ π

0

cos(ls)e2α cos sds, γα(l) = 2e−2α

∫ π

0

cos(ls)e2α cos sds, l ∈ Z.
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The important feature of (1.1) is the reflection of the joint effect of the diffusion
dynamics and the nonlocal delayed effect. Under monstable and quasi-monotone
assumptions, the authors of [1, 13] established the existence of minimal wave speed
c∗ = c∗(θ)(> 0), where θ ∈ [0, π2 ] is any fixed direction of propagation, and showed
that the minimal wave speed c∗(θ) coincides with the spreading speed for any fixed
direction θ. Moreover, the effects of the maturation period τ and the direction of
propagation θ on the spreading speed were considered.

When D(a) = 0 for any 0 < a < τ (i.e. the immature population is non-mobile),
α = 0 and then β0(0) = γ0(0) = 2π and β0(l) = γ0(l) = 0 for any l ∈ Z \ {0}. In
this case, (1.1) reduces to the local delayed lattice differential equation

dui,j(t)
dt

= Dm[ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t)]

− dmui,j(t) +$b
(
ui,j(t− τ)

)
.

(1.2)

Applying the weighted energy method, Cheng et al [2] proved the asymptotic sta-
bility of traveling wave fronts of (1.2). More precisely, they proved that, for the
Cauchy problem of (1.2) with initial data

ui,j(s) = u0
i,j(s), i, j ∈ Z, s ∈ [−τ, 0], (1.3)

the traveling wave front φ(i cos θ+ j sin θ+ ct) of (1.2) connecting E+ and E− with
large speed is time-asymptotically stable, when the initial perturbation around the
wave front (i.e. |u0

i,j(s)−φ(i cos θ+ j sin θ+ cs)|) is sufficiently small in a weighted
norm. More recently, the authors of [16] further established the stability of traveling
wave fronts of (1.2) for relatively large initial perturbations by using the comparison
principle and the weighted-energy method. However, to the best of our knowledge,
there has been no results on the stability of traveling wave fronts for the delayed
lattice differential equation with global interaction.

The purpose of this paper is to consider the stability of traveling wave fronts of
(1.1). More precisely, we shall prove that any given traveling wave front φ(i cos θ+
j sin θ + ct) with large speed c (i.e. c satisfies (2.6) below) is time-asymptotically
stable when the initial perturbation around the wave front (i.e. |u0

i,j(s)−φ(i cos θ+
j sin θ + cs)|) need to decay to zero exponentially as i cos θ + j sin θ → −∞, where
θ is the direction of propagation, but it can be allowed relatively large in other
locations (see Theorem 2.3). Here, we use an approach combining the comparison
principle and the weighted-energy method, which was developed by [5] to prove the
stability of traveling wave fronts of a Nicholson’s blowflies equation with diffusion.
This approach was further employed by many researchers to prove the stability of
traveling wave fronts of various reaction-diffusion equations with local or nonlocal
delays; see, e.g., [4, 6, 7, 8, 9, 14, 15].

Although the main idea and methods of the proof for our main theorem are
originally encouraged by [4, 6, 7, 8, 9, 14, 15, 16], we mention that difficulties and
challenge are existing for our arguments due to the convolution term. For exam-
ple, in the construction of the weight function, we need to derive some important
estimations (see Lemma 2.2). In addition, the proof of the key inequality is more
technical (see Lemma 3.3). Similar to [1, 13], we make the following assumptions:

(A1) b ∈ C2([0,K]), b(0) = 0, $b(K) = dmK, dm > $b′(K), $b(u) > dmu for
u ∈ (0,K), where K is a positive constant;

(A2) b(u) ≤ b′(0)u and b′(u) ≥ 0 for u ∈ [0,K].
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The rest of this paper is organized as follows. In Section 2, we first introduce
some known results on the existence of traveling wave fronts of (1.1), and then
present our stability results. The proofs of the main results are given in Section 3.

Notation. Throughout this paper, l2w denotes the weighted l2 space with weight
w(ξ) ∈ C(R,R+) and a fixed θ ∈ [0, π2 ]; that is,

l2w =
{
ς = {ςi,j}i,j∈Z, ςi,j ∈ R :

∑
i,j∈Z

w(i cos θ + j sin θ)ς2i,j <∞
}

with the norm

‖ς‖l2w =
[ ∑
i,j∈Z

w(i cos θ + j sin θ)ς2i,j
]1/2

.

In particular, if w ≡ 1, we denote l2w by l2.

2. Preliminaries and main results

Throughout this article, a traveling wave solution connecting 0 and K refers to
a triplete (φ, c, θ), where φ = φ(·) : R→ R is a function, c > 0 and θ ∈ [0, π/2] are
constants, such that ui,j(t) = φ(ξ), ξ = i cos θ + j sin θ + ct, is a solution of (1.1);
that is,

cφ′(ξ) = Dm[φ(ξ + cos θ) + φ(ξ − cos θ) + φ(ξ + sin θ) + φ(ξ − sin θ)− 4φ(ξ)]

− dmφ(ξ) +
$

4π2

∑
m,n∈Z

βα(m)γα(n)b
(
φ(ξ −m cos θ − n sin θ − cτ)

)
(2.1)

with the boundary conditions

φ(−∞) = 0, φ(+∞) = K. (2.2)

The constant θ represents the direction of the wave. We call c the wave speed and
φ the wave profile. Moreover, we say φ is a traveling (wave) front if φ(·) : R → R
is monotone.

It is clear that the characteristic function for (2.1) with respect to the trivial
equilibrium 0 can be represented by

∆(c, λ) = cλ−Dm

[
eλ cos θ + e−λ cos θ + eλ sin θ + e−λ sin θ − 4

]
+ dm

− $

4π2
b′(0)

∑
m,n∈Z

βα(m)γα(n)e−λ(m cos θ+n sin θ+cτ).

Properties of ∆(c, λ) and existence of traveling wave fronts of (1.1) were investigated
in [1, 13]. For the sake of completeness, we recall them as follows.

Proposition 2.1. Assume (A1)–(A2) hold. Then the following results hold:
(1) For each θ ∈ [0, π2 ], there exist λ∗ := λ∗(θ) > 0 and c∗ := c∗(θ) > 0 such

that

∆(c∗, λ∗) = 0 and
∂

∂λ
∆(c∗, λ)

∣∣∣
λ=λ∗

= 0.

Furthermore, if c > c∗(θ), then the equation ∆(c, λ) = 0 has two positive
real roots λ1 := λ1(c, θ) and λ2 := λ2(c, θ) with λ1 < λ∗ < λ2.

(2) Fix θ ∈ [0, π/2]. Then, for every c ≥ c∗(θ), (1.1) has a traveling wave front
φ(ξ) with direction θ and speed c.
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For convenience, we denote

L1 = max
u∈[0,K]

b′(u), L2 =
1

4π2

∑
m,n∈Z

βα(m)γα(n) max
{

1, e−m cos θ−n sin θ
}
.

Note that if b′′(u) ≤ 0 for u ∈ [0,K], then L1 = b′(0). Moreover, it is easy to see
that L2 = 1 when α = 0.

The following result plays an important role for constructing the weight function.

Lemma 2.2. Assume

dm > Dm

(
e− 1

)
+

1
2
$b′(K)(1 + L2). (2.3)

For any given traveling wave front φ(ξ) of (1.1) with direction θ ∈ [0, π2 ] and speed
c > c∗(θ) obtained in Proposition 2.1, there exists ξ∗ > 0 such that for any ξ ≥ ξ∗,

$

4π2
b′
(
φ(ξ))

∑
m,n∈Z

βα(m)γα(n) max{1, e−m cos θ−n sin θ}

+
$

4π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξ −m cos θ − n sin θ − cτ))

)
≤ $b′(K)(1 + L2) + ε̄,

where ε̄ = dm −Dm

(
e− 1

)
− 1

2$b
′(K)(1 + L2) > 0.

Proof. Since limξ→+∞ b′
(
φ(ξ)) = b′(K), it suffices to show that

lim
ξ→+∞

1
4π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξ −m cos θ − n sin θ − cτ))

)
= b′(K). (2.4)

Given any ε > 0, since
1

2π

∑
m∈Z

βα(m) =
1

2π

∑
n∈Z

βα(n) = 1

(see [1, Lemma 2.1]), there exists M,N > 0 such that∑
|m|≥M

βα(m),
∑
|n|≥N

γα(n) ≤ πε

4L1
.

Noting that limξ→+∞ b′
(
φ(ξ)) = b′(K), there exists ξ∗ > 0 such that for any ξ ≥

ξ∗ −M −N − cτ ,
|b′
(
φ(ξ))− b′(K)| < ε

4
.

Then, for any ξ ≥ ξ∗, we have∣∣∣ 1
4π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξ −m cos θ − n sin θ − cτ)

)
− b′(K)

∣∣∣
=
∣∣∣ 1
4π2

∑
m,n∈Z

βα(m)γα(n)
[
b′
(
φ(ξ −m cos θ − n sin θ − cτ)

)
− b′(K)

]∣∣∣
≤ 1

4π2

∑
|m|≥M,n∈Z

βα(m)γα(n)
∣∣b′(φ(ξ −m cos θ − n sin θ − cτ)

)
− b′(K)

∣∣
+

1
4π2

∑
|m|≤M,|n|≥N

βα(m)γα(n)
∣∣b′(φ(ξ −m cos θ − n sin θ − cτ)

)
− b′(K)

∣∣
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+
1

4π2

∑
|m|≤M,|n|≤N

βα(m)γα(n)
∣∣b′(φ(ξ −m cos θ − n sin θ − cτ)

)
− b′(K)

∣∣
≤ 2L1

1
2π

∑
|m|≥M

βα(m) + 2L1
1

2π

∑
|n|≥N

γα(n) +
ε

4
1

4π2

∑
|m|≤M,|n|≤N

βα(m)γα(n) < ε.

Thus, (2.4) holds. The proof is complete. �

Based on the above lemma, we define the weight function w(ξ) as

w(ξ) =

{
e−(ξ−ξ∗), for ξ < ξ∗,

1, for ξ ≥ ξ∗.
(2.5)

We can now state our main theorem.

Theorem 2.3. Assume (A1)–(A2) hold and b′′(u) ≤ 0 for u ∈ [0,K]. For any
given traveling wave front φ(ξ) of (1.1) with direction θ ∈ [0, π/2] and speed c
obtained in Proposition 2.1, if (2.3) holds,

c > max
{

2Dm

(
e− 1

)
+ b′(0)$(1 + L2)− 2dm, c∗(θ)

}
(2.6)

and the initial data satisfies 0 ≤ ui,j(s) ≤ K for (i, j, s) ∈ Z2 × [−τ, 0], and

{u0
i,j(s)− φ(i cos θ + j sin θ + cs)}i,j∈Z ∈ C

(
[−τ, 0], l2w

)
,

then the unique solution ui,j(t) of the Cauchy problem (1.1) and (1.3) satisfies
0 ≤ ui,j(t) ≤ K (i, j, t) ∈ Z2 × [0,+∞),

{ui,j(t)− φ(i cos θ + j sin θ + ct)}i,j∈Z ∈ C
(
[0,+∞), l2w

)
,

and there exists positive number µ such that

sup
i,j∈Z

∣∣ui,j(t)− φ(i cos θ + j sin θ + ct)
∣∣ ≤ C0e

−µt, t ≥ 0,

for some constant C0 > 0.

Remark 2.4. (i) Note that if Dm and b′(K) are relatively small, then the technical
assumption (2.3) holds. As mentioned by Mei et al [6], the condition b′(K)� 1 is
natural, see e.g. [6, Remark 1].

(ii) From the condition (2.6) and definitions of the weighted function w(ξ) and
the space C

(
[−τ, 0], l2w

)
, we see that the initial perturbation around the wave front

must converge to 0 exponentially as i cos θ + j sin θ → −∞ in the form

u0
i,j(s)− φ(i cos θ + j sin θ + cs) = O(1)e−

1
2 |i cos θ+j sin θ|, s ∈ [−τ, 0].

Contrasting to [2], we do not require that the initial perturbation must be suffi-
ciently small in a weighted norm.

(iii) Theorem 2.3 guarantees that any given traveling wave front of (1.1) with
large speed is time-asymptotically stable. However, we are unable to prove the
stability for any slower waves c > c∗, particularly the case of critical waves with
c = c∗. We leave this for future research.
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3. Proof of main results

In this section, we first state the existence of solutions of the Cauchy problem
(1.1) and (1.3) and establish the comparison principle. Then we prove our stability
results by using the comparison principle together with the weighted energy method.
In the sequel, we always assume that all the conditions in Theorem 2.3 hold.

Applying similar methods as in Cheng et al [2, Theorem 2.2], we obtain the
following existence result.

Lemma 3.1 (Existence). For any function u0(s) = {u0
i,j(s)}i,j∈Z ∈ C([−τ, 0], l∞),

equation (1.1) has a unique solution u(t) = {ui,j(t)}i,j∈Z ∈ C([−τ,+∞), l∞) with
u(s) = u0(s) on [−τ, 0]. Furthermore, if

{u0
i,j(s)− φ(i cos θ + j sin θ + cs)}i,j∈Z ∈ C

(
[−τ, 0], l2

)
,

then
{ui,j(t)− φ(i cos θ + j sin θ + ct)}i,j∈Z ∈ C

(
[0,+∞), l2

)
.

Lemma 3.2 (Comparison Principle). Let {ui,j(t)}i,j∈Z and {ui,j(t)}i,j∈Z be the
solutions of (1.1) and (1.3) with initial data {u0

i,j(s)}i,j∈Z and {u0
i,j(s)}i,j∈Z, re-

spectively. If

0 ≤ u0
i,j(s) ≤ u0

i,j(s) ≤ K for i, j ∈ Z and s ∈ [−τ, 0],

then
0 ≤ ui,j(t) ≤ ui,j(t) ≤ K for i, j ∈ Z and t ≥ 0.

Proof. Put wi,j(t) = ui,j(t) − ui,j(t) for i, j ∈ Z and t ≥ −τ . Direct computation
shows that

w′i,j(t) = Dm[wi+1,j(t) + wi−1,j(t) + wi,j+1(t) + wi,j−1(t)− 4wi,j(t)]

− dmwi,j(t) + hi,j(t),

where

hi,j(t) =
$

4π2

∑
m,n∈Z

βα(i−m)γα(j − n)
[
b
(
um,n(t− τ)

)
− b
(
um,n(t− τ)

)]
.

We claim that

wi,j(t) =
1

4π2
e−dmt

∑
k,l∈Z

βDmt(i− k)γDmt(j − l)wk,l(0)

+
1

4π2

∑
k,l∈Z

∫ t

0

e−dm(t−s)βDm(t−s)(i− k)γDm(t−s)(j − l)hk,l(s)ds.

We note that this claim can be proved by using discrete Fourier transformation
as in Cheng et al. [2]. For the sake of completeness and reader’s convenience, we
provide its proof here. Note that the grid function wi,j(t) can be viewed as the
discrete spectral of a periodic function ŵ(t, λ) by discrete Fourier transformation
(see Goldberg, 1965; Titchmarsh, 1962):

ŵ(t, λ) =
1

2π

∑
k,l∈Z

e−i(kλ1+lλ2)wk,l(t),

wk,l(t) =
1

2π

∫ π

−π

∫ π

−π
ei(kλ1+lλ2)ŵ(t, λ)dλ1dλ2,
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where i is the imaginary unit and λ = (λ1, λ2). Using discrete Fourier transforma-
tion, we obtain

∂

∂t
ŵ(t, λ) = Dm[eiλ1 + e−iλ1 + eiλ2 + e−iλ2 − 4]ŵ(t, λ)− dmŵ(t, λ) + ĥ(t, λ)

= −
[
4Dm(sin2 λ1

2
+ sin2 λ2

2
) + dm

]
ŵ(t, λ) + ĥ(t, λ).

(3.1)
This equation can be solved as:

ŵ(t, λ) = ŵ(0, λ)e−4Dmt(sin
2 λ1

2 +sin2 λ2
2 )e−dmt

+
∫ t

0

ĥ(s, λ)e−4Dm(t−s)(sin2 λ1
2 +sin2 λ2

2 )e−dm(t−s)ds.

Note that

ŵ(0, λ) =
1

2π

∑
k,l∈Z

e−i(kλ1+lλ2)wk,l(0), ĥ(s, λ) =
1

2π

∑
k,l∈Z

e−i(kλ1+lλ2)hk,l(s).

Using the inverse discrete Fourier transformation, we obtain

wi,j(t) =
1

2π
e−dmt

∫ π

−π

∫ π

−π
ei(iλ1+jλ2)ŵ(0, λ)e−4Dmt(sin

2 λ1
2 +sin2 λ2

2 )dλ1dλ2

+
1

2π

∫ t

0

e−dm(t−s)
∫ π

−π

∫ π

−π
ei(iλ1+jλ2)ĥ(s, λ)

× e−4Dm(t−s)(sin2 λ1
2 +sin2 λ2

2 )dλ1dλ2ds

=
1

4π2
e−dmt

∑
k,l∈Z

wk,l(0)
∫ π

−π
ei(i−k)λ1e−4Dmt sin

2 λ1
2 dλ1

×
∫ π

−π
ei(j−l)λ2e−4Dmt sin

2 λ2
2 dλ2 +

1
4π2

∑
k,l∈Z

∫ t

0

e−dm(t−s)hk,l(s)

×
∫ π

−π
ei(i−k)λ1e−4Dm(t−s) sin2 λ1

2 dλ1

∫ π

−π
ei(j−l)λ2e−4Dm(t−s) sin2 λ2

2 dλ2ds

=
1

4π2
e−dmt

∑
k,l∈Z

βDmt(i− k)γDmt(j − l)wk,l(0)

+
1

4π2

∑
k,l∈Z

∫ t

0

e−dm(t−s)βDm(t−s)(i− k)γDm(t−s)(j − l)hk,l(s)ds.

Since b′(u) ≥ 0 for u ∈ [0,K] and 0 ≤ u0
i,j(s) ≤ u0

i,j(s) ≤ K for s ∈ [−τ, 0], we have
wi,j(t) ≥ 0 for i, j ∈ Z and t ∈ [0, τ ]. Inductively, we obtain that wi,j(t) ≥ 0 for
i, j ∈ Z and t ≥ 0, i.e. ui,j(t) ≤ ui,j(t) for i, j ∈ Z and t > 0. Similarly, we can
show that ui,j(t) ≥ 0 and ui,j(t) ≤ K for i, j ∈ Z and t > 0. This completes the
proof. �

In what follows, we shall prove the stability theorem by means of the comparison
principle together with the weighed energy method.

We assume that the initial data {u0
i,j(s)}i,j∈Z of (1.1) satisfying 0 ≤ u0

i,j(s) ≤
K for i, j ∈ Z and s ∈ [−τ, 0], and {u0

i,j(s) − φ(i cos θ + j sin θ + cs)}i,j∈Z ∈
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C
(
[−τ, 0], l2w

)
. Take

ϕ+
i,j(s) := max

{
u0
i,j(s), φ(i cos θ + j sin θ + cs)

}
,

ϕ−i,j(s) := min
{
u0
i,j(s), φ(i cos θ + j sin θ + cs)

}
for i, j ∈ Z and s ∈ [−τ, 0]. Then,

{ϕ±i,j(s)− φ(i cos θ + j sin θ + cs)}i,j∈Z ∈ C
(
[−τ, 0], l2w

)
and

0 ≤ ϕ−i,j(s) ≤ u
0
i,j(s), φ(i cos θ + j sin θ + cs) ≤ ϕ+

i,j(s) ≤ K.

Let u±(t) = {u±i,j(t)}i,j∈Z be the solutions of (1.1) with respect to the initial data
ϕ±(s) = {ϕ±i,j(s)}i,j∈Z, i.e.

du±i,j(t)
dt

= Dm[u±i+1,j(t) + u±i−1,j(t) + u±i,j+1(t) + u±i,j−1(t)− 4u±i,j(t)]− dmu
±
i,j(t)

+
$

4π2

∑
m,n∈Z

βα(i−m)γα(j − n)b
(
u±m,n(t− τ)

)
, i, j ∈ Z, t > 0,

u±i,j(s) = ϕ±i,j(s), i, j ∈ Z, s ∈ [−τ, 0].
(3.2)

Applying the comparison principle, we have

0 ≤ u−i,j(t) ≤ ui,j(t), φ(i cos θ + j sin θ + ct) ≤ u+
i,j(t) ≤ K for i, j ∈ Z, t > 0.

3.1. Weighted energy estimate. For convenience, we denote

Ui,j(t) = u+
i,j(t)− φ(i cos θ + j sin θ + ct), ξi,j(t) = i cos θ + j sin θ + ct.

It is easy to verify that {Ui,j(t)}i,j∈Z satisfies

dUi,j(t)
dt

= Dm[Ui+1,j(t) + Ui−1,j(t) + Ui,j+1(t) + Ui,j−1(t)− 4Ui,j(t)]

+
$

4π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(t− τ))

)
Ui−m,j−n(t− τ)

− dmUi,j(t) +Gi,j(t),

Ui,j(s) = ϕ+
i,j(s)− φ(ξi,j(s)) := U0

i,j(s),

(3.3)

where i, j ∈ Z, t > 0, s ∈ [−τ, 0] and the nonlinear term Gi,j(t) is given by

Gi,j(t) =
$

4π2

∑
m,n∈Z

βα(m)γα(n)
[
b
(
Ui−m,j−n(t− τ) + φ(ξi−m,j−n(t− τ))

)
− b
(
φ(ξi−m,j−n(t− τ))

)
− b′

(
φ(ξi−m,j−n(t− τ))

)
Ui−m,j−n(t− τ)

]
.

To obtain a weighted energy estimate, we need the following key inequality. Take
C0(µ) = min

{
C1(µ), C2(µ)

}
, where

C1(µ) = c+ 2dm − 2Dm(e− 1)− L1$(1 + L2)− 2µ−$L1L2(e2µτ − 1),

C2(µ) = dm −Dm(e− 1)− 1
2
$b′(K)(1 + L2)− 2µ−$L1L2(e2µτ − 1).
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Define

Bi,j(µ, t) = −cwξ(ξi,j(t))
w(ξi,j(t))

+ 2(dm − µ)−Dm

[
L(w)(ξi,j(t))− 4

]
− $

4π2
e2µτ b′

(
φ(ξi,j(t)))

∑
m,n∈Z

βα(m)γα(n)
w(ξi+m,j+n(t+ τ))

w(ξi,j(t))

− $

4π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(t− τ))

)
,

(3.4)

where

L(w)(ξi,j(t)) =
w(ξi+1,j(t))
w(ξi,j(t))

+
w(ξi−1,j(t))
w(ξi,j(t))

+
w(ξi,j+1(t))
w(ξi,j(t))

+
w(ξi,j−1(t))
w(ξi,j(t))

.

Lemma 3.3 (Key inequality). Let w(ξ) be the weight function given in (2.5). Then

Bi,j(µ, t) ≥ C0(µ) > 0,

for all i, j ∈ Z, t > 0, and 0 < µ < µ0 := min{µ1, µ2}, where µi is the unique
solution to the equation Ci(µ) = 0, i = 1, 2.

Proof. We distinguish two cases:
Case (i): ξi,j(t) < ξ∗. In this case w(ξi,j(t)) = e−(ξi,j(t)−ξ∗). Since w(ξ) is

non-increasing in R, we have

w(ξi+m,j+n(t+ τ))
w(ξi,j(t))

≤ w(ξi+m,j+n(t))
w(ξi,j(t))

=

{
e(ξi,j(t)−ξ∗) ≤ 1, if ξi+m,j+n(t) ≥ ξ∗,
e(ξi,j(t)−ξi+m,j+n(t)) = e−m cos θ−n sin θ, if ξi+m,j+n(t) < ξ∗.

Hence,

w(ξi+m,j+n(t+ τ))
w(ξi,j(t))

≤ max{1, e−m cos θ−n sin θ} for any m,n ∈ Z.

Similarly, it is easy to verify that

L(w)(ξi,j(t)) ≤
w(ξi−1,j(t))
w(ξi,j(t))

+
w(ξi,j−1(t))
w(ξi,j(t))

+ 2

≤ max{1, ecos θ}+ max{1, esin θ}+ 2 ≤ 2(e+ 1).

Thus, we have

Bi,j(µ, t)

≥ c+ 2dm − 2Dm(e− 1)− 2µ− L1$

− L1
$

4π2
e2µτ

∑
m,n∈Z

βα(m)γα(n) max{1, e−m cos θ−n sin θ}

= c+ 2dm − 2Dm(e− 1)− L1$(1 + L2)− 2µ− L1L2$(e2µτ − 1)

= C1(µ) > 0 for 0 < µ < µ1,

provided that (2.6) holds.
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Case (ii): ξi,j(t) ≥ ξ∗. In this case w(ξi,j(t)) = 1. Similarly, we can show that

w(ξi+m,j+n(t+ τ))
w(ξi,j(t))

≤ max{1, e−m cos θ−n sin θ} for any m,n ∈ Z,

and
L(w)(ξi,j(t)) ≤ max{1, ecos θ}+ max{1, esin θ}+ 2 ≤ 2(e+ 1).

Note that ξi−m,j−n(t− τ) = ξi,j(t)−m cos θ− n sin θ− cτ . It follows from Lemma
2.2 that

Bi,j(µ, t) ≥ 2dm − 2Dm(e− 1)

− $

4π2
b′
(
φ(ξi,j(t)))

∑
m,n∈Z

βα(m)γα(n) max{1, e−m cos θ−n sin θ}

− $

4π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(t− τ))

)
− 2µ

− $

4π2
(e2µτ − 1)b′

(
φ(ξi,j(t)))

∑
m,n∈Z

βα(m)γα(n) max{1, e−m cos θ−n sin θ}

≥ 2dm − 2Dm(e− 1)−$b′(K)(1 + L2)− ε̄− 2µ

− $

4π2
(e2µτ − 1)L1

∑
m,n∈Z

βα(m)γα(n) max{1, e−m cos θ−n sin θ}

= dm −Dm(e− 1)− 1
2
$b′(K)(1 + L2)− 2µ− L1L2$(e2µτ − 1)

= C2(µ) > 0 for 0 < µ < µ2.

Now, let 0 < µ < µ0 := min{µ1, µ2}, then Bi,j(µ, t) ≥ C0(µ) > 0 for all i, j ∈ Z,
t > 0. This completes the proof. �

Lemma 3.4 (Weighted energy estimate). There exists µ > 0 such that

‖U(t)‖l2w ≤
(
‖U0(0)‖2l2w + C2

∫ 0

−τ
‖U0(s)‖2l2wds

)1/2

e−µt, t ≥ 0

for some constant C2 > 0.

Proof. Multiplying (3.3) by e2µtw(ξi,j(t))Ui,j(t) for 0 < µ < µ0, we have(1
2
e2µtwU2

i,j(t)
)
t

+
(
− c

2
wξ
w

+ dm − µ
)
e2µtwU2

i,j(t)

−Dme
2µtw[Ui+1,j(t) + Ui−1,j(t) + Ui,j+1(t) + Ui,j−1(t)− 4Ui,j(t)]Ui,j(t)

− $

4π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(t− τ))

)
Ui−m,j−n(t− τ)e2µtwUi,j(t)

= e2µtwUi,j(t)Gi,j(t),
(3.5)

where w = w(ξi,j(t)). Noting that 2Ui±1,j±1(t)Ui,j(t) ≤ U2
i±1,j±1(t) + U2

i,j(t), and

Gi,j(t) =
$

4π2

∑
m,n∈Z

βα(m)γα(n)
1
2
b′′
(
θ1Ui−m,j−n(t− τ)

+ φ(ξi−m,j−n(t− τ))
)
U2
i−m,j−n(t− τ)

]
≤ 0
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for all i, j ∈ Z, t > 0, where θ1 ∈ (0, 1), substituting these into (3.5), we obtain(
e2µtwU2

i,j(t)
)
t

+
(
− cwξ

w
+ 2dm − 2µ

)
e2µtwU2

i,j(t)

−Dme
2µtw[U2

i+1,j(t) + U2
i−1,j(t) + U2

i,j+1(t) + U2
i,j−1(t)− 4U2

i,j(t)]

− $

2π2

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(t− τ))

)
Ui−m,j−n(t− τ)e2µtwUi,j(t)

≤ 0.
(3.6)

Summing (3.6) about all i, j ∈ Z and integrating the inequality over [0, t], we have

e2µt‖U(t)‖2l2w −
$

2π2

∫ t

0

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(s− τ))

)
× Ui−m,j−n(s− τ)e2µsw(ξi,j(s))Ui,j(s)ds

+
∫ t

0

∑
i,j∈Z

[
−cwξ(ξi,j(t))

w(ξi,j(s))
+ 2(dm − µ)−Dm

(
L(w)(ξi,j(s))− 4

)]
× e2µsw(ξi,j(s))U2

i,j(s)ds

≤ ‖U0(0)‖2L2
w
.

(3.7)

Using the inequality 2ab ≤ a2 + b2 and making changes of variables s − τ → s,
i−m→ i, and j − n→ j, we obtain

$

2π2

∫ t

0

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(s− τ))

)
× Ui−m,j−n(s− τ)e2µsw(ξi,j(s))Ui,j(s)ds

≤ $

4π2

∫ t

0

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(s− τ))

)
e2µsw(ξi,j(s))U2

i,j(s)ds

+
$

4π2

∫ t

0

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)

× b′
(
φ(ξi−m,j−n(s− τ))

)
e2µsw(ξi,j(s))U2

i−m,j−n(s− τ)ds

≤ $

4π2

∫ t

0

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi−m,j−n(s− τ))

)
e2µsw(ξi,j(s))U2

i,j(s)ds

+
$

4π2
e2µτ

∫ t

0

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi,j(s)))

× w(ξi+m,j+n(s+ τ))
w(ξi,j(s))

e2µsw(ξi,j(s))U2
i,j(s)ds

+
$

4π2
e2µτ

∫ 0

−τ

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi,j(s)))

× w(ξi+m,j+n(s+ τ))
w(ξi,j(s))

e2µsw(ξi,j(s))U2
i,j(s)ds

(3.8)
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From the proof of Lemma 3.3, we see that

w(ξi+m,j+n(t+ τ))
w(ξi,j(t))

≤ max{1, e−m cos θ−n sin θ} for any i, j,m, n ∈ Z.

Thus, we have

$

4π2
e2µτ

∫ 0

−τ

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n)b′
(
φ(ξi,j(s)))

w(ξi+m,j+n(s+ τ))
w(ξi,j(s))

× e2µsw(ξi,j(s))U2
i,j(s)ds

≤ $

4π2
L1e

2µτ

∫ 0

−τ

∑
i,j∈Z

∑
m,n∈Z

βα(m)γα(n) max{1, e−m cos θ−n sin θ}

w(ξi,j(s))U2
i,j(s)ds

= $L1e
2µτL2

∫ 0

−τ
‖U0(s)‖2l2wds.

(3.9)

Substituting (3.8) and (3.9) into (3.7), we have

e2µt‖U(t)‖2l2w +
∫ t

0

∑
i,j

Bi,j(µ, s)e2µsw(ξi,j(s))U2
i,j(s)ds

≤ ‖U0(0)‖2l2w + C2

∫ 0

−τ
‖U0(s)‖2l2wds,

(3.10)

where C2 = $L1e
2µ0τL2 > 0. It then follows from Lemma 3.3 that

‖U(t)‖l2w ≤
(
‖U0(0)‖2l2w + C2

∫ 0

−τ
‖U0(s)‖2l2wds

)1/2

e−µt for t ≥ 0.

This completes the proof. �

3.2. Proof of Theorem 2.3. By Lemma 3.4 and the standard Sobolev’s embed-
ding inequality l2 ↪→ l∞ and l2w ↪→ l2 for w(·) ≥ 1 defined as in (2.5), we obtain the
convergence of u+

i,j(t), that is there exists a constant µ0
1 > 0 such that

sup
i,j∈Z

|u+
i,j(t)− φ(i cos θ + j sin θ + ct)| ≤ C2e

−µ0
1t, t ≥ 0,

for some constant C2 > 0.
Let Vi,j(t) = φ(i cos θ+ j sin θ+ ct)− u−i,j(t). We can similarly prove that u−i,j(t)

converges to φ(i cos θ + j sin θ + ct), i.e. there exists a constant µ0
2 > 0 such that

sup
i,j∈Z

|u−i,j(t)− φ(i cos θ + j sin θ + ct)| ≤ C3e
−µ0

2t, t ≥ 0,

for some constant C3 > 0.
Take µ0 = min{µ0

1, µ
0
2}, Note that u−i,j(t) ≤ ui,j(t) ≤ u+

i,j(t) for i, j ∈ Z, t ≥ 0.
Using the Squeeze Theorem, we can easily show that ui,j(t) converges to φ(i cos θ+
j sin θ + ct); that is,

sup
i,j∈Z

|ui,j(t)− φ(i cos θ + j sin θ + ct)| ≤ C4e
−µ0t, t ≥ 0,

for some constant C4 > 0. We now complete the proof of Theorem 2.3.
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