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EXISTENCE OF SOLUTIONS FOR NONLINEAR IMPULSIVE
NEUTRAL INTEGRO-DIFFERENTIAL EQUATIONS OF
SOBOLEV TYPE WITH NONLOCAL CONDITIONS IN

BANACH SPACES

BHEEMAN RADHAKRISHNAN, ARUCHAMY MOHANRAJ, VELU VINOBA

ABSTRACT. In this article, we prove the existence of mild and strong solutions
for nonlinear impulsive integro-differential equations of Sobolev type with non-
local initial conditions. The results are obtained by using semigroup theory
and the Schauder fixed point theorem. An example is provided to illustrate
the theory.

1. INTRODUCTION

Differential equations arise in many areas of science and technology, specifically
whenever a deterministic relation involving some continuously varying quantities
(modeled by functions) and their rates of change in space and/or time are known
or postulated. This is illustrated in classical mechanics where the motion of a body
is described by its position and velocity as the time varies. It is well known that
the systems described by partial differential equations can be expressed as abstract
differential equations [20]. These equations occur in various fields of study and each
system can be represented by different forms of differential or integro-differential
equations in Banach spaces. Using the method of semigroups, various solutions
of nonlinear and semilinear evolution equations have been discussed by Pazy [20].
The study of abstract nonlocal semilinear initial value problems was initiated by
Byszewski [9] [T0] [TT]. Because it is demonstrated that the nonlocal problems have
better effects in applications than the classical Cauchy problems. Such problems
with nonlocal conditions have been extensively studied in the literature [I], [2 [ 5]
0, [23]. Showalter [22] established the existence of solutions of semilinear evolution
equations of Sobolev type in Banach spaces. This type of equations arise in various
applications such as in the flow of fluid through fissured rocks, thermodynamics,
and shear in second-order fluids. For more details, we refer the reader to [8) [16], [17].

Neutral differential equations arise in many areas of applied mathematics and
for this reason these equations have received much attention during the last few
decades. There are also a number of applications in which the delayed argument

2000 Mathematics Subject Classification. 34A37, 47D06, 47TH10, 74H20, 34K40.

Key words and phrases. Existence; neutral differential equation; fixed point theorem;
impulsive differential equation.

(©2013 Texas State University - San Marcos.

Submitted September 6, 2012. Published January 21, 2013.

1



2 B. RADHAKRISHNAN, A. MOHANRAJ, V. VINOBA EJDE-2013/18

occurs in the derivative of the state variable as well as in the independent variable,
as in the so called neutral differential difference equations. A neutral functional
differential equation is one in which the derivatives of the past history or derivatives
of functionals of the past history are involved as well as the present state of the
system. A good guide to the literature for neutral functional differential equations is
the book by Hale and Verduyn Lunel [I3] and the references therein. Hernandez [14]
established the existence results for partial neutral functional differential equations
with nonlocal conditions modeled as

d

- [u(t) + F(t,u(t))] = Au(t) + G(t, u(?))

Ue = @+ q(x4,, T4y, ... xy,) i Q,

(1.1)

where A is the infinitesimal generator of an analytic semigroup T'(t) on a Banach
space. He made use of fixed point theorems and the results mentioned in Pazy
[20]. For results on neutral partial differential equations with nonlocal and classical
conditions, we refer to the papers of Hernandez and Henryquez [15], Fu and Ezzinbi
[12], and references therein. Controllability of functional differential systems of
Sobolev type in Banach spaces has been first studied by Balachandran and Dauer

Differential equations arise in many real world problems such as physics, popu-
lation dynamics, ecology,biological systems, biotechnology, optimal control and so
forth. Much has been done the assumption that the state variables and systems
parameters change continuously. However, one may easily visualize that abrupt
changes such as shock, harvesting and disasters may occur in nature. These phe-
nomena are short time perturbations whose duration is negligible in comparison
with the duration of the whole evolution process. Consequently, it is natural to
assume, in modeling these problems, that these perturbations act instantaneously,
that is in the form of impulses. The theory of impulsive differential equation [I8] 21]
is much richer than the corresponding theory of differential equations without im-
pulsive effects. The impulsive condition

Au(ty) = u(t]) —u(ty) = L(u(ty)), i=1,2,...,m,

is a combination of traditional initial value problems and short-term perturbations
whose duration is negligible in comparison with the duration of the process. Lin
and Liu [19] discussed the iterative methods for the solution of impulsive functional
differential systems.

Motivated by the above approach, the goal of this paper is to use the fixed point
theorem to obtain the mild solution of the nonlinear impulsive neutral integro-
differential equation of Sobolev type with nonlocal conditions.

2. PRELIMINARIES

Consider the nonlinear impulsive neutral integrodifferential equation of Sobolev
type with nonlocal conditions of the form

%[Bu(t) +e(t,u(t))] + Au(t) = f(t,u(t)) +/O k(t, s, u(s))ds,
S (O,CL], t # ty,

u(0) + Z ciu(t;) = uo (2.2)

(2.1)
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Aulty) = Ix(ug,), k=1,2,...,m, (2.3)

where 0 < t; <t < --- < t, < a, B and A are linear operators with domains
contained in a Banach space X and ranges contained in a Banach space Y and
the nonlinear operators f : I x X - Y, k:I?xX —-Y,e:IxX — Y and
I, : X — Y are appropriate functions and the symbol Au(ty) represent the jump
of the function u at ¢, which is defined by Au(ty) = u(t*) —u(t™). Here I = [0, al.
In this paper, we establish the existence of a nonlinear impulsive neutral integro-
differential equation of Sobolev type with nonlocal conditions using Schauder fixed
point theorem.

To prove our main theorem we assume certain conditions on the operators A
and B. Let X and Y be Banach spaces with norm | - | and || - || respectively. The
operators A : D(A) C X — Y and B : D(B) C X — Y satisfy the following
hypothesis:

(M1) A and B are closed linear operators,
(M2) D(B) C D(A) and B is bijective,
(M3) B~!:Y — D(B) is continuous.

The hypothesis (M1)—(M3) and the closed graph theorem imply the boundedness
of the linear operator AB~! : Y — Y and —AB~! generates a uniformly con-
tinuous semigroup S(t),t > 0, of bounded linear operators from Y into Y and
so maxes ||S(t)] is finite. We denote M = maxues ||S(t)], R = ||B7!||. Let
B, ={zeX:|z|<r}andc=>"_, ||

In this article, we assume that there exists an operator E on D(F) = X given
by the formula

E= {1 + z: ciB—ls(ti)B} ' and  Bu € D(B),

with

t

E{Bile(t,u(t)) — B71S(t;)e(0,u(0)) + i AS(t; — s) B e(s,u(s))ds

+/(J B~ S(ti—s)[f(s,u(s))—|—/0 k(s, 7, u(r))d7]ds

-y B*ls(ti—tk)fku(tk)}eD(B)7

0<trp<t;

fori=1,2,...,p.

The existence of E can be observed from the following fact (see [9]). Suppose that
{S(t)} is a Cy semigroup of operators on X such that ||[B~1S(t;)B|| < Ce % (i =
1,2,...,n) where § is a positive constant and C < 1. If 3P |e;le™%% < 1/C then
| 3%, e;B71S(t;)B|| < 1. So such an operator E exists on X.
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Definition 2.1. A continuous solution u of the integral equation
u(t) = B~'S(t)BEug + i c¢;B7'S(t)BE
=1
X {B*le(t, u(t)) = BS(t)e(0,u(0) - > B8t — tk)Iku(tk)}

0<t; <t

+ ZciB’IS(t)BE{/O BLS(t — 8) [Ae(s,u(s)) + f(s, uls))
+ /03 ]{3(87T,U(T))d7'i| ds} + B71S(t)e(0,u(0)) — B e(t, u(t))

+ /Ot S(t—s)B™* |:A€(S, u(s)) + f(s,u(s)) + /OS k(S,T,u(T))dT} ds

+ Y BTS(t—ti) ru(t)
0<t; <t (24)

is said to be a mild solution of problem ([2.1)-(2.3) on I.

Definition 2.2. A function u is said to be a strong solution of (2.1)-(2.3)) on I if
u is differentiable almost everywhere on I, v’ € L*(I, X), u(0) + >, c;u(t;) = ug
and

%[(Bu(t) + e(t,u(t))] + Au(t) = f(t, u(t)) —l—/ k(t,s,u(s))ds, te€(0,a], t#t
0
Auty) = Ix(ug,), k=1,2,,...,m
almost everywhere on I.

Remark 2.3. A mild solution of the neutral integro-differential (2.1))-(2.3) satisfies
the condition (2.2)), for (2.4)

u(0) = Bup + Y- e;2{ B~ e(t, u(t)) — B S(t:)e(0,u(0))

— Z B_ls(ti—tk)lku(tk)}

o<t; <t

+ éciE{ /Oti S(ti — S)B—1 [Ae(s,u(s)) + f(s, u(s))

+ /OS k(s, T, U(T))d’r] ds}
and

u(t;) = B~'S(t;) BEug + i ciBfls(tj)BE{Bfle(t, u(t)) — B~'S(t:)e(0, u(0))
— Y BUIS( - ) hulte) §

o<t;<t

—s—ZciB_lS(tj)BE{/oiS(ti—s)B_l[Ae(s,u(s))+f(s,u(s))
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+ /OS k(S,T,u(T))dT]dS} + B_ls(tj)e(O,u(O)) - B_le(tj, u(t;))
+ /o ’ S(t; — s)B~! {Ae(s,u(s)) + f(s,u(s)) + /OS k(s,T,u(T))dT} ds

+ Y BTS(t; — ti) Tau(te).

o<t <t
Therefore,
0) + Z cjul(t;)
{I+ch B] Eug + [I+ch -)B} ZciE{B’le(t,u(t))
j=1 i=1

— B7'S(t)e(0,u(0) — Y B’IS(tiftk)Iku(tk)}

o<t; <t

+ |1+ zn: ¢;B~'5(t;)B] zn: B /Ot S(ti — )B~ [ Ae(s, u(s)) + f(s,u(s))
=1 i=1

+/5 k(s,7,u(T))dr] ds} +zn:cj{ )e(0, u(0)) — Bfle(tj,u(tj))

j=1

/ S(t; —s) _1[Ae(s,u())—|—fsu /kSTu ))dr|ds
+ Y BTUS( — ) Tu(ty)]

0<t;<t
= uo
To prove the existence result, we use the following hypotheses:
(M4) The function f: I x X — Y is continuous in ¢ and there exists a constant
L > 0 such that
£t w)|| <Ly, fort € I and u € X.

(M5) The function k : I? x X — Y is continuous in ¢ and there exists a constant
Lj, > 0 such that

k(¢ s,u)|| < Ly, for s,t € I and u € X.

(M6) The function e : I x X — Y is continuous in ¢ and there exist constants

L.>0, Lo >0and L; > 0 such that
lle(t,u(t))]| < Le, fortelandue X

lle(0,u(0))|| < Lo, fortelandueX

|Ae(t,u(t))|| < Ly, fortelandue X.

(M7) The maps I : X — Y are continuous and there exists a constant Z > 0

such that
Hx(uw)]| <Z, forkeNandyeX.
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(M3)
R||BEu,||M + ¢R?|BE|M|L. + MZ + M Lo+ aM(Ly + Ly + Lya)]
+ RM[Lo+ L1+ Ly + Lya+a(Ly + G1) + T+ RKq] <.

3. MAIN RESULTS

Theorem 3.1. If assumptions (M1)-(M7) hold, then Problem (2.1)-(2.3) has a
mild solution on I.

Proof. Let E = C(I,Y) and Yo = {u € Y : u(t) € B,, t € I}. Clearly, )y is a
bounded closed convex subset of Y. We define a mapping F : Yo — Vo by

(Fu)(t) = B-1S(t)BEug + Z eBLS(t )BE{B—le(t, u(t))
— B7US(t)e(0,u(0) - Y B_ls(ti—tk)lku(tk)}
o<t; <t
+ch BE{ " S(ti — 8)B V[ Ae(s, u(s)) + £(s, u(s))

0

/ k(s, 7, u(t ))dr]ds} + B71S(t)e(0,u(0)) — B~ te(t, u(t))

/ S(t - s)B Ae(s u(s ))+f(s,u(s))+/Osk(s,7,u(7))d7}ds
+ Y BUS(t— ) Iru(t)

0<t; <t

Now we shown that F': Yy — Y is continuous. Let {u,}3° C Vo with u, — u in
Yo. Then there is an integer r such that ||u, (¢)|| < r, for alln and t € I, so u,, € B,
and u € B,.. From the assumptions (M7) — (M7), we have

(a) I, k=1,2,...,p is continuous.
(b) e(t,un(t)) — e(t,u(t)), for t € I and since

le(t, un(t)) — e(t, u(t))l| < 2[Le + Lo].
(¢) Ae(t,un(t)) — Ae(t,u(t)), for t € I and since
|Ae(t, un(t)) — Ae(t,u(t))|| < 2[L1 + Ls].
(d) f(t,un(t)) — f(t,u(t)), for t € I and since
1S (&, un(£)) — £t u(®))]| < 2[Ly + Fo.
(e) k(t,s,un(s)) — k(t,s,u(s)), for t, s € I and since
Vk(t, s, un(s)) — k(t, s,u(s))]| < 2[Lk + Ko.
By the dominated convergence theorem, we have

|Fuy — Full < RMecl|BE|{]le(t, un(t)) — e(t,u(t))}

+ EEMCBE] [ (8= 9)[{Ac(s. () = Ae(s,u(s)]}
{1 (5 un(5)) = S (5, u(s) 1}
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+/O {1k(s, 7y un (7)) — k(s, 7yu(r))| }d7 |ds

+ R*Mc|BE| Y S(ti — te){I T (un(tr)) — Te(u(ty))|}

o<t <t

+ Rt (1)~ e(t,u(t) )
# R [ [{14e(s,10(5) ~ Acls, a1}
{15 a(5) = 5,51}
/ {IIk(s, 7, un (7)) — k(s, 7, u(7))| }dT |ds
+RM > ([ Ik (un(te) — Te(u(tr) [} = 0 as n — oo

0<t; <t

Thus F' is continuous. Moreover, F' maps )y into a precompact subset of }y. We
prove that the set Vy(t) = {(Fu)(t) : u € My} is precompact in X for every fixed
t € I. We shall show that F()) = Z = {Fu: u € )} is an equicontinuous family
of functions.

For 0 < s < t, we have

[(Fu)(t) = (Fu)(s)|
< [IB7(S(t) = S(s) BEuo|

+zcl||B — S())BE|{ B~ e(t.u(t)) = B7S(t,)e(0,u(0))
= Y BTS( - o) Tu(ty) }+Zcz||B S(s))BE|
0<t; <t

1506 =97 [Acts ) + 1o ute) + / (s, u(r))dr] ds)
BHS() — S()e(0,u(0)) | + 1B et u(t)) — e(s,u(s))|

0
+ /0 |(S(t—0)—S(s— G)Bfl{Ae(G,u(G)) + f(0,u(9)) + /0 k(s,7,u(r))dr}||d0

t %

+/ HS(t—@)B’l[Ae(é),u(G))+f(0,u(9))+/ k(0,7,u(r))dr]||d0
[ 0

+ Z I B=H(S(t — s)) Ipu(ty) |

o<t <t

< {R||BEu0|| + R*|BE||[Le + MT + MLy)c
+ F*Mal|BE|[Ly + Ly + Luale + RLo }s(t) — S()]
+{RLy+ RM[L1 + Ly + Lya]}|t — 3]
t
Y R(Le+ Ly + Lka)/ 1S(t — 8) — S(s — 6)||d6.
0

The right hand side of the above inequality is independent of u € )y and tends to
zero as s — t as a consequence of the continuity of S(t) in the uniform operator
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topology for ¢ > 0 which follows from the compactness of S(t), ¢ > 0. It is also
clear that Z is bounded in Y. Thus by Arzela-Ascoli’s theorem, Z is precompact.
Hence by the Schauder fixed point theorem, F' has a fixed point in Y; and any fixed
point of F' is a mild solution of (2.1)-(2-3) on I such that u(t) € X, fort € I. O

Next we prove that the problem ({2.1)-(2.3]) has a strong solution.

Theorem 3.2. Assume that
(i) Conditions (M1)—(M8) hold.
(ii) Y is a reflexive Banach space with norm || - .
(iii) f:Ix X —Y is continuous in t on I and there exists a constant G; > 0
such that

1f () = fs,0)| < Gallt = s + [lu —v]l],

fort,s el and u,v € X.
(iv) k:I? x X — Y is continuous in t and there exists a constant Ki > 0 such
that
Hk(t77a u) - k(S’T’ u)” < K1[|t - SH7

forr,s,;tel, ue X,
(v) e: I x X =Y is continuous and there exist constants K > 0 and K1 > 0
such that

|Ae(t, u(t) — Ae(s,u(s))|| < Lo[|t — s|], fors,tel, ueX,
lle(t, u(t) —e(s,u(s)|| < L[|t = s|], fors,tel, ueX.
(vi) Eug € D(B),
E{B*le(t,u(t)) — B71S(t:)e(0, u(0))

"’ -1 i — S e(s,u(s s, u(s ’ s,T,u(7))dT| ds
+ [ B8 = o) [Acts ) + Fsule) + [ k()] d

- Y BS(t - tk)Iku(tk)} e D(B),
0<t;<t
fori=1,2,....p.
Then w is a strong solution of problem f on I.

Proof. Since all the assumptions of Theorem 3.1 are satisfied, then (2.1)-(2.3)) has
a mild solution belonging to C(I, X). Now we shall show that u is a strong solution

of (2.1)-(2.3) on I. For any t € I, we have
[u(t +h) — u(t)]]
< ||B7YT(t + h) — T(t)]BEuo

+ Z cil BH(S(t +h) — S(t))BEH{llB_le(ta u(t)) = B~ S(t:)e(0,u(0))

-3 BS(t - tk)fku(tk)n} + zn:ciHB_l(S(t +h)— S(t)BE|

0<t; <t i=1
{180 = 957 (et u) + Flsu(e)) + /0 k(s 7 u(r))dr]ds
+[BTHS(t + 1) = S(1)e(0, ()| + 1B (e(t + h,u) — e(t, u)|
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h s
+ /0 |S(t+h— 5)B71 [Ae(s,u(s)) + f(s,u(s) Jr/o k(s, T, u(T))dT] |lds
t+h s
+ / [(S(t+h—s)B™ [Ae(s,u(s)) + f(s,u(s)) + /0 k(s,T,u(T))dT] |lds
/ [IS(t —s) Ae (s,u(s)) + f(s,u(s)) + /OS k(s,T,u(T))dT] lds
+ > IBTHS(E 4 h = tk) — S(t — ti)) Tru(ty)||

< [|BTS(#)[S(h) — I|BEu|

+ Z@IIB”S(t)(S(h) - I)BEII{IIB’le(t,U(t))II + [ B71S(t:)e(0, u(0)) |

+ 3 IB7S(t — t) Tu(ty) }+Zcz| S(h) — I)BE]|

0<t; <t =1

[ 150 = 9B [l et ule) ] + s, o))
) s, 7, u(r))||dr|ds -1 — De(0.u
+ / (s, 7 u(r))dr | ds b + [ B=1S(E)(S (k) = De(0,u(0))]
h
1B elt+ B = et + [ IS +h = )8 et )]
)] + [ k(o) e ds
t+h
[N b= 9B [ el uls))] + (s, u(s)]
h
+ [kt e ar]as+ [ (= 9B [lacts u(s)l + 1. ut)
+ [ ks rudr] s+ 35 1Bl - (S - Dhaw)
0<t; <t
< |B7IS®)[S(h) — 11BEuo

+ Yl BTIS)(S(h) = DBE{IB elt, u(t)) ]| + | B~ S (t:)e(0, u(0))]]
i=1

+ Y IBTIS( — t) Deu(ti)ll} + Y el BTUS(0)(S(h) — 1)BE]

0<t; <t i=1

X {/0 i |S(t; —s)B™!| [\|Ae(s7u(s))H + £ (s, u(s)

+ k(s mu(m)lldeds ) + BTSSR — De(0,u(0))]
0
+[|B7 Y (e(t + h,u) — e(t,u))]

h s
+ [ 180+ b= B e )l + ()] + [ iGs.m ) e as
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t
4 [ (= B [Ae(s + houls + 1) - Ae(s, u(s)]
0

Ff (s +hyuls + h)) = f(s,uls))] + /OS [k(s + h, 7 u(T)) = k(s, 7, u(T))||d7 |ds

+ Y IBTIS(E — ti)(S(h) — DIyu(ty)
o<t <t
using our assumptions we observe that
l[u(t +h) —u(t)]l
< R||BEuo||Mh|AB™|| + R?Mhc|BE||[Le + MZ + MLo]|AB™|
+ R*Mhc||BE||[Ma(Ly 4 L. + Lya)]||AB™|
+ RMhLy+ RLh+ RMh(Ly + L. + K1a) + RMhT

+ RM/O {Lalh + [u(s + ) = u(s)] + G1lh + [u(s + h) — u(s)]}ds
+RM/O {/0 k(s + by mu(r)) = k(s, 7, u(r))|[dr

s+h
+/ k(s + by 7, u(r)lldr }ds

< W{R|BEuo|M||AB™!|
+ R*Mc||BE||[Le + MT + M Lo+ Ma(Ly + Le + Lya)]||AB™!||
+ RM[Lo+ L1+ Lo + Lya+ a(Ly + Gy + K1 + Kqa) + Z] + RLy}

+ RM(Ly + Gl)/o lu(s + 1) — u(s)||ds

t
< Ph+ Q/ llu(s + h) —u(s)||ds
0
where
P = R|BEu|M|[AB~" + R*Mc||BE| [Le + MT + ML

+ Ma(Ly + Le + Lia) | |AB™'|| + RM [Lo + Ly
+ Le + Lya+ a(Ly + Gy + K1 + K1a) + | + RLy,
Q= RM(Ly + Gy).
Hence by Gronwall’s inequality
Ju(t + h) —u(t)|| < Phe?, fortel.
Therefore, u is Lipschitz continuous on I. The Lipschitz continuity of u on I
combined with (iii)—(v) implies that

t— f(t,u(t)), t—e(tult), t— ; k(t, s,u(s))ds.

Hence, u is strong solution of the problem ([2.1))-(2.3) on (0, a]. O
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4., EXAMPLE

Consider the partial integro-differential equation of neutral type
o t
—|z(t,x) — 2z (t, ) + / ay(s —t)z(s, x)ds} — Zg2(t, )
ot oo
t

= p(t, 2(t, x)) +/ a(t,s)z(s,z)ds, x€l0,n], tel,

0

2(t,0) = 2(t,7) =0, tel, (4.1)
P
2(0, ) —&—Zz(tk,a:) =zo(z) 0<t1<ty<---<t,<b; z€][0,q]
k=1

Azleme, = Li(2(2)) = (vi(2(2)) + ) 7', 2€ X, 1<i<p,

where a(t, s) is continuous such that ||a(t, s)|| < L; and the constant 7; is small.
Let us take X =Y = £2[0, 7] to be endowed with the usual norm || - ||z,. and
let

e(t,z) = / a1(s —t)zi(s,z)ds

—0o0

ft,2) = p(t, 2(t, )
/Ot k(t,s,z)ds = /Ot a(t, s)z(s,z)ds

L(:(2)) = (3(a(2)) + 1) .
Define the operator A: D(A) C X —Y and B: D(B) C X — Y by

Az = —2pg, Bz =2— 2,
where each domain D(A) and D(B) is given by

{z € X : z, z, are absolutely continuous, z,, € X, z(0) = z(7) = 0}.

Then the above problem can be formulated abstractly as

LI Bu(t) + elt, u(t)] + Ault) = £(t, ult)) + /0 k(t, 5, u(s))ds,

dt
€ (0,(1], t 7& gk,
u(0) + Z ciu(t;) = ug
i=1

Au(ty) = Ix(ug,), k=1,2,...,m,

Then A and B can be written, respectively, as

Az = Zn2<z,zn)zn, z € D(A)
n=1
oo

Bz = Z(l +n2)(2, 2,)2n, 2 € D(B),

n=1
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where z,(z) = /2/msin(nz), n = 1,2,..., is the orthogonal set of vectors of A.
Furthermore for z € X, we have

N ]
B 1222 1+n2<z,zn>zn,

n=1

o 2
~AB7'z=)" I +nn2 (2, 2n)2n,

n=1

o0 2
S(t)z = Z exp (#;z) (2, 2n)2n.
n=1

It is easy to see that AB~! generates a strongly continuous semigroup S(t) on Y
and S(t) is compact such that |S(t)] < e~* for each ¢t > 0. For this S(t), B, B~}
we assume that the operator E exists. So all the conditions of the Theorem 3.1 are
satisfied. Hence the equation has a mild solution.
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