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EXISTENCE OF POSITIVE SOLUTIONS FOR KIRCHHOFF
TYPE EQUATIONS

GHASEM A. AFROUZI, NGUYEN THANH CHUNG, SALEH SHAKERI

Abstract. In this article, we are interested in the existence of positive solu-

tions for the Kirchhoff type problems

−M
“Z

Ω
|∇u|p dx

”
∆pu = λf(u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,

where 1 < p < N , M : R+ → R+ is a continuous and increasing function,

λ is a parameter, f : [0,+∞) → R is a C1 nondecreasing function satisfying
f(0) < 0 (semipositone). Our proof is based on the sub- and super-solutions

techniques.

1. Introduction

In this article, we are interested in the existence of positive solutions for Kirchhoff
type problems of the form

−M
(∫

Ω

|∇u|p dx
)

∆pu = λf(u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(1.1)

where 1 < p < N , M : R+ → R+ is a continuous and increasing function, f :
[0,+∞)→ R is a C1 nondecreasing function such that f(0) < 0 (semipositone) and
there exist r > α > 0 such that f(s)(s− α) ≥ 0.

Since the first equation in (1.1) contains an integral over Ω, it is no longer a
pointwise identity; therefore it is often called nonlocal problem. This problem
models several physical and biological systems, where u describes a process which
depends on the average of itself, such as the population density, see [4]. Moreover,
problem (1.1) is related to the stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0 (1.2)

presented by Kirchhoff in 1883, see [11]. This equation is an extension of the
classical d’Alembert’s wave equation by considering the effects of the changes in
the length of the string during the vibrations. The parameters in (1.2) have the
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following meanings: L is the length of the string, h is the area of the cross-section,
E is the Young modulus of the material, ρ is the mass density, and P0 is the initial
tension.

In recent years, problems involving Kirchhoff type operators have been studied
in many papers, we refer to [1, 2, 5, 6, 7, 12, 14, 15, 16], in which the authors have
used variational method and topological method to get the existence of solutions
for (1.1) in the cases when f could satisfy p-superlinear, p-sublinear or p-linear
growth condition at infinity. In this paper, motivated by the ideas introduced in
[3] and the properties of Kirchhoff type operators in [8, 9, 10], we study problem
(1.1) in the semipositone case; i.e., f(0) < 0. Using the sub- and supersolutions
techniques, we prove the existence of a positive solution for the problem in a range
of λ without assuming any condition on f at infinity. To our best knowledge, this
is a new research topic for nonlocal problems, see [10].

In order to state precisely our main result we first consider the eigenvalue problem
for the p-Laplace operator −∆pu:

−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω.

(1.3)

Let φ1 ∈ C1(Ω) be the eigenfunction corresponding to the first eigenvalue λ1 of
(1.3) such that φ1 > 0 in Ω and ‖φ1‖∞ = 1. It can be shown that ∂φ1

∂η < 0 on ∂Ω
and hence, depending on Ω, there exist positive constants m, δ, σ such that

|∇φ1|p − λ1φ
p
1 ≥ m in Ωδ,

φ1 ≥ σ in Ω \ Ωδ,
(1.4)

where Ωδ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}.
We will also consider the unique solution e ∈ C1(Ω) of the boundary value

problem
−∆pe = 1 in Ω,
e = 0 on ∂Ω

(1.5)

to discuss our result. It is known that e > 0 in Ω and ∂e
∂η < 0 on ∂Ω.

For our main result we assume that there exist positive constants M0,M∞ and
l1, l2 ∈ (α, r] satisfying

(H1) M0 ≤M(t) ≤M∞ for all t ∈ R+;

(H2) l2 ≥ kl1, where k = k(Ω) = p
p−1λ

1
p−1
1 σ

p
1−p ‖e‖L∞(Ω);

(H3) M∞λ1
f(l1) < mM0

|f(0)| ;

(H4) lp−1
2
f(l2) > µ

lp−1
1
f(l1) , where µ = µ(Ω) = M∞λ1

M0σp

(
p‖e‖L∞(Ω)

p−1

)p−1

.

Our main results reads as follows.

Theorem 1.1. Under assumptions (H1)–(H4), there exist two positive constants
λ∗ and λ∗ such that (1.1) has a positive solution for all λ ∈ (λ∗, λ∗).

2. Preliminaries

We will prove our result by using the method of sub- and supersolutions, we
refer the readers to a recent paper [10] on the topic. A function ψ is said to be a
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subsolution of (1.1) if it is in W 1,p(Ω)∩C0(Ω) such that ψ = 0 on ∂Ω and satisfies

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

|∇ψ|p−2∇ψ · ∇w dx ≤ λ
∫

Ω

f(ψ)w dx, ∀w ∈W, (2.1)

where W := {w ∈ C∞0 (Ω) : w ≥ 0 in Ω}. A function φ ∈ W 1,p(Ω) ∩ C0(Ω) is said
to be a supersolution if φ = 0 on ∂Ω and satisfies

M
(∫

Ω

|∇φ|p dx
)∫

Ω

|∇φ|p−2∇φ · ∇w dx ≥ λ
∫

Ω

f(φ)w dx, ∀w ∈W. (2.2)

The following result plays an important role in our arguments. For the readers’
convenience, we present its proof in detail.

Lemma 2.1. Assume that M : R+ → R+ is a continuous and increasing function
satisfying

M(t) ≥M0 > 0 for all t ∈ R+.

If the functions u, v ∈W 1,p
0 (Ω) satisfy

M
(∫

Ω

|∇u|p dx
)∫

Ω

|∇u|p−2∇u · ∇ϕdx

≤M
(∫

Ω

|∇v|p dx
)∫

Ω

|∇v|p−2∇v · ∇ϕdx
(2.3)

for all ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0, then u ≤ v in Ω.

Proof. Our proof is based on the arguments presented in [8, 9]. Define the functional
Φ : W 1,p

0 (Ω)→ R by the formula

Φ(u) :=
1
p
M̂
(∫

Ω

|∇u|p dx
)
, u ∈W 1,p

0 (Ω).

It is obviously that the functional Φ is a continuously Gâteaux differentiable whose
Gâteaux derivative at the point u ∈ W 1,p

0 (Ω) is the functional Φ′ ∈ W−1,p
0 (Ω),

given by

Φ′(u)(ϕ) = M
(∫

Ω

|∇u|p dx
)∫

Ω

|∇u|p−2∇u · ∇ϕdx, ϕ ∈W 1,p
0 (Ω).

It is obvious that Φ′ is continuous and bounded since the function M is continuous.
We will show that Φ′ is strictly monotone in W 1,p

0 (Ω). Indeed, for any u, v ∈
W 1,p

0 (Ω), u 6= v, without loss of generality, we may assume that∫
Ω

|∇u|p dx ≥
∫

Ω

|∇v|p dx.

(otherwise, changing the role of u and v in the following proof). Therefore, we have

M
(∫

Ω

|∇u|p dx
)
≥M

(∫
Ω

|∇v|p dx
)

(2.4)

since M(t) is a monotone function. Using Cauchy’s inequality, we have

∇u · ∇v ≤ |∇u||∇v| ≤ 1
2

(|∇u|2 + |∇v|2). (2.5)

Using (2.5) we obtain∫
Ω

|∇u|p dx−
∫

Ω

|∇u|p−2∇u · ∇v dx ≥ 1
2

∫
Ω

|∇u|p−2(|∇u|2 − |∇v|2) dx, (2.6)



4 G. A. AFROUZI, N. T. CHUNG, S. SHAKERI EJDE-2013/180∫
Ω

|∇v|p dx−
∫

Ω

|∇v|p−2∇v · ∇u dx ≥ 1
2

∫
Ω

|∇v|p−2(|∇v|2 − |∇u|2) dx. (2.7)

If |∇u| ≥ |∇v|, using (2.4)-(2.7), we have

I1 := Φ′(u)(u)− Φ′(u)(v)− Φ′(v)(u) + Φ′(v)(v)

= M
(∫

Ω

|∇u|p dx
)(∫

Ω

|∇u|p dx−
∫

Ω

|∇u|p−2∇u · ∇v dx
)

−M
(∫

Ω

|∇v|p dx
)(∫

Ω

|∇v|p−2∇v · ∇u dx−
∫

Ω

|∇v|p dx
)

≥ 1
2
M
(∫

Ω

|∇u|p dx
)∫

Ω

|∇u|p−2(|∇u|2 − |∇v|2) dx

− 1
2
M
(∫

Ω

|∇v|p dx
)∫

Ω

|∇u|p−2(|∇u|2 − |∇v|2) dx

=
1
2
M
(∫

Ω

|∇v|p dx
)∫

Ω

(|∇u|p−2 − |∇v|p−2)(|∇u|2 − |∇v|2) dx

≥ M0

2

∫
Ω

(|∇u|p−2 − |∇v|p−2)(|∇u|2 − |∇v|2) dx.

(2.8)

If |∇v| ≥ |∇u|, changing the role of u and v in (2.4)-(2.7), we have

I2 := Φ′(v)(v)− Φ′(v)(u)− Φ′(u)(v) + Φ′(u)(u)

= M
(∫

Ω

|∇v|p dx
)(∫

Ω

|∇v|p dx−
∫

Ω

|∇v|p−2∇v · ∇u dx
)

−M
(∫

Ω

|∇u|p dx
)(∫

Ω

|∇u|p−2∇u · ∇v dx−
∫

Ω

|∇u|p dx
)

≥ 1
2
M
(∫

Ω

|∇v|p dx
)∫

Ω

|∇v|p−2(|∇v|2 − |∇u|2) dx

− 1
2
M
(∫

Ω

|∇u|p dx
)∫

Ω

|∇u|p−2(|∇v|2 − |∇u|2) dx

=
1
2
M
(∫

Ω

|∇v|p dx
)∫

Ω

(|∇v|p−2 − |∇u|p−2)(|∇v|2 − |∇u|2) dx

≥ M0

2

∫
Ω

(|∇v|p−2 − |∇u|p−2)(|∇v|2 − |∇u|2) dx.

(2.9)

From (2.8) and (2.9), we have(
Φ′(u)− Φ′(v)

)
(u− v) = I1 = I2 ≥ 0, ∀u, v ∈W 1,p

0 (Ω). (2.10)

Moreover, if u 6= v and
(

Φ′(u)− Φ′(v)
)

(u− v) = 0, then we have∫
Ω

(|∇u|p−2 − |∇v|p−2)(|∇u|2 − |∇v|2) dx = 0,

so |∇u| = |∇v| in Ω. Thus, we deduce that(
Φ′(u)− Φ′(v)

)
(u− v) = Φ′(u)(u− v)− Φ′(v)(u− v)

= M
(∫

Ω

|∇u|p dx
)∫

Ω

|∇u|p−2|∇u−∇v|2 dx = 0;
(2.11)
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i.e., u−v is a constant. In view of u = v = 0 on ∂Ω we have u ≡ v which is contrary
with u 6= v. Therefore

(
Φ′(u) − Φ′(v)

)
(u − v) > 0 and Φ′ is strictly monotone in

W 1,p
0 (Ω).
Let u, v be two functions such that (2.3) is satisfied. Taking ϕ = (u − v)+, the

positive part of u− v, as a test function of (2.3), we have

(Φ′(u)− Φ′(v))(ϕ) = M
(∫

Ω

|∇u|p dx
)∫

Ω

|∇u|p−2∇u · ∇ϕdx

−M
(∫

Ω

|∇v|p dx
)∫

Ω

|∇v|p−2∇v · ∇ϕdx ≤ 0.
(2.12)

Relations (2.11) and (2.12) imply that u ≤ v. �

From Lemma 2.1 we obtain the following basic principle of the sub- and super-
solutions method.

Theorem 2.2 ([10]). Let M : R+ → R+ be a continuous and increasing function
satisfying

M(t) ≥M0 > 0 for all t ∈ R+.

Assume that f satisfies the subcritical growth condition

|f(x, t)| ≤ C(1 + |t|q−1), ∀x ∈ Ω, ∀t ∈ R,

where 1 < q < p∗ = Np
N−p , and the function f(x, t) is nondecreasing in t ∈ R. If

there exist a subsolution u ∈W 1,p(Ω) and a supersolution u ∈W 1,p(Ω) of problem
(1.1), then (1.1) has a minimal solution u∗ and a maximal solution u∗ in the order
interval [u∗, u∗]; i.e., u ≤ u∗ ≤ u∗ ≤ u and if u is any solution of (1.1) such that
u ≤ u ≤ u, then u∗ ≤ u ≤ u∗.

In practice problems, it is often known that the subsolution u and the superso-
lution u are in L∞(Ω), so the restriction on the growth condition of f is needless.
Hence, the following theorem is more suitable for our framework.

Theorem 2.3 ([10]). Let M : R+ → R+ be a continuous and increasing function
satisfying

M(t) ≥M0 > 0 for all t ∈ R+.

Assume that u, u are a subsolution and a super-solution of problem (1.1) such that
W 1,p(Ω) ∩ L∞(Ω) and u ≤ u in Ω. If f ∈ C(Ω × R,R) is nondecreasing in t ∈
[infΩ u, supΩ u] then the conclusion of Theorem 2.2 is valid.

3. Proof of main result

In this section, we prove Theorem 1.1 by using the sub- and super-solutions
method. Our arguments are similar to those presented in [3].
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First we construct a positive subsolution of problem (1.1). For this purpose, we

let ψ = l1σ
p

1−pφ
p

p−1
1 . Since ∇ψ = pl1

p−1σ
p

1−pφ
1

p−1
1 ∇φ1, we deduce that

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

|ψ|p−2∇ψ · ∇w dx

=
( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

φ1|∇φ1|p−2∇φ1 · ∇w dx

=
( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

|∇φ1|p−2∇φ1 · [∇(φ1w)− w∇φ1] dx

=
( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

|∇φ1|p−2∇φ1 · ∇(φ1w) dx

−
( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

|∇φ1|pw dx

=
( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

λ1|φ1|p−2φ1(φ1w) dx

−
( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

|∇φ1|pw dx

=
( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

[λ1φ
p
1 − |∇φ1|p]w dx.

(3.1)

Thus ψ is a subsolution of problem (1.1) if( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)∫

Ω

[λ1φ
p
1 − |∇φ1|p]w dx ≤ λ

∫
Ω

f(ψ)w dx (3.2)

On Ωδ, we have
|∇φ1|p − λ1φ

p
1 ≥ m (3.3)

and therefore, by (H1),( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)

[λ1φ
p
1 − |∇φ1|p]

≤ −mM0

( pl1
p− 1

σ
p

1−p

)p−1

≤ λf(ψ)
(3.4)

if

λ ≤ λ :=
mM0

|f(0)|
.
( pl1
p− 1

σ
p

1−p

)p−1

. (3.5)

On Ω \ Ωδ we have φ1 ≥ σ and therefore,

ψ = l1σ
p

1−pφ
p

p−1
1 ≥ l1σ

p
1−pσ

p
p−1 = l1. (3.6)

Thus, by (H1), ( pl1
p− 1

σ
p

1−p

)p−1

M
(∫

Ω

|∇ψ|p dx
)

[λ1φ
p
1 − |∇φ1|p]

≤
( pl1
p− 1

σ
p

1−p

)p−1

M∞λ1 ≤ λf(ψ)
(3.7)

if

λ ≥ λ∗ :=
M∞λ1

f(l1)

( pl1
p− 1

σ
p

1−p

)p−1

. (3.8)
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By condition (H3), we have λ∗ < λ. Therefore, ψ is a subsolution of problem (1.1)
for all λ∗ ≤ λ ≤ λ.

Next, we construct a supersolution of (1.1). Let φ = l2
‖e‖L∞(Ω)

e, in which e is
defined by (1.5). Then, by (H1), φ is a supersolution of problem (1.1) if

M
(∫

Ω

|∇φ|p dx
)∫

Ω

|∇φ|p−2∇φ · ∇w dx

= M
(∫

Ω

|∇φ|p dx
)( l2
‖e‖L∞(Ω)

)p−1
∫

Ω

|∇e|p−2∇e · ∇w dx

= M
(∫

Ω

|∇φ|p dx
)( l2
‖e‖L∞(Ω)

)p−1
∫

Ω

w dx

≥M0

( l2
‖e‖L∞(Ω)

)p−1
∫

Ω

w dx

≥ λ
∫

Ω

f(φ)w dx, ∀w ∈W.

(3.9)

But f(φ) ≤ f(l2) and hence φ is a supersolution of problem (1.1) if

λ ≤ λ̂ :=
M0l

p−1
2

‖e‖p−1
L∞(Ω)f(l2)

. (3.10)

By (H4), we have λ̂ > λ∗. We have

−∆pφ = −∇(|∇φ|p−2∇φ)

= −
( l2
‖e‖L∞(Ω)

)p−1

∇(|∇e|p−2∇e)

=
lp−1
2

‖e‖p−1
L∞(Ω)

(3.11)

and
−∆pψ = −∇(|∇ψ|p−2∇ψ)

=
( pl1
p− 1

σ
p

1−p

)p−1

[λ1φ
p
1 − |∇φ1|p]

≤ λ1

( pl1
p− 1

σ
p

1−p

)p−1

.

(3.12)

By condition (H2), using the weak comparison principle for the p-Laplace operator
−∆pu, we see that ψ ≤ φ in Ω.

Set λ∗ := min{λ, λ̂}. By Theorem 2.3, we conclude that problem (1.1) has a
positive solution for any λ ∈ (λ∗, λ∗).
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[1] C. O. Alves, F. J. S. A. Corrêa, T. M. Ma; Positive solutions for a quasilinear elliptic equation
of Kirchhoff type, Computers & Mathematics with Applications, 49 (2005), 85-93.

[2] A. Bensedik, M. Bouchekif; On an elliptic equation of Kirchhoff-type with a potential asymp-
totically linear at infinity, Math. Comput. Modelling, 49 (2009), 1089-1096.

[3] M. Chhetri, R. Shivaji; Existence of a positive solution for a p-Laplacian semipositone prob-

lem, Boundary Value Problems, 2005(3) (2005), 323-327.
[4] M. Chipot, B. Lovat; Some remarks on nonlocal elliptic and parabolic problems, Nonlinear

Anal., 30 (7) (1997), 4619-4627.



8 G. A. AFROUZI, N. T. CHUNG, S. SHAKERI EJDE-2013/180

[5] N. T. Chung; Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing non-

linearities, Complex Variables and Elliptic Equations, 2012, 1-10, iFirst.

[6] N. T. Chung; Multiplicity results for a class of p(x)-Kirchhoff type equations with combined
nonlinearities, E. J. Qualitative Theory of Diff. Equ., Vol. 2012, No. 42 (2012), 1-13.
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