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MULTIPLE POSITIVE SOLUTIONS FOR DEGENERATE
ELLIPTIC EQUATIONS WITH CRITICAL CONE SOBOLEV
EXPONENTS ON SINGULAR MANIFOLDS

HAINING FAN, XTAOCHUN LIU

ABSTRACT. In this article, we show the existence of multiple positive solutions
to a class of degenerate elliptic equations involving critical cone Sobolev expo-
nent and sign-changing weight function on singular manifolds with the help of
category theory and the Nehari manifold method.

1. INTRODUCTION

In this article, we consider the semilinear boundary-value problem
—Agu = falu)?2u+ g(x)|ul* 2u, z€intB,
u=0, x¢€JIB,
where 1 < ¢ < 2, 2* = 2% (n > 3). Here the domain B is [0,1) x X for X C R*~!

compact, which is regarnde2d as the local model near the conical points on manifolds
with conical singularities and {0} x X C dB. Moreover, the operator Ap in is
defined by (210, )2+6£2 +-- ~+8§”, which is an elliptic operator with totally charac-
teristic degeneracy on the boundary z; = 0 (we also call it Fuchsian type Laplacian),

and the corresponding gradient operator is denoted by Vg = (2104,, 0zss- -0, )-

(1.1)

Near 9B we will often use coordinates (z1,z’) = (x1,x2,...,2,) for 0 < 1 < 1,
x € X. Our goal is to find the existence of multiple positive solutions for (|1.1)) in
1,n/2

the cone Sobolev space H,y'“(B). The definition of such distribution spaces will
be given in the next section. Of course, the nonlinear terms in need to satisfy
the following conditions.
(H1) the parameter A > 0 and f, g : B — R are continuous and sign-changing
functions in B. The function fy = Afy + f_ and fy = +max{4f(z),0}.
(H2) there exists a non-empty closed set M = {z € B; g(x) = max_ g g(x) = 1}
and p > n — 2 such that M C {z € int B; f(z) > 0} and

9(2) —g(x) = o(Jx — 2|§) as z — z and uniformly in z € M.

Here | - |p means |z — z|p = (|1n 2—11|2 + |2’ — 2'|*)Y/?, where x = (z1,2') =
(x1,22,...,2,) and z = (21,2") = (21,22, ..., 2n) € RY.
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Remark 1.1. Let M, = {z € R";distg(x, M) < r} for r > 0, where distg(z, M) =
max.ep |« — z|g. Then, by the condition (H2), we may assume that there exist two
positive constants ¢g > 0 and 79 > 0 such that f(x) and g(z) are positive for all
z € M,, CB and g(z) — g(z) = co(|z — z|§) for all

z € Qpy(21,2") = {(z1,2") e RY; |z — 2[5 = (| 1n(z—i)|2 + |z' = 2'|)Y? < ro}

for all z € M.

The analysis on manifolds with conical singularities and the properties of elliptic,
parabolic and hyperbolic equations in this setting have been intensively studied in
the previous decades. More specially, in aspects of partial differential equations
and pseudo-differential theory of configurations with piecewise smooth geometry,
the work of Kondrat’ev (see [9]) has to be mentioned here as the starting point of
the analysis of operators on manifolds with conical singularities. The foundations of
this analysis have been developed through the fundamental works by Schulze, and
subsequently further expended by him and his collaborators, such as Gil, Seiler,
Krainer. The main subject of their work is the calculus on manifolds with sin-
gularities (see [I5] and the references therein). On the other hand, Melrose and
his collaborators gave various methods and ideas in the pseudo-differential calculus
on manifolds with singularities, cf. Melrose and Mendoza [12]. All these math-
ematicians investigated deeply the underlying pseudo-differential calculi and the
connected functional spaces. While these theories are nowadays well-established,
many aspects are still to be interested, for instance, the existence theorem for the
corresponding nonlinear elliptic equations on manifolds with singularities.

Recently, the authors in [3] established the so-called cone Sobolev inequality
(see Proposition and Poincaré inequality (see Proposition for the weighted
Sobolev spaces (in Section 2) (see [3] for details). Such kind of inequalities seem
to be of fundamental importance to prove the existence of the solutions for such
nonlinear problems with totally characteristic degeneracy. In [3], the authors have
already obtained the existence theorem for a class of semilinear degenerate equa-
tions on manifolds with conical singularities; that is, for the Dirichlet problem

—Apu = |[ulP"?u, € intB,
u=0, x€dIB,

there exists a non-trivial solution u in H;:gm(IB%) with 2 < p < 2* = 2o In [4],
they proved that the Dirichlet problem
—Apu =M+ [u)* "2u, zecintB
B | | ) ) (1.2)
u =0, x € 0B
admits infinitely many solutions in H;:gm(lﬂ%) for n > 7, where A > 0, and 2* = %
The authors in [2] proved that for any A € (0, A1), that (1.2)) has a positive solution

in Hé:g/ *(B) for n > 4, where A; denotes the first eigenvalue of —Agp with zero

Dirichlet condition on 0B. Also, the existence and multiplicity of solutions of
(1.1) may be influenced by the concave and convex nonlinearities is an interesting
problem. In this paper, our main result is the following theorem.
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Theorem 1.2. For each 6 < 19, (L.1) satisfies conditions (H1) and (H2), then
there exists As > 0 such that for A < As, (L.1) has at least catp, (M) + 1 positive

solutions in HZ’n/z(]BS).

The notation catpz, (M) is the Lusternik-Schnirelman category. Now, we intro-
duce the energy functional Jy on Hl n/2 (B):

dx dx 1
= [ Vst [l o [ ol

Then Jy(u) € C*(Hy n/2( B),R). Thus the semilinear Equation is the Euler-
Lagrange Equation of variational problem for the energy functional and the
critical point of Jy(u) in H2 n/Q( B) is the weak solution of (T.I]).

We organize this article as follows: Firstly, we introduce some definitions and re-
sults on cone Sobolev spaces in Section 2. Furthermore, we study the decomposition
of the Nehari manifold via the combination of concave and convex nonlinearities
and get a positive ground-state solution of in Section 3. Moreover, we use
the idea of category to get multiple positive solutions of and give the proof
of Theorem in Section 4. In this article, positive constants (possibly different)
will be denoted by c.

« dxq

2 /
—d 1.
1 Z , ( 3)

2. PRELIMINARIES

Here we first introduce the cone Sobolev spaces. Let X be a closed, compact
C* manifold of dimension n — 1, and set X2 = (R; x X)/({0} x X) which is the
local model interpreted as a cone with the base X.

A finite dimensional manifold B with conical singularities is a topological space
with a finite subset By = {b1,...,bp} C B of conical singularities. For the rest
of this article, we assume that the manifold B is paracompact and of dimension
n, and B the stretched manifold associated with B. Then the stretched manifold
B is a C°° manifold with compact C* boundary 9B = J,cp X(b) such that
there is a diffeomophism B\ By & B\ 0B := intB, the restriction of which to
Ui \ Bop 2 V1 \ OB for an open neighbourhood U; C B near the points of By and
a collar neighbourhood V4 C B with V1 = (J,cp {[0,1) x X(b)}. In this article, we
consider B = [0,1) x X, and use the coordinates (z1,z') € B.

Definition 2.1. For (z1,2') € Ry x R*™!, we say that u(x1, ') € L,(R", 1 dy’)

+°
if /
d 1/p
Jullz, = / / 2" fu(zr, )\Pﬂdx') < oo
Rn—1 xl

The weighted L,-spaces with weight data v € R is denoted by L} (R}, dz—?dx' ), then
zy "u(zy, @) € Ly(RY, d%dx'), and

x

_ d 1/p
Jully = | a2 )Pt da! < +00.
B 1
]R+ Rn—1 £E1

Now we can define the weighted Sobolev space for 1 < p < 4o0.

Definition 2.2. For m € N, and v € R, the spaces

d.’tl

HPY(RYE) = {u € D/ (R )l (210,,)°0u € Ly(R™, —da')} (2.1)
1
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for arbitrary o € N, 3 € N*~! and |a| + |8] < m. In other words, if u(z1,2’) €

M (RY), then (z10,,)05u € L) (R, 21da’).

It is easy to see that H;"?(R’) is a Banach space with norm

dx 1/p
HUHH’”"’(R)— Z // x1|m1 (210z,)*0 (3317 ’)|px71d$/) .

1
laf+[B]<m

In this article by a cut-off function we understand any real-valued w(z1) € C§°(B)
which equals 1 near 0B.

Definition 2.3. Let B be the stretched manifold associated with B. Then H;"" (B)
for m € N, v € R denotes the subspace of all u € W;”"?(int B), such that

My (B) = {u € Wi (int B):wu € Hy' (X))

loc

for any cut-off function w, supported by a collar neighbourhood in B. Moreover,
the subspace H,'y"(B) of H;»7(B) is defined as follows:

Hy ' (B) = [w]H, o (X7) + [1 — w]Wg" P (int B),

where W™ (int B) denotes the closure of C§°(int B) in the Sobolev spaces W™ (X)

when X is a closed compact C*° manifold of dimension n that containing B as a
submanifold with boundary.

We then recall the cone Sobolev inequality and Poincaré inequality. For details
we refer to [2], B].

Proposition 2.4 (Cone Sobolev Inequality). Assume that 1 < p < n, p% 5w
and vy € R. Let R := R, x R"" ! 2y € Ry and 2’ = (z2,...,) € R""L. Then the
estimate

_1_1

n
HUHLw @) S < allullymy) + (e1 + acs) > 1Oz, ull Ly ®e) + collully@n)  (2.2)

i=2
holds for all u € C’go(Ri), where v* = v — 1, ¢; = 7(;(:_113, a = (Zilp)p and
n—Q=Dn=-Up, 5
cy = % Moreover, if u € H;:g(Ri), we have
Il gy < el (23

where the constant ¢ = ¢1 + ¢, and ¢1,« and co are given in (2.2)).

Proposition 2.5 (Poincaré inequality). Let B = [0,1) x X be a bounded subset in
R%}, and 1 <p < +o0,7 € R. If u(xy,2’) € H;:g(ﬁ), then

u(@r, )|l L@y < cllVeu(zy, 2')| Ly @), (2.4)
where Vg = (2104, Ozyy - - -, Oz, ), and the constant ¢ depending only on B and p.

Proposition 2.6. For 2 < p < 2%, the embedding Hl /2( B) — H 0;( ) is com-
pact.

It is easy to see that there exist two constant ¢, ¢ such that the estimate

” HL;’L(IB%) = ” ” o, ;(]B%) CHUHH;:SL/Q(B) < EHVIBUHL;/Z(B)
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holds, so we will use the standard form Hu||H1,n/z = Vpull, Let
2,0

2% (®)

S(B) = inf

( ||VIBU||L;/2(B) )2
ueHyy/* (B)

Hu”L;L*/T‘ (B)

We obtain the following results.

Proposition 2.7. For any B, we have S(B) = S(R"}).

Proof. For any domain B, we extend a function u € C§°(B) by 0 outside B. We
may regard Hé’g/Q(IB) as a subset of HJ’ n/Z(R"). Hence we have S(B) > S(R%).
Conversely, if {u,,} C 'Hl n/ 2(R”) is a minimizing sequence for S(R’}). By density

of Cg°(R") in Hl n/2 (R%. ), we may assume that u,, € C°(R’). After translation
and scaling

-7

Um, > UR,, 7, (T) = Rmin/2 U (T, 1( )I/R STy + ),
LT, 1 Rm
where Ry, > 0,Zp = (Timn1y-- -2 Tmn) = (Tm1,T,,), we can achieve that v, =
uRnninl (J") e O((J)O(IB) Then
”vamHL;/Q(B) = HvBumHL;/Q(B)a ||Um||L;/2*(]E) = ”um”L;/?‘*(E)'
Indeed, let y1 = T,y 1(xm - )1/Rm’ y =T, + %. Then we have
dyl 1 dxy , 1 , 1
—_— = 777d = 7d.'1} y x a = = a .
Y1 Rm 1 Y R?r;l e Rmy1 o

It is easy to obtain

:/|vﬁvm|2d”"1d /
B

d
:/|(x1311,8m2,...,3zn)vm|2 A1 g
B

T
d
:/ Va2 YL ay
i Y1

2
||VBUW||L;/2(]R)

= ||VIBumHi;/2

(Ry)
In an analogous manner, we can get [[vm | n/e* gy = [tmll o2+ - Thus S(B) <
2% 2% +
S(R?), and so we denote S := S(B) = S(R"}). This completes the proof. O

Remark 2.8. It is easy to check that .S is achieved by the function

N c
U(xy,2") = AT o L o

For convenience, we denote the extremal function for S by
c(n=2)/2
ey + P

for € > 0. Moreover, for each ¢ > 0,

ve(7) =

ue(x) = E

[n(n _ 2)52](n72)/4
(2 + |lnx |2 + |2/[2)(n—2)/2
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is a positive solution of critical problem

—Agu = |ul* "2u in R%

/ R
n n 1
+

For completeness, we also introduce the (PS)-sequence, (PS). sequence, and
(PS) condition.

with

Definition 2.9. Let E be a Banach space, J € C'(E,R) and ¢ € R. We say that a
sequence {u,} C E is a (PS). sequence if it satisfies J(u,) — ¢ and ||J'(u,)|| g —
0, where J'(-) is the Fréchet differentiation of J and E’ is the dual space of E.
Moreover, if any (PS). sequence has a subsequence {uy,;} which is convergent in
E, then we say that J satisfies (PS),. condition. If (PS). condition holds for any
¢ € R, we say that J satisfies (PS) condition.

3. EXISTENCE OF A GROUND-STATE SOLUTION

Now, as in []], we introduce the “Nehari” manifold associated with (1.1]) and
give some properties. We call

Ny = {u € Hy§/*(B) \ {0}; (J}(u),u) = 0}

the “Nehari” manifold, which the name “Nehari” manifold is borrowed from [I4].
It is obvious that u € N, if and only if

d d «d
/|Vgu|2ﬂdx'—/f>\|u|qﬂdm’—/g|u|2 S g = 0.
B 1 B 1 B 1

* dl‘l

R e N e W

Thus for each u € Ny, we have

dx . «dx
(o (), ) = 2||u||2 T T e =

dx
e — (0= 2) [ Al (3.1)

Define

* 2% /
2= el ey = (2 =) [ ol (32)
We split N, into three parts:
Ny = {u € Nx; () (u), u) > 0},

N} = {u € Nx; () (u), u) = 0},
Ny = {u € Nx; (@) (u), u) <0}.

Thus we have the following results.

Lemma 3.1. The energy functional Jy is coercive and bounded below on Ny.
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Proof. For u € Ny, by Young’s inequalities and Propositions [2.4] and [2.6] we have

dil'l
I = gy = G = 50) [ Pl

2 q
> Zul? .., _a 1 o ST ||ull?
2 Sl =N g Ml S Ml
1 2 1 2 _2
— —Do\To3,
where ¢* = 57— and Dy is a positive constant depending on ¢, N, S and Ilf+ || = 5y’
Thus J) is coercive and bounded below on Nj. O

Lemma 3.2. Suppose that ug 1s a local minimizer for Jyx on Ny and ug & N
Then Ji(ug) =0 in H2 0 E(B) Furthermore, if ug is a non-trivial function in B,
then wg is a positive solution of (1.1)).

Proof. If ug is a local minimizer for Jy on N), then wug is a solution of the opti-
mization problem

minimize Jy(u) subject to {u € Hy n/2( B); ox(u) = 0}.
Hence by the theory of Lagrange multipliers, there exists a 6 € R such that J} (ug) =
00} (uo) in Hy ™ * (B). Thus (J}(uo), ue) = 0(} (o), uo).

Moreover, since ug & NY, we get (o4 (uo), uo) # 0, and so 6 = 0. Now if g is a
non-trivial function in B, we can apply the so-called cone maximum principles due
to [7] in order to get ug is positive in B. This completes the proof. ([
Lemma 3.3. For each A\ > 0, we have the following:

(1) for any u € Ny, we have [ f>\|u|qdmi11dm’ > 0;
(2) for any u € NY, we have [ fA\u|‘i‘f—lldx’ >0 and fBg|u|2*dzilldx’ > 0;
(3) for any u € Ny, we have [5 glu|? %dw’ > 0.

We omit the proof of Lemma since it is easy to obtain this result from (3.1
and (3.2]).

Lemma 3.4. There exists Ay > 0 such that NY = for X € (0,Ay).

Proof. Suppose that NY # @ for all A > 0. If u € N}, then from (3.1)), (3.2),
Proposition [2.6{ and condition (H3), we obtain

_ 2 q
2 " </\TL7 n S 2
||u||H;:0/2(B) =742 —¢q) ||f+||L::( ||UH 1, n/2(B)
2 F—q _2r 2%
HUHH;:SLM(B) < 9 _ q ||g||L°°S H;:S/Z(]B).

Therefore,

1
C1 S ||’U,||,H§g/2 S )\1—q Co,

(B)
where c¢1,co > 0 and are independent of the choice of © and A. For A\ sufficient
small, this is a contradiction. Hence, there exists A; > 0 such that for A € (0, A1),
we have N9 = ). O
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Now we can write Ny = N;'UNA_ and define ay = infyen, Ji(u), 043\" =

infueNr Ja(u) and o) = infueN; I (u).

Lemma 3.5. We have the following:

(1) af <0 for all X € (0, Ay).

(2) there exists Ay € (0, A1) such that o, > dg for some dg > 0 and A € (0,A2).
In particular, of = infyen, Jx(u) for all X € (0, As).

Proof. (1) Let u € Ny, then

2—q 9 o dxy
n —d
Sl ey > [ ol e

and
11 11 .« da
() = (z — =) |lul? —&—f——/uQ—da:’
V0= G Il G ) ol
11 2—q, s
<(§ g)||u|| M/Z(E)—'—W” |\H173/2(B)
2_

_ 2

Thus oy < aj\' <0 for all A € (0,A1).
(2) Let w € Ny, then

2" —q - dxy 2" —q 2 .
2 <2 1 27(1 o2 1 - 2 .
Il gy < gt [ sl e’ < T 05 H fglumiay 0l

This implies

2-q ST \#5
gy > (22457 ) 4
el @y > (5 ol (3-4)
for any u € Ny . From (3.3]), we obtain that

2* _a

q a
I 2 Wl sy [ gy =2 g I3 S7He 39)
Hence by (3.4) and (3.5), we obtain assertion (2) O

For cach u € Hy’ "/2( B) \ {0} with [; glu|*” £&da’ > 0, we write
_ 2
. _ ( (2 Q)HUHH%/Q(E) )"TJ .
N2 ) fpglul? Ede .

Then we have the following Lemma.

Lemma 3.6. For each u € Hy n/2( B) \ {0}, there exists Az € (0,As) such that we
have the following results:

) if [g f)\|u|q%1dx' <0, then there is a unique t~ =t~ (u) > tmax such that
t7u € Ny and J\(tu) is increasing on (0,t) and decreasing on (t~,00).
Moreover, Jx(t~u) = sup;sq Jx(tu).

2) if [ f>\|u|qdf%dx/ > 0, then there is a unique 0 < tT = t7(1) < tmax <
t= such that t™u € Ny ,tTu € Ny, J\(tu) is decreasing on (0,t%), in-
creasing on (t*,t7) and decreasing on (t~,00). Moreover, Jy(tTu) =
INfo<t< e IA(E0); IN(ETU) = sUp; >+ Ja(tu).
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1 n/2
Proof. Fix u € Hyy'"(B) \ {0}. Let
. dzq
_ 42—q 2 _ 42%—q 2" /
s(t)y =t Hu”?—tiﬁ”([ﬂ%) t /g| | - “Ldz' fort > 0.
We have s(0) = 0, and s(t) — —oo as t — oo. The function s(t) achieves its

maximum at tpyax, increasing in [0, tmax) and decreasing in (fmax, 00). Moreover,
we get

2—q)||u n
S )l
“—q) [z9 |u|2*mdx/ 5 ®)

( (2_Q)||u|| 1"/2(13) >§i_2
(2* —q ng\u 2*‘%1dx’

S(tmaX) = ((

*

dxl

2 7dxl
1

—q
/g\u
B

* 2%
= el [( ot )22%12 ( 24 )3:3} ( ||UHH§§S'/2(B) )22:}2
= 1n/2 _ - * 2—*%
(B) q 2*—q s glul? £ da

2 -2 2-g¢
2 g2 ) (G e = o) 2 DS, ),

(3.6)

where D(S,g) > 0 is a constant depends on S and g. We consider two cases now.

) fm% f,\|u\qdz—’”lldac’ < 0. There is a unique t~ > tpax such that s(t7) =

Js f>\|u|q%dﬂc' and s'(t7) < 0, which implies t"u € N, . Because of t > tmax,
we have

*d.T
(2= Dltul g gy~ 2= 0) [ gltu T’ <0
2,0 B X1

(B)
and

d
aj)\ tu ’t -

_ drq . dq;l
L A il U | I

Thus Jj (tu) is increasing on (0, ¢~ ) and decreasing on (¢~ 00). Moreover, Jy(t"u) =
sup;>g Ja(tu).
2) [5 f>\|u|‘I%dm’ > 0. By (3.6, we know that there exists Az > 0 such that

,2
2” ||q ln/Z(]B)

5(0) —0<A/f+\ulq Ldr' < |14

2" -2 2-g¢

L
q
q

)F=ED(S, g) < 5(tmax)

for A € (0,A3). It follows that there are a unique ¢+ and a unique ¢~ such that for
0 <tt <tmax <t~

s(th) = /IBfA|u\qdz—xlldx' =s(t7)

and s'(tT) > 0> §'(t7).

As in case (1), we have tTu € Ny, t7u € Ny, and Jy(t"u) > Jy(tu) > Jy(ttu)
for each ¢t € [t*,t7]. Furthermore, we can get Jy(ttu) < Jy(tu) for each t €
[0,¢T]. In other words, Jy(tu) is decreasing on (0,t"), increasing on (¢*,¢7) and
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decreasing on (t~,00) again. Moreover, Jy(tTu) = info<i<y,., In(tu), At u) =
sup;>+ Jx(tw). This completes the proof. O

For ¢ > 0, we define

c 1 2 ¢
() = Sl o~ 5 [ ol

= {u € Hyp*(B) \ {0}; ((J§)' (w), u) = O}

Lemma 3.7. Let ¢* = 23:q.

(1) there is a unique t°(u) > 0 such that t°(u)u € N§ and

* d.Tl
2 dx/,

Then for each u € Ny , we have the following:

o*
1 ||uH’H1‘n/2(B) (n—2)/2
sup J§(tu) = JS(t¢(u)u 27($)
tZIO) 0( ) O( ( ) ) n chg|UI2*md$’

(2) Jx(u) > (17)\)"/{]6(75“ ) — A(2— q)(Hf+|| N *%)r{"q_

L (B)

Proof. (1) For each u € Ny, let
Loy o L o o day
= JE(tu) = - i A1 g,
1) = T5(t) = 52l ) = 5ot [ gl S
Then by Lemma [3.3] we have

o f(t) = —oc0 ast — oo,
o f'(t) = tHU||2 12 2 e [ gluf*” 2 da’,

o f(t)= ||U||21n/2 — (2" = 1)t 2¢ [ gluf*” Lrda.

(B)

(B)
Let

2
£ (u) = ( Il 2 )2*1*2 >0
' chg|u|2*%dx’
Then f/(t°(u)) = 0,t°(u)u € N§ and
£ @) = Il 2~ (27 = DllelZ e

_ o 2
= 2= 2l <O

Thus there is a unique t°(u) > 0 such that ¢°(uv)u € N§ and

o
Uyt nr2 g )<n—2>/2
¢ [z glu 2*%dx’ '

(2) For each uw € Ny, let ¢ = ﬁ Then from the previous argument, we know
that there exist t = t“(u) > 0 and ¢, > 0 such that t“u € N§ and t,u € Nj. By
Propositions [2:4] and [2.6] Holder inequality, and Young’s inequality, we obtain

a5 (1) = J5(t“(a)u) = - (

c qi o =2 14¢,,119
J R e T B

Z%q g tc 2
(||f+||Lq* (]B) ) + 2” u”Hé:g/z(B).
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Then from this inequality and Part (1), we obtain

sup J) (tu)
>0
> JA(tCu)
1-— )\ . 2 o* dl‘l ’ )\(2 ) _aqa,_2
> c c — _ 2 —q
> U e — e [ ol 15l 3y 547
1 )\(2 ) _a._2
— 1_ )\ I—X tc _ —q
R T LA Rk
1 HIP2®) N (n—2)/2 )\(2 q) _a._ 2
=(1=\ n/2-(__ "20 Y _ 2)2—¢
( ) (fIBg|u|2* dxq dx’ ) (Hf"rHLq* (IB) )
" A 2 g, 2
> (1= 025 0) = 22D s
Since sup;sq Jx(tu) = Jx(u), we have
_2* /\ 2 — _a,_2
I = (1= N2 ) - 2C D 57
This completes the proof. [l

Next, we establish the existence of a local minimum for Jy on NV ;r .

Theorem 3.8. For each A < Aj, the functional Jy has a minimizer u;f n N;'

which satisfies

(1) ui‘ is a positive solution of (1.1));

(2) Ja(uf) —0as A —0;

(3) J,\(uj) = oz;\*' = infueN:r Ix(u).
Proof. Asin [8, Lemma 4.7], we can obtain a (P.S),, -sequence for J defined{uy} C
N, then by Proposition and ( ., there exists a subsequence still denoted by
{ug}, and a solution u) € HY n/2( B) of the equation (L.I) such that uy — uj
weakly in Hl /2 (B) and uj, — uj strongly in L¢ (B) as k — oo.

First, we Clalm that fB f>\|uA |qd$1dm # 0. If not, by Proposition we can
conclude that

d d
/fA uj|qﬂd:c’:0, /f>\|uk\qﬂdx'—>0 as k — oo.
B 1 B x1
Thus

dzr « dx
/|VBuk|2—1 dz’ :/g|uk|2 -1 dz’ + o(1),
B Z1 B T

1 dx dx
E/IE|V]Buk|2711dx/* /|V]Buk|2—1d /77\/f)\|uk|q d !

d—dx +0(1)

and

2*
=ay+ 0(1).
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This contradicts to a, < 0 by Lemma Thus [, Fafuf |92 d“ dz’ # 0. In particular

u is a nontrivial solution of (I.I). We now prove uj, — u/\ strongly in HL "/2(153)

as k — oo. Supposing the contrary, then

+ . .
Xz 2 ey < Jim inf fluklly oz ).

Thus
dx 1 dzq
I gy = [ ot P SR = [ ol

< Jim inf (e, —/g|uk|2 90 g / f,\|uk|q@dx’> —0
2 02 (B) B T B Z1

This contradicts to the fact that u/\ € N). Hence uy, — uA strongly in 'H1 n/2 (B)

as k — oo and Jy(u)) = ay. It follows that ui € Ny and Jy(u)) = a;\r = ay

from Lemma|3.6] Since Jy(ul) = Jx(Jul|) and |uf| € Ny, by Lemma we may

assume that u) is a nonnegative (nontrivial) solution of . Then we can apply

the the so-called cone maximum principles due to [7] in order to get uj\ is positive
in B. Moreover, by Lemma [3.1] and Lemma we obtain

0> Jx(uf) > —DoATa.

Thus Jx(uf) — 0as A — 0. O

4. EXISTENCE OF MULTIPLE SOLUTIONS

In this section, we use the idea of category to get multiple positive solutions

of ( in Hl o/ 2 (B) and give the proof of Theorem Initially, we give the
deﬁmtlon of category.

Definition 4.1. Let M be a topological space and consider a closed subset A C M.
We say that A has category k relative to M (catp (4) = k), if A is covered by k
closed sets A;,1 < j < k, which are contractible in M, and if k is minimal with
this property. If no such finite covering exists, we let catys(A) = oo.

For the properties of caty;(A) we refer to [16]. Next we need two Propositions
related to the category.

Proposition 4.2. Let H be a C*! complete Riemannian manifold (modelled on a
Hilbert space) and assume h € C*(H,R) bounded from below. Let —oco < infy h <
a < b < +o0o. Suppose that h satisfies Palais-Smale condition on the sublevel
{u € H;h(u) < b} and that a is not a critical level for h. Then

#{u € h*; Vh(u) = 0} > catpa(h?),
where h* = {u € H;h(u) < a}.

For a proof of the above proposition, see [B, Theorem 2.1].

Proposition 4.3. Let Q, Q" and Q= be closed sets withQ~ C QF; Let 5: Q — QF,
P Q7 — Q be two continuous maps such that § o1 is homotopically equivalent to
the embedding j : Q= — QF. Then catg(Q) > catg+ (7).
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For a proof of the above proposition, see [5l Lemma 2.2]. The proof of Theorem
is based on Proposition and Now we first define a cut-off function. Let
n € C5°(R%) such that 0 <n <1, |Vgn| < c and

()= " (a2 + 2/ 2)/2 < 22,
€Tr) =

7 0, (Iz|? + |22 > ro.
Define

X X1
We,, = 77(2—1,:1:' — z’)ve(z,x' - 2.

Theorem 4.4. For any z € M, we have ||wEZ||3{ = 8"2 £ O(e"2).

20 (B)
Proof. First we have
||w5,2||3_{;:’[';/2(13)
d
=/|V[5;w5,z|2ﬂdx'
B T1
Ty ’ Ty my2dr
= \Y% —,x — 2 )v(—, — 2z —dx
L 19a (2o = o2 = NP
T x dx
= [T e = )P
Qry (21,27) 21 21 I

d
- / Van(z1,2') - ve(wr, 2') + a1, 2') - Ve (1, 2)|> L da’
Qr (1,0) T

dx
- / VanPe? + 12| Vave2 + 200 Van - Vave L,
Q0 (1,0) 1

where (1,0) € Ry x R"~!. Then from the definition of v. we obtain

/ Va2 2L gy < C/ [(n = 2)e?]""22 day
o (1,0) w7 o aonar o) €7+ a4 PR
2

- Bry\Brg [€2 + |21]2 + |22 1

r _ 2)62}(n—2)/2
< n—1 [n(n
< c/ro r SRS dr

T
S C/ Tn7172n+46n72d7, _ O({_:an)7

and

d
‘ / 2nv:VEn - V]Bveﬂdx/
Q1 (1,0) T

d
< c/ 77|UE||VBv€|ﬂdx’
Q. (1,00\Q2 g (1,0) Ty

o
2

[n(n — 2)e2)"% n—2

(& n =
/ﬂm(170>\m29(1,0) €2 + |=[3]

<
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n—2 2|z|p dry
X —d
( 2 ) (€2 + |z|3]"/2 24 v

n—2 d
C/ 77Iffhaaf day
Q

2n—2
o (LO\Rr (1L0) [l T

1
C/ T_Bi‘:n_2d$ = O(En_2).
Bro\Bro ||

Moreover, since [5. |Vgv:|?2tde’ = S™/2 (see Remark D and
+

d d
‘/ 772|V15;vs|2£d:c'7/ \Vmﬂzﬂdx’
Qg (1,0) 1 R7 1o

(1= )| Veve]? Lo’
1

IN

IA

1\9%1(170)

- |$|J§ dx, /

< c/ (1= n?)[n(n — 2)e2)n-2/2__12ls ___do1

R\ Q1o (1,0) [e2 + |z|2]" a4
o B T e

R™\ BT [€2 + |z|?]"

o [0 it )
<ce /LD g dr =0("7%),
2
we obtain [Jwe .2 = §M/2 4 O(en2), -

Hy5'? (B)
Theorem 4.5. We have inf, ¢ ya Ja(u) = infuen, Jo(u) = infuene J(u)
= 189n/2 where J®(u) = %”uH;;:g”(B) — & [y lul e and N* = {u €
H;:gm(lﬂﬁ) \ {0}; ((J*>°)'(u),u) = 0}. Furthermore, (1.1) with A =0 does not admit
any solution ug such that Jo(ug) = %S”/Q.

Proof. Define g : R} — R by
_ v _J9(@), z€B,
9) = {0, elsewhere.

as an extension of g. Then from Lemma [3.6] we know that there is a unique
to(we,,) > 0 such that to(we )we, € No(Ny for A = 0) for all ¢ > 0. By the
definition of w, , and Remark we have

* dxl
oYy sy = [ e T
and so
2* dxq /
_4 fB g|w5,z| Srdx
[tO(wa,z)] no? = ”,w ”2 =
£,z 'Hé:g/z(lﬂﬁ)
With the definition of v., we get
.d 2 d
/g|w57z 2 AT gt :/ g(z) n(ﬂ,x' fz’)vs(ﬂ,x' -2 Y g
B Z1 Q 21 21 T

T (2)
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- / [n(n = 22" gz, 2" + 2 (2) dan
= X .
" (e2 + |Inmz|? + [27]2)" T

Thus by condition (H2) and Remark [1.1] we obtain
1 * d(El
0< —— ] S / .
= Tn(n — 2)52]77,/2 ./Ri |vel T Bg|ﬂ)€,

_ / (1 —g(z121,2" 4+ 2 )% (x)] day da
\Q2rq (1,0)

E+ P+ 2P o

+/ [1 72 g(z121, 2 2+ z )7/722* ()] dxq e’
Q1,0 (E2F|Inzi 2+ 22" a

1 d g d
</ xld + 0/ %ﬂda@’
RE\Qrp (1,0) |z[2" z Qg (10) (e2 + |z[g)™ =1 (4.1)
1 |z|”
= ——dzqda’ Jrco/ — dxida’
/R”\Bro || Bry (€74 [z[?)"

2
e

400 =
Conw 2
nwn/ D g n/ P~y
T 0

IN

% a
—w (T COMWn  (TO\p—(n—2)
S a2

C2
SClJr?

for all z € M, where w,, is the volume of the unit ball By C R™. Then

2% diCl

lim glwe 2| d "= 8"/2 uniformly in z € M. (4.2)
E— B

Thus from Theorem [4.4] and (4.2), we obtain

ii_)r%to(ws,z) =1, hm HtO(wE z)ws z” 1 71./2 = Sn/2
uniformly in z € M. Then we obtain

. 1
ulenjg0 Jo(u) < Jo(to(we,z)we, ) — ES"/Q, as e — 0,

and so inf,en, Jo(u) < infyene J®(u) = 5™/ Let u € Ny. Then by Lemma

3.6(1), we have Jo(u) = sup;>q Jo(tu).
Moreover, there is a unique t,, > 0 such that ¢, u € N°° and then

Jo(u) > Jo(tyu) > J*(t,u) > S"/2
This implies inf,en, Jo(u) > £5™/2. Therefore,
1
: _ 00 _ = n/2
ulen]ffo JO (U) uér]l\/foo U (U) TLS '

Similarly, we have inf, ¢y, Jo( ) =1gn/2,

Next we will show that Wlth A = 0 does not admit any solution uy such
that Jo(ug) = infy,en, Jo(u ) We argue by contradiction. Suppose that there exists
ug € Ny such that Jy(ug) = inf,en, Jo(u). Since Jy(ug) = Jo(Juol) and |ug| € No,
by Lemma we may assume that ug is a positive solution of with A = 0.
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Moreover, by Lemma [3.6] (1), we obtain Jo(ug) = sup,q Jo(tug). Thus there is a
unique ¢,, > 0 such that t,,u9 € N°*° and so

S”/2 = inf Jo(u) = Jo(uo) > Jo(tusuo),

u€No

2*
2 «dr
S”/2 —/1— ¥ —da,
o 13( ) |uol I T

This implies [5(1 — g)|u0|2*%dx’ = 0. But this is a contradiction since wug is
positive. We obtain the assertion. ([

tuy? .d
> % () + /(1— ol FLaz’
B Z1

Theorem 4.6. Suppose that {uy} is a minimizing sequence for J}(-) to Ng, then

we have
dx
[ =gl i = o).

Furthermore, {ug} is a (PS)1 gn/2-sequence for J(-) in Hy n/2( B).

Proof. For each k, there is a unique t; > 0 such that tzur € N°°; that is,

d . «d
ti/ |V]Bguk|2ﬂdx' =17 /\uk|2 T g
B 1 B 1

Then by Lemma [3.7]

t2* *dﬂ?
T(we) = T(tw) = () + & [ (=gl Tar' (@43)
t .d
S”/Q o /(1—g)|wc2 iy, (4.4)

From Theorem we have J}(u) = £8™/2 + 0(1) and
t2* * dﬂfl
- g S = o).
B
We will show that there exists ¢y > 0 such that ¢ > ¢o for all n. We argue
by contradiction. Then we may assume ¢, — 0 as k — o00. Since Ji(ux) =

%SH/Q + 0(1) and Joo(tkuk) = 1t2||uk||2 L "/2(]]3) , by " ||uk||H;:g/2(IB) is
uniformly bounded and so [[txu | y1.n/2 5 — 0 or J* (tkuk) — 0. This contradicts
2,0

to the fact J(tyu) > 15™/2 > 0. Thus [4( (1). In an
analogous manner as in [8, Lemma 4.7], we have {uy} is a (P.S) 1 gn/2-sequence for

J> in Hl n/2( B). This completes the proof. O

For the positive number d, we consider the filtration of the “Nehari” manifold
N¢ as follows:

1
Na(@) = {u e Njs Jj(u) < 5772 4 a).

zlu 2% ﬂd ’
Let ® : My n/2( B) — R’ be the barycenter map defined by ®(u) = ‘Wiﬁ}daﬁy
s |ul*” 2 de

then we have the following result.
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Theorem 4.7. For each positive number 6 < r¢, there exists ds > 0 such that
®(u) € My for all u € Ny (ds).

Proof. Suppose the contrary. Then there exists a sequence {u;} € N} and &y < ro
such that Jg (ug) = 257/ 4 0(1) and ®(uy) ¢ Ms, for all k. By Theorem we
know {uy} is a (PS) 1 gn/2-sequence for J> in ’H;’g/z (B). It follows from that
there exists a subsequence (still denoted by {uz}) and uy € Hy’ n/Q(IB%) such that
U — ug in 'HQ’"/ (B). By the so-called cone concentration compactness principle
(see [4, Proposition 2.8], there exist two sequences {z;} C B, {Rx} C R*, 20 € B
and a positive solution vy € Hy’ n/Z(R”) of critical problem —Agu = |u[?"~2u in
R% with J>(vg) = 7115’"/2 such that z, — xg and Ry — oo as k — oo, and

lug(x) — R,(Cn_2)/200((%)&“, z) + Ri(z' — )|, n 0 as k — oco. Then

[

fo|uk|2*%dfc’

D(u) =
( k?) fB |Uk; 2% dwilldx/
f]Bx’Rl(c 2)/2110((75,:1 )RR 2 + Rk( - ))| dw—lldx' +0(1)
Je |Rl(cn72)/2“0((z?,1 )P, af, + Ri(a’ - af))|” de +o(1)

L /7 ’ *
fey(onaal® Tt (e
= + o
Jgn |vo(2) 2*‘%%[30’
+

=z + o(1).

Now we will show that x¢g € Ms,. Since

/9|U/~c
B

:/g(x)|Rl(€n—2)/2v0(( 1 )Rk mk;'i‘Rk;(x _.Tk.))
B Lk,1

s

*

dxl

2 7dx/
Ty

.d
2 ”jldg; +o(1)

.d
2 02’ 1 0(1)
1

a2 =
:/ glonam ™, T oo (a)
n k

= g(w0) 5™ + o(1),
we have g(z9) = max, gg(z) = 1, and so xp € M. This is a contradiction. We

obtain the assertion. O

Now, we consider the filtration of the manifold V5 as follows. Let

Ni(c) ={u € Ny ;Jx(u) <c}
and denote B

W, , = [n(n — 2)52]_71116,2.

Then we have the following results.

Theorem 4.8. Let A3 > 0 be as in Lemma and ¢ = \C-02. Then there
exists 0 < Ay, < A3 such that for X < A, we have

1
sup Jy (t0...) < ¢y = —S™/2 — AT @ Dy (4.5)
t>0 n
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uniformly in z € M, where Dy is a positive constant defined in Lemma[3.1 Fur-
thermore, there exists t7 > 0 such that t;W. . € Nx(cx) and (¢, W, ) € Ms for
all z € M.

Proof. By and fR"
Va

0< 1—5'_"/2/g|w5z didac < (e +Z%)S_"/2[n(n—2)s2]"/2
B

' = 8"/2 > 0 for all € > 0, we have

for all z € M; i.e.,

L= (e + 2)57ln(n — 2] < S_"/2/g|wg J d””d <1
B

for all z € M. Since € = ATD= and n > 3, there exists a positive number Ay
such that .
2\ e
0<1—(c1+ 6—2)5 "2 p(n —2)e2V? < 1

for all A € (0,A4). Then we can deduce that
c c .
1— (e + 6%)5*”/2[71(71 —2)e?"? < (1= (e + 5—2)5’”/2[n(n — 2)g?|n/2)2/2
<57 [ gl

B

2*@(1%/)2/2* <1
T

for all z € M, which implies that

(/Bglwez

for all z € M. Thus from Theorem [4.4| and (4.6]) we obtain

2*% /)2/2* — g(n—2)/2 + O(gn_z) (4.6)
T

5 2
||w572||7_‘;:g/2(]3)

\I,(wa,z) = *
(fIB g|@g7z|2* 4y )
- 2/2%
(fB g|ws,z|2* %d:ﬂ’)
B Sn/2 —I—O(En_Q)
- S(n—2)/2 + O(€n72)
for all z € M. Hence
— Sn/2 + 0(£n—2) n—2
Vo) =5 = gy ooy S =)
for all z € M. Using the fact maxtzo(ga - t; by =1 (a7 )" "2 for all a,b > 0, we

can deduce that

_ 1 _ n
sup J&(tws,Z) = —(V(we,.)) /2,
t>0 n

Then we get sup,s Jg (tWe,-) = 1 S”/2 +O(e"72) for all z € M.
Now, we will show that . holds Let A5 < min{As, A4} be a positive number

such that 15"/2 P aDg > 0 for all A € (0,A5). Since

d.%‘l t2 _ *d$1
(twsz>: ||waz||21n/2 _*/f/\|w€z| 7d l_i g| EZ|2 d !
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and [, frlwe |79 dz’ > 0, we have Jy(tw. ) < J§(tw. .) for all t > 0 and A > 0.
Then there exists ty > 0 such that

1
sup Jy(tw. ) = 2572 _ \To Dy
0<t<to n

for all A € (0,A5). Now, we only need to show that sup,s;, J\(tWe .) = %S”ﬂ —
ATD Dy for all z € M. First we have

dx
sup Jy (1. ,) = sup|[J (., .) — /f,\|wE 2|9 “La dx’]
t>to t>to
1 Ml d
< =82 40" ?) - Ofmm/ e .1 e,
n q Qpy (2 xy

(2=q)(n—=2)

where fmin = min{f(z);z € M,,} >0. Let 0 <A< (%)~ 2 . Then we have
0<e= AT < %0

and

df,[,‘l 1 d£1
/ |w5 Z| 7d "= / 5 1 |2 gy 4(n=2) 7d$,
Qrg (2) Qro (2) (e +|1nj| +lz'—Z]?)" = Tt

Qrg (1,0) (6% + [Iny > + y/|2) T

1
:/ o dzdz’
Bro (€2 +|z1[* + [2']?)

1
> 7(121([2’/ = Dl(n,q,ro)
/Br(, rg(n_z)

for all z € M, where Dl(n q,70) is a positive constant depends on n, g, 7.

Thus for ¢ = A\@ 00 and \ € 0, (% )(2 S 2)) we obtain

1 2 tq min
sup Jy (1w ») < ﬁSW +0\ED) — %Dl(n, 4,70\

t>to

(2= Q)(" 2)

Then we can choose 0 < A, < min{As, () } such that sup,~,, JA(th 2) =
Lgn/2 _ \@0 Dy for all A € (0, A) and sups Jy(0.,.) = 257/2 — XT3 Dy for
all z € M. -

Finally, we will show that there exists t; > 0 such that ¢; W, , € Nx(cy) for all
2 € M. By Lemmaand Js f,\|wg7z|qdw—“”11dx’ > 0and [, g[w. .|* %dx’ > 0, there
exists t7 > 0 such that W, . € Ny and Jy(t;W..) < c\ = %S”/Q _ATD Dy for
all z € M. Thus t; @, ., € Ni(cx). Moreover, we have ®(t; W, .) = ®(W. ) € Ms
for all z € M by the definition of w, .. We complete the proof. (]

Theorem 4.9. Let 6,ds > 0 be as in Theorem[{.7} Then there exists 0 < As < A,
such that for A < Ags, we have ®(u) € My for all u € Ny(cy).
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Proof. For u € Ny(cy), by Lemma there exists a unique ¢, > 0 such that
tyu € Ng and
)\(2 ) 7g _2

(141 2)7=3)

L (B)
A2-9q)

JE(tyu) < (1= N2 Iy (u) + Z—2

q

1 2
< (1—\)""2(=8"2 — \T 0D, n  STEyTa),
<-N + R, g 5TH)
Then there exists 0 < Ay < A, such that for A < Ay,

1
JE (tyu) < g5”/2 +ds
for all u € Ny(cy). By Theorem we have t,u € N}(ds) and
me|tuu|2*dT$11dx’
fB |tul?” %d:c’

for all uw € Nyx(cy). This completes the proof. d

(I)(u) = = @(tuu) S M5

Now, we want to show that Jy satisfies the (PS). condition in H3(Q) for ¢ €
(=00, cy), where ¢y is defined in Theorem

Theorem 4.10. J, satisfies the (PS). condition in 'H1 /2 (B) for c € (—o0,cy).

Proof. Let {ux} be a (PS). sequence in Hl n/Q(]B%) for Jy. It is easy to see that
{ux} is bounded in Hl n/2( B) by a standard argument. Going if necessary to a
subsequence, we can assume that u, — u weakly in Hl -/ 2(IB). By Proposition

we know ux — v a.e. in B and uy — u strongly in LS (B) for any 1 < s < 2*. Then
we obtain

d d
[ it de’ = [ pjur S + o)
1

=l g3 gy = ) = 01225+ oA,

/er“%F/mw%% /H”www>
B B Z1

n

Moreover, we can obtain Ji(u) = 0 in H;é’fi(lﬂé). Since Jy(ux) = ¢+ o(1) and
J{(ug) = o(1) in H;,(l)ﬁ%(B), we deduce that

1 «d
/ glug —ul? gy’ = ¢ — Ja(u) + o(1) (4.7)
Q 1

1 2
gl =l ~ 50

and g
2% €T 1
A LU

Now, we may assume that

2
_ . ! _
[|luk UHH;:O’/Q(B) -1, /[B|Uk u

Suppose [ # 0. Applying Theorem we obtain

1 1
S ) > =82,
G- =58

z %dw’ —1 ask— . (4.8)
1
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Then by Lemma [3.1] (4.7) and (48], we have

1 1 1 2
—(Z - — > —9n/2 _ DoA\7Toq =
c (2 2*)l—|—J>\(u)_ nS oA Cx,
which contradicts the definition of ¢. Hence [ = 0; that is, uw,, — u strongly in
1,n/2
Hyp'"(B). |

Now, by Theorems [£.6] [4.8] and [£.10, we can find A5 > 0 such that Jy satisfies
the (PS) condition on Ny(cx) and ®(u) € M;s for all u € Nx(cy) and A < As.
Let F.(z) =t;w. , € Nx(cy) as that in Theorem Then we have the following
result.

Theorem 4.11. Let 6, As > 0 be as in Theorems [[.7 and [[.9, then for each A <
As, I\ has at least catpg, (M) critical points on Nx 4 (cx) = {u € Nx(cy);u > 0}.

Proof. By Theorem we can assume that for any such A and for any z € M,
1
n

Thus F.(M) C Nx(cy).

Moreover, by Theorem [4.9) we get ®(Nyx(cx)) C Ms. Then, by Theorem [4.8)
the map ® o F' is homotopic to the inclusion j : M — My, for any A < As. Thus
by Theorem and Propositions we obtain Jy has at least catps, (M)

critical points on Ny 1+ (cy). This completes the proof. (]
Proof of Theorem[I.4 By Theorems and and by considering Lemmas [3.2
and [3.5] we complete the proof of Theorem [I.2] a
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