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MULTIPLE POSITIVE SOLUTIONS FOR DEGENERATE
ELLIPTIC EQUATIONS WITH CRITICAL CONE SOBOLEV

EXPONENTS ON SINGULAR MANIFOLDS

HAINING FAN, XIAOCHUN LIU

Abstract. In this article, we show the existence of multiple positive solutions

to a class of degenerate elliptic equations involving critical cone Sobolev expo-

nent and sign-changing weight function on singular manifolds with the help of
category theory and the Nehari manifold method.

1. Introduction

In this article, we consider the semilinear boundary-value problem

−∆Bu = fλ|u|q−2u+ g(x)|u|2
∗−2u, x ∈ int B,

u = 0, x ∈ ∂B,
(1.1)

where 1 < q < 2, 2∗ = 2n
n−2 (n ≥ 3). Here the domain B is [0, 1)×X for X ⊆ Rn−1

compact, which is regarded as the local model near the conical points on manifolds
with conical singularities and {0}×X ⊂ ∂B. Moreover, the operator ∆B in (1.1) is
defined by (x1∂x1)2+∂2

x2
+· · ·+∂2

xn , which is an elliptic operator with totally charac-
teristic degeneracy on the boundary x1 = 0 (we also call it Fuchsian type Laplacian),
and the corresponding gradient operator is denoted by ∇B = (x1∂x1 , ∂x2 , . . . , ∂xn).
Near ∂B we will often use coordinates (x1, x

′) = (x1, x2, . . . , xn) for 0 ≤ x1 < 1,
x ∈ X. Our goal is to find the existence of multiple positive solutions for (1.1) in
the cone Sobolev space H1,n/2

2,0 (B). The definition of such distribution spaces will
be given in the next section. Of course, the nonlinear terms in (1.1) need to satisfy
the following conditions.

(H1) the parameter λ > 0 and f , g : B → R are continuous and sign-changing
functions in B. The function fλ = λf+ + f− and f± = ±max{±f(x), 0}.

(H2) there exists a non-empty closed set M = {x ∈ B; g(x) = maxx∈B g(x) ≡ 1}
and ρ > n− 2 such that M ⊂ {x ∈ int B; f(x) > 0} and

g(z)− g(x) = o(|x− z|ρB) as x→ z and uniformly in z ∈M.

Here | · |B means |x − z|B = (| ln x1
z1
|2 + |x′ − z′|2)1/2, where x = (x1, x

′) =
(x1, x2, . . . , xn) and z = (z1, z

′) = (z1, z2, . . . , zn) ∈ Rn+.
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Remark 1.1. Let Mr = {x ∈ Rn+; distB(x,M) < r} for r > 0, where distB(x,M) =
maxz∈M |x−z|B. Then, by the condition (H2), we may assume that there exist two
positive constants c0 > 0 and r0 > 0 such that f(x) and g(x) are positive for all
x ∈Mr0 ⊂ B and g(z)− g(x) = c0(|x− z|ρB) for all

x ∈ Ωr0(z1, z
′) := {(x1, x

′) ∈ Rn+; |x− z|B = (| ln(
x1

z1
)|2 + |x′ − z′|2)1/2 ≤ r0}

for all z ∈M .

The analysis on manifolds with conical singularities and the properties of elliptic,
parabolic and hyperbolic equations in this setting have been intensively studied in
the previous decades. More specially, in aspects of partial differential equations
and pseudo-differential theory of configurations with piecewise smooth geometry,
the work of Kondrat’ev (see [9]) has to be mentioned here as the starting point of
the analysis of operators on manifolds with conical singularities. The foundations of
this analysis have been developed through the fundamental works by Schulze, and
subsequently further expended by him and his collaborators, such as Gil, Seiler,
Krainer. The main subject of their work is the calculus on manifolds with sin-
gularities (see [15] and the references therein). On the other hand, Melrose and
his collaborators gave various methods and ideas in the pseudo-differential calculus
on manifolds with singularities, cf. Melrose and Mendoza [12]. All these math-
ematicians investigated deeply the underlying pseudo-differential calculi and the
connected functional spaces. While these theories are nowadays well-established,
many aspects are still to be interested, for instance, the existence theorem for the
corresponding nonlinear elliptic equations on manifolds with singularities.

Recently, the authors in [3] established the so-called cone Sobolev inequality
(see Proposition 2.4) and Poincaré inequality (see Proposition 2.5) for the weighted
Sobolev spaces (in Section 2) (see [3] for details). Such kind of inequalities seem
to be of fundamental importance to prove the existence of the solutions for such
nonlinear problems with totally characteristic degeneracy. In [3], the authors have
already obtained the existence theorem for a class of semilinear degenerate equa-
tions on manifolds with conical singularities; that is, for the Dirichlet problem

−∆Bu = |u|p−2u, x ∈ int B,
u = 0, x ∈ ∂B,

there exists a non-trivial solution u in H1,n/2
2,0 (B) with 2 < p < 2∗ = 2n

n−2 . In [4],
they proved that the Dirichlet problem

−∆Bu = λu+ |u|2
∗−2u, x ∈ int B,

u = 0, x ∈ ∂B
(1.2)

admits infinitely many solutions inH1,n/2
2,0 (B) for n ≥ 7, where λ > 0, and 2∗ = 2n

n−2 .
The authors in [2] proved that for any λ ∈ (0, λ1), that (1.2) has a positive solution
in H1,n/2

2,0 (B) for n ≥ 4, where λ1 denotes the first eigenvalue of −∆B with zero
Dirichlet condition on ∂B. Also, the existence and multiplicity of solutions of
(1.1) may be influenced by the concave and convex nonlinearities is an interesting
problem. In this paper, our main result is the following theorem.
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Theorem 1.2. For each δ < r0, (1.1) satisfies conditions (H1) and (H2), then
there exists Λδ > 0 such that for λ < Λδ, (1.1) has at least catMδ

(M) + 1 positive
solutions in H1,n/2

2,0 (B).

The notation catMδ
(M) is the Lusternik-Schnirelman category. Now, we intro-

duce the energy functional Jλ on H1,n/2
2,0 (B):

Jλ(u) =
1
2

∫
B
|∇Bu|2

dx1

x1
dx′ − 1

q

∫
B
fλ|u|q

dx1

x1
dx′ − 1

2∗

∫
B
g|u|2

∗ dx1

x1
dx′, (1.3)

Then Jλ(u) ∈ C1(H1,n/2
2,0 (B),R). Thus the semilinear Equation (1.1) is the Euler-

Lagrange Equation of variational problem for the energy functional (1.3) and the
critical point of Jλ(u) in H1,n/2

2,0 (B) is the weak solution of (1.1).
We organize this article as follows: Firstly, we introduce some definitions and re-

sults on cone Sobolev spaces in Section 2. Furthermore, we study the decomposition
of the Nehari manifold via the combination of concave and convex nonlinearities
and get a positive ground-state solution of (1.1) in Section 3. Moreover, we use
the idea of category to get multiple positive solutions of (1.1) and give the proof
of Theorem 1.2 in Section 4. In this article, positive constants (possibly different)
will be denoted by c.

2. Preliminaries

Here we first introduce the cone Sobolev spaces. Let X be a closed, compact
C∞ manifold of dimension n− 1, and set X∆ = (R+ ×X)/({0} ×X) which is the
local model interpreted as a cone with the base X.

A finite dimensional manifold B with conical singularities is a topological space
with a finite subset B0 = {b1, . . . , bM} ⊂ B of conical singularities. For the rest
of this article, we assume that the manifold B is paracompact and of dimension
n, and B the stretched manifold associated with B. Then the stretched manifold
B is a C∞ manifold with compact C∞ boundary ∂B ∼=

⋃
b∈B0

X(b) such that
there is a diffeomophism B \ B0

∼= B \ ∂B := int B, the restriction of which to
U1 \ B0

∼= V1 \ ∂B for an open neighbourhood U1 ⊂ B near the points of B0 and
a collar neighbourhood V1 ⊂ B with V1

∼=
⋃
b∈B0
{[0, 1)×X(b)}. In this article, we

consider B = [0, 1)×X, and use the coordinates (x1, x
′) ∈ B.

Definition 2.1. For (x1, x
′) ∈ R+ ×Rn−1, we say that u(x1, x

′) ∈ Lp(Rn+, dx1
x1
dx′)

if

‖u‖Lp =
(∫

R+

∫
Rn−1

xn1 |u(x1, x
′)|p dx1

x1
dx′
)1/p

< +∞.

The weighted Lp-spaces with weight data γ ∈ R is denoted by Lγp(Rn+, dx1
x1
dx′), then

x−γ1 u(x1, x
′) ∈ Lp(Rn+, dx1

x1
dx′), and

‖u‖Lγp =
(∫

R+

∫
Rn−1

xn1 |x
−γ
1 u(x1, x

′)|p dx1

x1
dx′
)1/p

< +∞.

Now we can define the weighted Sobolev space for 1 ≤ p < +∞.

Definition 2.2. For m ∈ N, and γ ∈ R, the spaces

Hm,γp (Rn+) := {u ∈ D′(Rn+);x
n
p−γ
1 (x1∂x1)α∂βx′u ∈ Lp(R

n
+,
dx1

x1
dx′)} (2.1)
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for arbitrary α ∈ N, β ∈ Nn−1, and |α| + |β| ≤ m. In other words, if u(x1, x
′) ∈

Hm,γp (Rn+), then (x1∂x1)α∂βx′u ∈ Lγp(Rn+, dx1
x1
dx′).

It is easy to see that Hm,γp (Rn+) is a Banach space with norm

‖u‖Hm,γp (Rn+) =
∑

|α|+|β|≤m

(∫ ∫
Rn+
xn1 |x

−γ
1 (x1∂x1)α∂βx′u(x1, x

′)|p dx1

x1
dx′
)1/p

.

In this article by a cut-off function we understand any real-valued ω(x1) ∈ C∞0 (B)
which equals 1 near ∂B.

Definition 2.3. Let B be the stretched manifold associated with B. ThenHm,γp (B)
for m ∈ N, γ ∈ R denotes the subspace of all u ∈Wm,p

loc (int B), such that

Hm,γp (B) = {u ∈Wm,p
loc (int B);ωu ∈ Hm,γp (X∧)}

for any cut-off function ω, supported by a collar neighbourhood in B. Moreover,
the subspace Hm,γp,0 (B) of Hm,γp (B) is defined as follows:

Hm,γp (B) = [ω]Hm,γp,0 (X∧) + [1− ω]Wm,p
0 (int B),

where Wm,p
0 (int B) denotes the closure of C∞0 (int B) in the Sobolev spaces Wm,p(X̃)

when X̃ is a closed compact C∞ manifold of dimension n that containing B as a
submanifold with boundary.

We then recall the cone Sobolev inequality and Poincaré inequality. For details
we refer to [2, 3].

Proposition 2.4 (Cone Sobolev Inequality). Assume that 1 ≤ p < n, 1
p∗ = 1

p −
1
n ,

and γ ∈ R. Let Rn+ := R+ × Rn−1, x1 ∈ R+ and x′ = (x2, . . . , ) ∈ Rn−1. Then the
estimate

‖u‖
Lγ
∗
p∗ (Rn+)

≤ c1‖u‖Lγp(Rn+) + (c1 + αc2)
n∑
i=2

||∂xiu‖Lγp(Rn+) + c2‖u‖Lγp(Rn+) (2.2)

holds for all u ∈ C∞0 (Rn+), where γ∗ = γ − 1, c1 = (n−1)p
n(n−p) , α = (n−1)p

n−p and

c2 =
|n− (γ−1)(n−1)p

n−p |
1
n

n . Moreover, if u ∈ H1,γ
p,0(Rn+), we have

‖u‖
Lγ
∗
p∗ (Rn+)

≤ c‖u‖H1,γ
p (Rn+), (2.3)

where the constant c = c1 + c2, and c1, α and c2 are given in (2.2).

Proposition 2.5 (Poincaré inequality). Let B = [0, 1)×X be a bounded subset in
Rn+, and 1 < p < +∞, γ ∈ R. If u(x1, x

′) ∈ H1,γ
p,0(B), then

‖u(x1, x
′)‖Lγp(B) ≤ c‖∇Bu(x1, x

′)‖Lγp(B), (2.4)

where ∇B = (x1∂x1 , ∂x2 , . . . , ∂xn), and the constant c depending only on B and p.

Proposition 2.6. For 2 < p < 2∗, the embedding H1,n/2
2,0 (B) ↪→ H0,np

p,0 (B) is com-
pact.

It is easy to see that there exist two constant c, c̃ such that the estimate

‖u‖
L
n
p
p (B)

= ‖u‖
H

0, n
p

p,0 (B)
≤ c‖u‖H1,n/2

2,0 (B)
≤ c̃‖∇Bu‖Ln/22 (B)
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holds, so we will use the standard form ‖u‖H1,n/2
2,0 (B)

= ‖∇Bu‖Ln/22 (B)
. Let

S(B) = inf
u∈H1,n/2

2,0 (B)

(‖∇Bu‖Ln/22 (B)

‖u‖
L
n/2∗
2∗ (B)

)2

.

We obtain the following results.

Proposition 2.7. For any B, we have S(B) = S(Rn+).

Proof. For any domain B, we extend a function u ∈ C∞0 (B) by 0 outside B. We
may regard H1,n/2

2,0 (B) as a subset of H1,n/2
2,0 (Rn+). Hence we have S(B) ≥ S(Rn+).

Conversely, if {um} ⊂ H1,n/2
2,0 (Rn+) is a minimizing sequence for S(Rn+). By density

of C∞0 (Rn+) in H1,n/2
2,0 (Rn+), we may assume that um ∈ C∞0 (Rn+). After translation

and scaling

um 7→ uRm,xm(x) = Rm
−n/2∗um(xm,1(

x1

xm,1
)1/Rm , x′m +

x′ − x′m
Rm

),

where Rm > 0, xm = (xm,1, . . . , xm,n) = (xm,1, x′m), we can achieve that vm =
uRm,xm(x) ∈ C∞0 (B). Then

‖∇Bvm‖Ln/22 (B)
= ‖∇Bum‖Ln/22 (B)

, ‖vm‖Ln/2∗2 (B)
= ‖um‖Ln/2∗2 (B)

.

Indeed, let y1 = xm,1( x1
xm,1

)1/Rm , y′ = x′m + x′−x′m
Rm

. Then we have

dy1

y1
=

1
Rm

dx1

x1
, dy′ =

1
Rn−1
m

dx′, x1∂x1 =
1
Rm

y1∂y1 .

It is easy to obtain

‖∇Bvm‖2Ln/22 (B)
=
∫

B
|∇Bvm|2

dx1

x1
dx′

=
∫

B
|(x1∂x1 , ∂x2 , . . . , ∂xn)vm|2

dx1

x1
dx′

=
∫

Rn+
|∇Bum|2

dy1

y1
dy′

= ‖∇Bum‖2Ln/22 (Rn+)
.

In an analogous manner, we can get ‖vm‖Ln/2∗2∗ (B)
= ‖um‖Ln/2∗2∗ (Rn+)

. Thus S(B) ≤
S(Rn+), and so we denote S := S(B) = S(Rn+). This completes the proof. �

Remark 2.8. It is easy to check that S is achieved by the function

U(x1, x
′) =

c

(1 + | lnx1|2 + |x′|2)(n−2)/2
.

For convenience, we denote the extremal function for S by

uε(x) =
ε(n−2)/2

(ε2 + | lnx1|2 + |x′|2)(n−2)/2

for ε > 0. Moreover, for each ε > 0,

vε(x) =
[n(n− 2)ε2](n−2)/4

(ε2 + | lnx1|2 + |x′|2)(n−2)/2
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is a positive solution of critical problem

−∆Bu = |u|2
∗−2u in Rn+

with ∫
Rn+
|∇Bvε|2

dx1

x1
dx′ =

∫
Rn+
|vε|2

∗ dx1

x1
dx′ = Sn/2.

For completeness, we also introduce the (PS)-sequence, (PS)c sequence, and
(PS) condition.

Definition 2.9. Let E be a Banach space, J ∈ C1(E,R) and c ∈ R. We say that a
sequence {un} ⊂ E is a (PS)c sequence if it satisfies J(un)→ c and ‖J ′(un)‖E′ →
0, where J ′(·) is the Fréchet differentiation of J and E′ is the dual space of E.
Moreover, if any (PS)c sequence has a subsequence {unj} which is convergent in
E, then we say that J satisfies (PS)c condition. If (PS)c condition holds for any
c ∈ R, we say that J satisfies (PS) condition.

3. Existence of a ground-state solution

Now, as in [8], we introduce the “Nehari” manifold associated with (1.1) and
give some properties. We call

Nλ = {u ∈ H1,n/2
2,0 (B) \ {0}; 〈J ′λ(u), u〉 = 0}

the “Nehari” manifold, which the name “Nehari” manifold is borrowed from [14].
It is obvious that u ∈ Nλ if and only if∫

B
|∇Bu|2

dx1

x1
dx′ −

∫
B
fλ|u|q

dx1

x1
dx′ −

∫
B
g|u|2

∗ dx1

x1
dx′ = 0.

Define

ϕλ(u) = 〈J ′λ(u), u〉 = ‖u‖2
H1,n/2

2,0 (B)
−
∫

B
fλ|u|q

dx1

x1
dx′ −

∫
B
g|u|2

∗ dx1

x1
dx′.

Thus for each u ∈ Nλ, we have

〈ϕ′λ(u), u〉 = 2‖u‖2
H1,n/2

2,0 (B)
− q

∫
B
fλ|u|q

dx1

x1
dx′ − 2∗

∫
B
g|u|2

∗ dx1

x1
dx′

= − 4
n− 2

‖u‖2
H1,n/2

2,0 (B)
− (q − 2∗)

∫
B
fλ|u|q

dx1

x1
dx′ (3.1)

= (2− q)‖u‖2
H1,n/2

2,0 (B)
− (2∗ − q)

∫
B
g|u|2

∗ dx1

x1
dx′. (3.2)

We split Nλ into three parts:

N+
λ = {u ∈ Nλ; 〈ϕ′λ(u), u〉 > 0},

N0
λ = {u ∈ Nλ; 〈ϕ′λ(u), u〉 = 0},

N−λ = {u ∈ Nλ; 〈ϕ′λ(u), u〉 < 0}.

Thus we have the following results.

Lemma 3.1. The energy functional Jλ is coercive and bounded below on Nλ.
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Proof. For u ∈ Nλ, by Young’s inequalities and Propositions 2.4 and 2.6, we have

Jλ(u) =
1
n
‖u‖2
H1,n/2

2,0 (B)
− (

1
q
− 1

2∗
)
∫

B
fλ|u|q

dx1

x1
dx′

≥ 1
n
‖u‖2
H1,n/2

2,0 (B)
− λ2∗ − q

q2∗
‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 ‖u‖q

H1,n/2
2,0 (B)

≥ 1
n
‖u‖2
H1,n/2

2,0 (B)
− 1
n
‖u‖2
H1,n/2

2,0 (B)
−Dλ

2
2−q

= −D0λ
2

2−q ,

(3.3)

where q∗ = 2∗

2∗−q andD0 is a positive constant depending on q,N, S and ‖f+‖
L
n
q∗
q∗ (B)

.

Thus Jλ is coercive and bounded below on Nλ. �

Lemma 3.2. Suppose that u0 is a local minimizer for Jλ on Nλ and u0 6∈ N0
λ.

Then J ′λ(u0) = 0 in H−1,−n2
2,0 (B). Furthermore, if u0 is a non-trivial function in B,

then u0 is a positive solution of (1.1).

Proof. If u0 is a local minimizer for Jλ on Nλ, then u0 is a solution of the opti-
mization problem

minimize Jλ(u) subject to {u ∈ H1,n/2
2,0 (B);ϕλ(u) = 0}.

Hence by the theory of Lagrange multipliers, there exists a θ ∈ R such that J ′λ(u0) =
θϕ′λ(u0) in H−1,−n2

2,0 (B). Thus 〈J ′λ(u0), u0〉 = θ〈ϕ′λ(u0), u0〉.
Moreover, since u0 6∈ N0

λ , we get 〈ϕ′λ(u0), u0〉 6= 0, and so θ = 0. Now if u0 is a
non-trivial function in B, we can apply the so-called cone maximum principles due
to [7] in order to get u0 is positive in B. This completes the proof. �

Lemma 3.3. For each λ > 0, we have the following:
(1) for any u ∈ N+

λ , we have
∫

B fλ|u|
q dx1
x1
dx′ > 0;

(2) for any u ∈ N0
λ, we have

∫
B fλ|u|

q dx1
x1
dx′ > 0 and

∫
B g|u|

2∗ dx1
x1
dx′ > 0;

(3) for any u ∈ N−λ , we have
∫

B g|u|
2∗ dx1

x1
dx′ > 0.

We omit the proof of Lemma 3.3 since it is easy to obtain this result from (3.1)
and (3.2).

Lemma 3.4. There exists Λ1 > 0 such that N0
λ = ∅ for λ ∈ (0,Λ1).

Proof. Suppose that N0
λ 6= ∅ for all λ > 0. If u ∈ N0

λ, then from (3.1), (3.2),
Proposition 2.6 and condition (H3), we obtain

‖u‖2
H1,n/2

2,0 (B)
≤ λ n− 2

4(2∗ − q)
‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 ‖u‖q

H1,n/2
2,0 (B)

,

‖u‖2
H1,n/2

2,0 (B)
≤ 2∗ − q

2− q
‖g‖L∞S−

2∗
2 ‖u‖2

∗

H1,n/2
2,0 (B)

.

Therefore,
c1 ≤ ‖u‖H1,n/2

2,0 (B)
≤ λ

1
1−q c2,

where c1, c2 > 0 and are independent of the choice of u and λ. For λ sufficient
small, this is a contradiction. Hence, there exists Λ1 > 0 such that for λ ∈ (0,Λ1),
we have N0

λ = ∅. �
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Now we can write Nλ = N+
λ

⋃
N−λ and define αλ = infu∈Nλ Jλ(u), α+

λ =
infu∈N+

λ
Jλ(u) and α−λ = infu∈N−λ Jλ(u).

Lemma 3.5. We have the following:
(1) α+

λ < 0 for all λ ∈ (0,Λ1).
(2) there exists Λ2 ∈ (0,Λ1) such that α−λ > d0 for some d0 > 0 and λ ∈ (0,Λ2).

In particular, α+
λ = infu∈Nλ Jλ(u) for all λ ∈ (0,Λ2).

Proof. (1) Let u ∈ N+
λ , then

2− q
2∗ − q

‖u‖2
H1,n/2

2,0 (B)
>

∫
B
g|u|2

∗ dx1

x1
dx′

and

Jλ(u) = (
1
2
− 1
q

)‖u‖2
H

1, N2
2,0 (B)

+ (
1
q
− 1

2∗
)
∫

B
g|u|2

∗ dx1

x1
dx′

< (
1
2
− 1
q

)‖u‖2
H1,n/2

2,0 (B)
+

2− q
2∗q
‖u‖2
H1,n/2

2,0 (B)

= −2− q
nq
‖u‖2
H1,n/2

2,0 (B)
< 0.

Thus αλ ≤ α+
λ < 0 for all λ ∈ (0,Λ1).

(2) Let u ∈ N−λ , then

‖u‖2
H1,n/2

2,0 (B)
≤ 2∗ − q

2− q

∫
B
g|u|2

∗ dx1

x1
dx′ ≤ 2∗ − q

2− q
S−

2∗
2 ‖g‖L∞(B)‖u‖2

∗

H1,n/2
2,0 (B)

.

This implies

‖u‖H1,n/2
2,0 (B)

>
( 2− q

2∗ − q
S

2∗
2

‖g‖L∞(B)

) 1
2∗−2

(3.4)

for any u ∈ N−λ . From (3.3), we obtain that

Jλ(u) ≥ ‖u‖q
H1,n/2

2,0 (B)

[ 1
n
‖u‖2−q
H1,n/2

2,0 (B)
− λ2∗ − q

2∗q
‖f+‖

L
n
q∗
q∗ (B)

S−
q
2

]
. (3.5)

Hence by (3.4) and (3.5), we obtain assertion (2). �

For each u ∈ H1,n/2
2,0 (B) \ {0} with

∫
B g|u|

2∗ dx1
x1
dx′ > 0, we write

tmax =
( (2− q)‖u‖2

H1,n/2
2,0 (B)

(2∗ − q)
∫

B g|u|2
∗ dx1
x1
dx′

)n−2
4
> 0.

Then we have the following Lemma.

Lemma 3.6. For each u ∈ H1,n/2
2,0 (B) \ {0}, there exists Λ3 ∈ (0,Λ2) such that we

have the following results:
(1) if

∫
B fλ|u|

q dx1
x1
dx′ ≤ 0, then there is a unique t− = t−(u) > tmax such that

t−u ∈ N−λ and Jλ(tu) is increasing on (0, t−) and decreasing on (t−,∞).
Moreover, Jλ(t−u) = supt≥0 Jλ(tu).

(2) if
∫

B fλ|u|
q dx1
x1
dx′ > 0, then there is a unique 0 < t+ = t+(u) < tmax <

t− such that t−u ∈ N−λ , t
+u ∈ N+

λ , Jλ(tu) is decreasing on (0, t+), in-
creasing on (t+, t−) and decreasing on (t−,∞). Moreover, Jλ(t+u) =
inf0≤t≤tmax Jλ(tu); Jλ(t−u) = supt≥t+ Jλ(tu).
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Proof. Fix u ∈ H1,n/2
2,0 (B) \ {0}. Let

s(t) = t2−q‖u‖2
H1,n/2

2,0 (B)
− t2

∗−q
∫

B
g|u|2

∗ dx1

x1
dx′ for t ≥ 0.

We have s(0) = 0, and s(t) → −∞ as t → ∞. The function s(t) achieves its
maximum at tmax, increasing in [0, tmax) and decreasing in (tmax,∞). Moreover,
we get

s(tmax) =
( (2− q)‖u‖2

H1,n/2
2,0 (B)

(2∗ − q)
∫

B g|u|2
∗ dx1
x1
dx′

) 2−q
2∗−2 ‖u‖2

H1,n/2
2,0 (B)

−
( (2− q)‖u‖2

H1,n/2
2,0 (B)

(2∗ − q)
∫

B g|u|2
∗ dx1
x1
dx′

) 2∗−q
2∗−2

∫
B
g|u|2

∗ dx1

x1
dx′

= ‖u‖q
H1,n/2

2,0 (B)

[( 2− q
2∗ − q

) 2−q
2∗−2 −

( 2− q
2∗ − q

) 2∗−q
2∗−2

]( ‖u‖2∗H1,n/2
2,0 (B)∫

B g|u|2
∗ dx1
x1
dx′

) 2−q
2∗−2

≥ ‖u‖q
H1,n/2

2,0 (B)
(
2∗ − 2
2∗ − q

)(
2− q
2∗ − q

)
2−q
2∗−2D(S, g),

(3.6)
where D(S, g) > 0 is a constant depends on S and g. We consider two cases now.

(1)
∫

B fλ|u|
q dx1
x1
dx′ ≤ 0. There is a unique t− > tmax such that s(t−) =∫

B fλ|u|
q dx1
x1
dx′ and s′(t−) < 0, which implies t−u ∈ N−λ . Because of t > tmax,

we have

(2− q)‖tu‖2
H1,n/2

2,0 (B)
− (2∗ − q)

∫
B
g|tu|2

∗ dx1

x1
dx′ < 0

and
d

dt
Jλ(tu)

∣∣
t=t−

=
{
t‖u‖2

H1,n/2
2,0 (B)

− tq−1

∫
B
fλ|u|q

dx1

x1
dx′ − t2

∗−1

∫
B
g|u|2

∗ dx1

x1
dx′
}∣∣∣
t=t−

= 0.

Thus Jλ(tu) is increasing on (0, t−) and decreasing on (t−,∞). Moreover, Jλ(t−u) =
supt≥0 Jλ(tu).

(2)
∫

B fλ|u|
q dx1
x1
dx′ > 0. By (3.6), we know that there exists Λ3 > 0 such that

s(0) = 0 < λ

∫
B
f+|u|q

dx1

x1
dx′ ≤ λ‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 ‖u‖q

H1,n/2
2,0 (B)

≤ ‖u‖q
H1,n/2

2,0 (B)
(
2∗ − 2
2∗ − q

)(
2− q
2∗ − q

)
2−q
2∗−2D(S, g) ≤ s(tmax)

for λ ∈ (0,Λ3). It follows that there are a unique t+ and a unique t− such that for
0 < t+ < tmax < t−,

s(t+) =
∫

B
fλ|u|q

dx1

x1
dx′ = s(t−)

and s′(t+) > 0 > s′(t−).
As in case (1), we have t+u ∈ N+

λ , t−u ∈ N−λ , and Jλ(t−u) ≥ Jλ(tu) ≥ Jλ(t+u)
for each t ∈ [t+, t−]. Furthermore, we can get Jλ(t+u) ≤ Jλ(tu) for each t ∈
[0, t+]. In other words, Jλ(tu) is decreasing on (0, t+), increasing on (t+, t−) and
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decreasing on (t−,∞) again. Moreover, Jλ(t+u) = inf0≤t≤tmax Jλ(tu), Jλ(t−u) =
supt≥t+ Jλ(tu). This completes the proof. �

For c > 0, we define

Jc0(u) =
1
2
‖u‖2
H1,n/2

2,0 (B)
− c

2∗

∫
B
g|u|2

∗ dx1

x1
dx′,

N c
0 = {u ∈ H1,n/2

2,0 (B) \ {0}; 〈(Jc0)′(u), u〉 = 0}.

Lemma 3.7. Let q∗ = 2∗

2∗−q . Then for each u ∈ N−λ , we have the following:

(1) there is a unique tc(u) > 0 such that tc(u)u ∈ N c
0 and

sup
t≥0

Jc0(tu) = Jc0(tc(u)u) =
1
n

( ‖u‖2∗
H1,n/2

2,0 (B)

c
∫

B g|u|2
∗ dx1
x1
dx′

)(n−2)/2

.

(2) Jλ(u) ≥ (1− λ)n/2J1
0 (tuu)− λ(2−q)

2q (‖f+‖
L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q .

Proof. (1) For each u ∈ N−λ , let

f(t) = Jc0(tu) =
1
2
t2‖u‖2

H1,n/2
2,0 (B)

− 1
2∗
t2
∗
c

∫
B
g|u|2

∗ dx1

x1
dx′.

Then by Lemma 3.3, we have
• f(t)→ −∞ as t→∞,
• f ′(t) = t‖u‖2

H1,n/2
2,0 (B)

− t2∗−1c
∫

B g|u|
2∗ dx1

x1
dx′,

• f ′′(t) = ‖u‖2
H1,n/2

2,0 (B)
− (2∗ − 1)t2

∗−2c
∫

B g|u|
2∗ dx1

x1
dx′.

Let

tc(u) :=
( ‖u‖2

H1,n/2
2,0 (B)

c
∫

B g|u|2
∗ dx1
x1
dx′

) 1
2∗−2

> 0.

Then f ′(tc(u)) = 0, tc(u)u ∈ N c
0 and

f ′′(tc(u)) = ‖u‖2
H1,n/2

2,0 (B)
− (2∗ − 1)‖u‖2

H1,n/2
2,0 (B)

= (2− 2∗)‖u‖2
H1,n/2

2,0 (B)
< 0.

Thus there is a unique tc(u) > 0 such that tc(u)u ∈ N c
0 and

max
t≥0

Jc0(tu) = Jc0(tc(u)u) =
1
n

( ‖u‖2∗
H1,n/2

2,0 (B)

c
∫

B g|u|2
∗ dx1
x1
dx′

)(n−2)/2

.

(2) For each u ∈ N−λ , let c = 1
1−λ . Then from the previous argument, we know

that there exist tc = tc(u) > 0 and tu > 0 such that tcu ∈ N c
0 and tuu ∈ N1

0 . By
Propositions 2.4 and 2.6, Hölder inequality, and Young’s inequality, we obtain∫

B
f+|tcu|q

dx1

x1
dx′ ≤ ‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 ‖tcu‖q

H1,n/2
2,0 (B)

≤ 2− q
2

(‖f+‖
L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q +

q

2
‖tcu‖2

H1,n/2
2,0 (B)

.
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Then from this inequality and Part (1), we obtain

sup
t≥0

Jλ(tu)

≥ Jλ(tcu)

≥ 1− λ
2
‖tcu‖2

H1,n/2
2,0 (B)

− 1
2∗

∫
B
g|tcu|2

∗ dx1

x1
dx′ − λ(2− q)

2q
(‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q

= (1− λ)J
1

1−λ
0 (tcu)− λ(2− q)

2q
(‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q

= (1− λ)n/2
1
n

( ‖u‖2∗H1,n/2
2,0 (B)∫

B g|u|2
∗ dx1
x1
dx′

)(n−2)/2

− λ(2− q)
2q

(‖f+‖
L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q

≥ (1− λ)n/2J1
0 (tuu)− λ(2− q)

2q
(‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q .

Since supt≥0 Jλ(tu) = Jλ(u), we have

Jλ(u) ≥ (1− λ)
2∗

2∗−2 J1
0 (tuu)− λ(2− q)

2q
(‖f+‖

L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q .

This completes the proof. �

Next, we establish the existence of a local minimum for Jλ on N+
λ .

Theorem 3.8. For each λ < Λ3, the functional Jλ has a minimizer u+
λ in N+

λ

which satisfies
(1) u+

λ is a positive solution of (1.1);
(2) Jλ(u+

λ )→ 0 as λ→ 0;
(3) Jλ(u+

λ ) = α+
λ = infu∈N+

λ
Jλ(u).

Proof. As in [8, Lemma 4.7], we can obtain a (PS)αλ -sequence for Jλ defined{uk} ⊂
Nλ, then by Proposition 2.6 and (3.3), there exists a subsequence still denoted by
{uk}, and a solution u+

λ ∈ H
1,n/2
2,0 (B) of the equation (1.1) such that uk ⇀ u+

λ

weakly in H1,n/2
2,0 (B) and uk → u+

λ strongly in L
n
q
q (B) as k →∞.

First, we claim that
∫

B fλ|u
+
λ |q

dx1
x1
dx′ 6= 0. If not, by Proposition 2.6, we can

conclude that∫
B
fλ|u+

λ |
q dx1

x1
dx′ = 0,

∫
B
fλ|uk|q

dx1

x1
dx′ → 0 as k →∞.

Thus ∫
B
|∇Buk|2

dx1

x1
dx′ =

∫
B
g|uk|2

∗ dx1

x1
dx′ + o(1),

and
1
n

∫
B
|∇Buk|2

dx1

x1
dx′ =

1
2

∫
B
|∇Buk|2

dx1

x1
dx′ − 1

q

∫
B
fλ|uk|q

dx1

x1
dx′

− 1
2∗

∫
B
g|uk|2

∗ dx1

x1
dx′ + o(1)

= αλ + o(1).
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This contradicts to αλ < 0 by Lemma 3.5. Thus
∫

B fλ|u
+
λ |q

dx1
x1
dx′ 6= 0. In particular

u+
λ is a nontrivial solution of (1.1). We now prove uk → u+

λ strongly in H1,n/2
2,0 (B)

as k →∞. Supposing the contrary, then

‖u+
λ ‖H1,n/2

2,0 (B)
< lim
k→∞

inf ‖uk‖H1,n/2
2,0 (B)

.

Thus

‖u+
λ ‖

2

H1,n/2
2,0 (B)

−
∫

B
g|u+

λ |
p+1 dx1

x1
dx′ −

∫
B
fλ|u+

λ |
q dx1

x1
dx′

< lim
k→∞

inf
(
‖uk‖2

H
1, N2
2,0 (B)

−
∫

B
g|uk|2

∗ dx1

x1
dx′ −

∫
B
fλ|uk|q

dx1

x1
dx′
)

= 0.

This contradicts to the fact that u+
λ ∈ Nλ. Hence uk → u+

λ strongly in H1,n/2
2,0 (B)

as k → ∞ and Jλ(u+
λ ) = αλ. It follows that u+

λ ∈ N+
λ and Jλ(u+

λ ) = α+
λ = αλ

from Lemma 3.6. Since Jλ(u+
λ ) = Jλ(|u+

λ |) and |u+
λ | ∈ N

+
λ , by Lemma 3.2, we may

assume that u+
λ is a nonnegative (nontrivial) solution of (1.1). Then we can apply

the the so-called cone maximum principles due to [7] in order to get u+
λ is positive

in B. Moreover, by Lemma 3.1 and Lemma 3.5, we obtain

0 > Jλ(u+
λ ) ≥ −D0λ

2
2−q .

Thus Jλ(u+
λ )→ 0 as λ→ 0. �

4. Existence of multiple solutions

In this section, we use the idea of category to get multiple positive solutions
of (1.1) in H1,n/2

2,0 (B) and give the proof of Theorem 1.2. Initially, we give the
definition of category.

Definition 4.1. Let M be a topological space and consider a closed subset A ⊂M .
We say that A has category k relative to M(catM (A) = k), if A is covered by k
closed sets Aj , 1 ≤ j ≤ k, which are contractible in M , and if k is minimal with
this property. If no such finite covering exists, we let catM (A) =∞.

For the properties of catM (A) we refer to [16]. Next we need two Propositions
related to the category.

Proposition 4.2. Let H be a C1,1 complete Riemannian manifold (modelled on a
Hilbert space) and assume h ∈ C1(H,R) bounded from below. Let −∞ < infH h <
a < b < +∞. Suppose that h satisfies Palais-Smale condition on the sublevel
{u ∈ H;h(u) ≤ b} and that a is not a critical level for h. Then

]{u ∈ ha;∇h(u) = 0} ≥ catha(ha),

where ha ≡ {u ∈ H;h(u) ≤ a}.

For a proof of the above proposition, see [5, Theorem 2.1].

Proposition 4.3. Let Q,Ω+ and Ω− be closed sets with Ω− ⊂ Ω+; Let β : Q→ Ω+,
ψ : Ω− → Q be two continuous maps such that β ◦ ψ is homotopically equivalent to
the embedding j : Ω− → Ω+. Then catQ(Q) ≥ catΩ+(Ω−).
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For a proof of the above proposition, see [5, Lemma 2.2]. The proof of Theorem
1.2 is based on Proposition 4.2 and 4.3. Now we first define a cut-off function. Let
η ∈ C∞0 (Rn+) such that 0 ≤ η ≤ 1, |∇Bη| ≤ c and

η(x) =

{
1, (| lnx1|2 + |x′|2)1/2 ≤ r0

2 ,

0, (| lnx1|2 + |x′|2)1/2 ≥ r0.

Define
wε,z = η(

x1

z1
, x′ − z′)vε(

x1

z1
, x′ − z′).

Theorem 4.4. For any z ∈M , we have ‖wε,z‖2H1,n/2
2,0 (B)

= Sn/2 +O(εn−2).

Proof. First we have

‖wε,z‖2H1,n/2
2,0 (B)

=
∫

B
|∇Bwε,z|2

dx1

x1
dx′

=
∫

B
|∇B(η(

x1

z1
, x′ − z′)vε(

x1

z1
, x′ − z′))|2 dx1

x1
dx′

=
∫

Ωr0 (z1,z′)

|∇B(η(
x1

z1
, x′ − z′)vε(

x1

z1
, x′ − z′))|2 dx1

x1
dx′

=
∫

Ωr0 (1,0)

|∇Bη(x1, x
′) · vε(x1, x

′) + η(x1, x
′) · ∇Bvε(x1, x

′)|2 dx1

x1
dx′

=
∫

Ωr0 (1,0)

|∇Bη|2v2
ε + η2|∇Bvε|2 + 2ηvε∇Bη · ∇Bvε

dx1

x1
dx′,

where (1, 0) ∈ R+ × Rn−1. Then from the definition of vε we obtain∫
Ωr0 (1,0)

|∇Bη|2v2
ε

dx1

x1
dx′ ≤ c

∫
Ωr0 (1,0)\Ω r0

2
(1,0)

[n(n− 2)ε2](n−2)/2

[ε2 + | lnx1|2 + |x′|2]n−2

dx1

x1
dx′

=
∫
Br0\B r0

2

[n(n− 2)ε2](n−2)/2

[ε2 + |z1|2 + |z′|2]n−2
dz1dz

′

≤ c
∫ r0

r0
2

rn−1 [n(n− 2)ε2](n−2)/2

[ε2 + r2]n−2
dr

≤ c
∫ r0

r0
2

rn−1−2n+4εn−2dr = O(εn−2),

and ∣∣∣ ∫
Ωr0 (1,0)

2ηvε∇Bη · ∇Bvε
dx1

x1
dx′
∣∣∣

≤ c
∫

Ωr0 (1,0)\Ω r0
2

(1,0)

η|vε‖∇Bvε|
dx1

x1
dx′

≤ c
∫

Ωr0 (1,0)\Ω r0
2

(1,0)

η
[n(n− 2)ε2]

n−2
4

[ε2 + |x|2B](n−2)/2
[n(n− 2)ε2]

n−2
4
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× (
n− 2

2
)

2|x|B
[ε2 + |x|2B]n/2

dx1

x1
dx′

≤ c
∫

Ωr0 (1,0)\Ω r0
2

(1,0)

η
|x|Bεn−2

|x|2n−2
B

dx1

x1
dx′

≤ c
∫
Br0\B r0

2

1
|x|2n−3

εn−2dx = O(εn−2).

Moreover, since
∫

Rn+
|∇Bvε|2 dx1

x1
dx′ = Sn/2 (see Remark 2.8) and∣∣∣ ∫

Ωr0 (1,0)

η2|∇Bvε|2
dx1

x1
dx′ −

∫
Rn+
|∇Bvε|2

dx1

x1
dx′
∣∣∣

=
∫

Rn+\Ω r0
2

(1,0)

(1− η2)|∇Bvε|2
dx1

x1
dx′

≤ c
∫

Rn+\Ω r0
2

(1,0)

(1− η2)[n(n− 2)ε2](n−2)/2 |x|2B
[ε2 + |x|2B]n

dx1

x1
dx′

≤ c
∫

Rn\B r0
2

[n(n− 2)ε2](n−2)/2 |x|2

[ε2 + |x|2]n
dx1dx

′

≤ cεn−2

∫ +∞

r0
2

rn+1

r2n
dr = O(εn−2),

we obtain ‖wε,z‖2H1,n/2
2,0 (B)

= Sn/2 +O(εn−2). �

Theorem 4.5. We have infu∈N1
0
J1

0 (u) = infu∈N0 J0(u) = infu∈N∞ J∞(u)
= 1

nS
n/2, where J∞(u) = 1

2‖u‖
2

H1,n/2
2,0 (B)

− 1
2∗

∫
B |u|

2∗ dx1
x1
dx′ and N∞ = {u ∈

H1,n/2
2,0 (B) \ {0}; 〈(J∞)′(u), u〉 = 0}. Furthermore, (1.1) with λ = 0 does not admit

any solution u0 such that J0(u0) = 1
nS

n/2.

Proof. Define g : Rn+ → R by

g(x) =

{
g(x), x ∈ B,
0, elsewhere.

as an extension of g. Then from Lemma 3.6 we know that there is a unique
t0(wε,z) > 0 such that t0(wε,z)wε,z ∈ N0(Nλ for λ = 0) for all ε > 0. By the
definition of wε,z and Remark 1.1, we have

‖t0(wε,z)wε,z‖2H1,n/2
2,0 (B)

=
∫

B
g|t0(wε,z)wε,z|2

∗ dx1

x1
dx′,

and so

[t0(wε,z)]
4

n−2 =

∫
B g|wε,z|

2∗ dx1
x1
dx′

‖wε,z‖2H1,n/2
2,0 (B)

.

With the definition of vε, we get∫
B
g|wε,z|2

∗ dx1

x1
dx′ =

∫
Ωr0(z)

g(x)
∣∣∣∣η(

x1

z1
, x′ − z′)vε(

x1

z1
, x′ − z′)

∣∣∣∣2∗ dx1

x1
dx′
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=
∫

Rn+

[n(n− 2)ε2]n/2g(x1z1, x
′ + z′)η2∗(x)

(ε2 + | lnx1|2 + |x′|2)n
dx1

x1
dx′.

Thus by condition (H2) and Remark 1.1, we obtain

0 ≤ 1
[n(n− 2)ε2]n/2

[ ∫
Rn+
|vε|2

∗ dx1

x1
dx′ −

∫
B
g|wε,z|2

∗ dx1

x1
dx′
]

=
∫

Rn+\Ω r0
2

(1,0)

[1− g(x1z1, x
′ + z′)η2∗(x)]

(ε2 + | lnx1|2 + |x′|2)n
dx1

x1
dx′

+
∫

Ω r0
2

(1,0)

[1− g(x1z1, x
′ + z′)η2∗(x)]

(ε2 + | lnx1|2 + |x′|2)n
dx1

x1
dx′

≤
∫

Rn+\Ω r0
2

(1,0)

1
|x|2nB

dx1

x1
dx′ + c0

∫
Ω r0

2
(1,0)

|x|ρB
(ε2 + |x|2B)n

dx1

x1
dx′

=
∫

Rn\B r0
2

1
|x|2n

dx1dx
′ + c0

∫
B r0

2

|x|ρ

(ε2 + |x|2)n
dx1dx

′

≤ nωn
∫ +∞

r0
2

r−(n+1)dr +
c0nωn
ε2

∫ r0
2

0

rρ−n+1dr

= ωn(
r0

2
)−n +

c0nωn
ε2(ρ− (n− 2))

(
r0

2
)ρ−(n−2)

≤ c1 +
c2
ε2

(4.1)

for all z ∈M , where ωn is the volume of the unit ball B1 ⊂ Rn. Then

lim
ε→0

∫
B
g|wε,z|2

∗ dx1

x1
dx′ = Sn/2 uniformly in z ∈M. (4.2)

Thus from Theorem 4.4 and (4.2), we obtain

lim
ε→0

t0(wε,z) = 1, lim
ε→0
‖t0(wε,z)wε,z‖2H1,n/2

2,0 (B)
= Sn/2

uniformly in z ∈M . Then we obtain

inf
u∈N0

J0(u) ≤ J0(t0(wε,z)wε,z)→
1
n
Sn/2, as ε→ 0,

and so infu∈N0 J0(u) ≤ infu∈N∞ J∞(u) = 1
nS

n/2. Let u ∈ N0. Then by Lemma
3.6(1), we have J0(u) = supt≥0 J0(tu).

Moreover, there is a unique tu > 0 such that tuu ∈ N∞, and then

J0(u) ≥ J0(tuu) ≥ J∞(tuu) ≥ 1
n
Sn/2.

This implies infu∈N0 J0(u) ≥ 1
nS

n/2. Therefore,

inf
u∈N0

J0(u) = inf
u∈N∞

J∞(u) =
1
n
Sn/2.

Similarly, we have infu∈N1
0
J1

0 (u) = 1
nS

n/2.
Next we will show that (1.1) with λ = 0 does not admit any solution u0 such

that J0(u0) = infu∈N0 J0(u). We argue by contradiction. Suppose that there exists
u0 ∈ N0 such that J0(u0) = infu∈N0 J0(u). Since J0(u0) = J0(|u0|) and |u0| ∈ N0,
by Lemma 3.2, we may assume that u0 is a positive solution of (1.1) with λ = 0.
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Moreover, by Lemma 3.6 (1), we obtain J0(u0) = supt≥0 J0(tu0). Thus there is a
unique tu0 > 0 such that tu0u0 ∈ N∞ and so

1
n
Sn/2 = inf

u∈N0
J0(u) = J0(u0) ≥ J0(tu0u0),

≥ J∞(tu0u0) +
tu0

2∗

2∗

∫
B
(1− g)|u0|2

∗ dx1

x1
dx′

≥ 1
n
Sn/2 +

tu0
2∗

2∗

∫
B
(1− g)|u0|2

∗ dx1

x1
dx′.

This implies
∫

B(1 − g)|u0|2
∗ dx1
x1
dx′ = 0. But this is a contradiction since u0 is

positive. We obtain the assertion. �

Theorem 4.6. Suppose that {uk} is a minimizing sequence for J1
0 (·) to N1

0 , then
we have ∫

B
(1− g)|uk|2

∗ dx1

x1
dx′ = o(1).

Furthermore, {uk} is a (PS) 1
nS

n/2-sequence for J∞(·) in H1,n/2
2,0 (B).

Proof. For each k, there is a unique tk > 0 such that tkuk ∈ N∞; that is,

t2k

∫
B
|∇Buk|2

dx1

x1
dx′ = t2

∗

k

∫
B
|uk|2

∗ dx1

x1
dx′.

Then by Lemma 3.7,

J1
0 (uk) ≥ J1

0 (tkuk) = J∞(tkuk) +
t2
∗

k

2∗

∫
B
(1− g)|uk|2

∗ dx1

x1
dx′ (4.3)

≥ 1
n
Sn/2 +

t2
∗

k

2∗

∫
B
(1− g)|uk|2

∗ dx1

x1
dx′. (4.4)

From Theorem 4.5, we have J1
0 (uk) = 1

nS
n/2 + o(1) and

t2
∗

k

2∗

∫
B
(1− g)|uk|2

∗ dx1

x1
dx′ = o(1).

We will show that there exists c0 > 0 such that tk > c0 for all n. We argue
by contradiction. Then we may assume tk → 0 as k → ∞. Since J1

0 (uk) =
1
nS

n/2 + o(1) and J∞(tkuk) = 1
n t

2
k‖uk‖2H1,n/2

2,0 (B)
+ o(1), by (3.3), ‖uk‖H1,n/2

2,0 (B)
is

uniformly bounded and so ‖tkuk‖H1,n/2
2,0 (B)

→ 0 or J∞(tkuk)→ 0. This contradicts

to the fact J∞(tkuk) ≥ 1
nS

n/2 > 0. Thus
∫

B(1 − g)|uk|2
∗ dx1
x1
dx′ = o(1). In an

analogous manner as in [8, Lemma 4.7], we have {uk} is a (PS) 1
nS

n/2-sequence for

J∞ in H1,n/2
2,0 (B). This completes the proof. �

For the positive number d, we consider the filtration of the “Nehari” manifold
N1

0 as follows:

N1
0 (d) = {u ∈ N1

0 ; J1
0 (u) ≤ 1

n
Sn/2 + d}.

Let Φ : H1,n/2
2,0 (B) → Rn+ be the barycenter map defined by Φ(u) =

R
B x|u|

2∗ dx1
x1

dx′R
B |u|2

∗ dx1
x1

dx′
,

then we have the following result.
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Theorem 4.7. For each positive number δ < r0, there exists dδ > 0 such that
Φ(u) ∈Mδ for all u ∈ N1

0 (dδ).

Proof. Suppose the contrary. Then there exists a sequence {uk} ∈ N1
0 and δ0 < r0

such that J1
0 (uk) = 1

nS
n/2 + o(1) and Φ(uk) 6∈ Mδ0 for all k. By Theorem 4.6, we

know {uk} is a (PS) 1
nS

n/2-sequence for J∞ in H1,n/2
2,0 (B). It follows from (3.3) that

there exists a subsequence (still denoted by {uk}) and u0 ∈ H1,n/2
2,0 (B) such that

uk ⇀ u0 in H1,n/2
2,0 (B). By the so-called cone concentration compactness principle

(see [4, Proposition 2.8], there exist two sequences {xk} ⊂ B, {Rk} ⊂ R+, x0 ∈ B
and a positive solution v0 ∈ H1,n/2

2,0 (Rn+) of critical problem −∆Bu = |u|2∗−2u in
Rn+ with J∞(v0) = 1

nS
n/2 such that xk → x0 and Rk → ∞ as k → ∞, and

‖uk(x)−R(n−2)/2
k v0(( x1

xk,1
)Rk , x′k +Rk(x′ − x′k))‖H1,n/2

2,0
→ 0 as k →∞. Then

Φ(uk) =

∫
B x|uk|

2∗ dx1
x1
dx′∫

B |uk|2
∗ dx1
x1
dx′

=

∫
B x
∣∣R(n−2)/2

k v0(( x1
xk,1

)Rk , x′k +Rk(x′ − x′k))
∣∣2∗ dx1

x1
dx′ + o(1)∫

B
∣∣R(n−2)/2

k v0(( x1
xk,1

)Rk , x′k +Rk(x′ − x′k))
∣∣2∗ dx1

x1
dx′ + o(1)

,

=

∫
Rn+

(xk,1x
1
Rk
1 ,

x′−x′k
Rk

+ x′k)|v0(x)|2∗ dx1
x1
dx′∫

Rn+
|v0(x)|2∗ dx1

x1
dx′

+ o(1)

= x0 + o(1).

Now we will show that x0 ∈Mδ0 . Since∫
B
g|uk|2

∗ dx1

x1
dx′

=
∫

B
g(x)|R(n−2)/2

k v0((
x1

xk,1
)Rk , x′k +Rk(x′ − x′k))|2

∗ dx1

x1
dx′ + o(1)

=
∫

Rn+
g(xk,1x1

1
Rk ,

x′ − x′k
Rk

+ x′k)|v0(x)|2
∗ dx1

x1
dx′ + o(1)

= g(x0)Sn/2 + o(1),

we have g(x0) = maxx∈B g(x) = 1, and so x0 ∈ M . This is a contradiction. We
obtain the assertion. �

Now, we consider the filtration of the manifold N−λ as follows. Let

Nλ(c) = {u ∈ N−λ ; Jλ(u) < c}
and denote

wε,z = [n(n− 2)ε2]−
n−2

4 wε,z.

Then we have the following results.

Theorem 4.8. Let Λ3 > 0 be as in Lemma 3.6 and ε = λ
2

(2−q)(n−2) . Then there
exists 0 < Λ∗ ≤ Λ3 such that for λ < Λ∗, we have

sup
t≥0

Jλ(twε,z) < cλ =
1
n
Sn/2 − λ

2
(2−q)D0 (4.5)
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uniformly in z ∈ M , where D0 is a positive constant defined in Lemma 3.1. Fur-
thermore, there exists t−z > 0 such that t−z wε,z ∈ Nλ(cλ) and Φ(t−z wε,z) ∈ Mδ for
all z ∈M .

Proof. By (4.1) and
∫

Rn+
|vε|2

∗ dx1
x1
dx′ = Sn/2 > 0 for all ε > 0, we have

0 ≤ 1− S−n/2
∫

B
g|wε,z|2

∗ dx1

x1
dx′ ≤ (c1 +

c2
ε2

)S−n/2[n(n− 2)ε2]n/2

for all z ∈M ; i.e.,

1− (c1 +
c2
ε2

)S−n/2[n(n− 2)ε2]n/2 ≤ S−n/2
∫

B
g|wε,z|2

∗ dx1

x1
dx′ ≤ 1

for all z ∈ M . Since ε = λ
2

(2−q)(n−2) and n ≥ 3, there exists a positive number Λ4

such that
0 < 1− (c1 +

c2
ε2

)S−n/2[n(n− 2)ε2]n/2 < 1

for all λ ∈ (0,Λ4). Then we can deduce that

1− (c1 +
c2
ε2

)S−n/2[n(n− 2)ε2]n/2 < (1− (c1 +
c2
ε2

)S−n/2[n(n− 2)ε2]n/2)2/2∗

≤ (S−n/2
∫

B
g|wε,z|2

∗ dx1

x1
dx′)2/2∗ ≤ 1

for all z ∈M , which implies that(∫
B
g|wε,z|2

∗ dx1

x1
dx′
)2/2∗

= S(n−2)/2 +O(εn−2) (4.6)

for all z ∈M . Thus from Theorem 4.4 and (4.6) we obtain

Ψ(wε,z) =
‖wε,z‖2H1,n/2

2,0 (B)( ∫
B g|wε,z|2

∗ dx1
x1
dx′
)2/2∗

=
‖wε,z‖2H1,n/2

2,0 (B)(∫
B g|wε,z|2

∗ dx1
x1
dx′
)2/2∗

=
Sn/2 +O(εn−2)

S(n−2)/2 +O(εn−2)
for all z ∈M . Hence

Ψ(wε,z)− S =
Sn/2 + o(εn−2)

S(n−2)/2 + o(εn−2)
− S = O(εn−2)

for all z ∈M . Using the fact maxt≥0( t
2

2 a−
t2
∗

2∗ b) = 1
n ( a

b2/2∗
)n/2 for all a, b > 0, we

can deduce that
sup
t≥0

J1
0 (twε,z) =

1
n

(Ψ(wε,z))n/2.

Then we get supt≥0 J
1
0 (twε,z) = 1

nS
n/2 +O(εn−2) for all z ∈M .

Now, we will show that (4.5) holds. Let Λ5 ≤ min{Λ3,Λ4} be a positive number
such that 1

nS
n/2 − λ

2
2−qD0 > 0 for all λ ∈ (0,Λ5). Since

Jλ(twε,z) =
t2

2
‖wε,z‖2H1,n/2

2,0 (B)
− tq

q

∫
B
fλ|wε,z|q

dx1

x1
dx′ − t2

∗

2∗

∫
B
g|wε,z|2

∗ dx1

x1
dx′
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and
∫

B fλ|wε,z|
q dx1
x1
dx′ > 0, we have Jλ(twε,z) < J1

0 (twε,z) for all t ≥ 0 and λ > 0.
Then there exists t0 > 0 such that

sup
0≤t≤t0

Jλ(twε,z) =
1
n
Sn/2 − λ

2
(2−q)D0

for all λ ∈ (0,Λ5). Now, we only need to show that supt≥t0 Jλ(twε,z) = 1
nS

n/2 −
λ

2
(2−q)D0 for all z ∈M . First we have

sup
t≥t0

Jλ(twε,z) = sup
t≥t0

[J1
0 (twε,z)−

tq

q

∫
B
fλ|wε,z|q

dx1

x1
dx′]

≤ 1
n
Sn/2 +O(εn−2)− λtq0

q
fmin

∫
Ωr0 (z)

|wε,z|q
dx1

x1
dx′,

where fmin = min{f(x);x ∈Mr0} > 0. Let 0 < λ ≤ ( r02 )
(2−q)(n−2)

2 . Then we have

0 < ε = λ
2

(2−q)(n−2) ≤ r0

2

and ∫
Ω r0

2
(z)

|wε,z|q
dx1

x1
dx′ =

∫
Ω r0

2
(z)

1

(ε2 + | ln x1
z1
|2 + |x′ − z′|2)

q(n−2)
2

dx1

x1
dx′

=
∫

Ω r0
2

(1,0)

1

(ε2 + | ln y1|2 + |y′|2)
q(n−2)

2

dy1

y1
dy′

=
∫
B r0

2

1

(ε2 + |z1|2 + |z′|2)
q(n−2)

2

dz1dz
′

≥
∫
B r0

2

1

r
q(n−2)
0

dz1dz
′ = D1(n, q, r0)

for all z ∈M , where D1(n, q, r0) is a positive constant depends on n, q, r0.
Thus for ε = λ

2
(2−q)(n−2) and λ ∈ (0, ( r02 )

(2−q)(n−2)
2 ), we obtain

sup
t≥t0

Jλ(twε,z) ≤
1
n
Sn/2 +O(λ

2
(2−q) )− tq0fmin

q
D1(n, q, r0)λ.

Then we can choose 0 < Λ∗ ≤ min{Λ5, ( r02 )
(2−q)(n−2)

2 } such that supt≥t0 Jλ(twε,z) =
1
nS

n/2 − λ
2

(2−q)D0 for all λ ∈ (0,Λ∗) and supt≥0 Jλ(twε,z) = 1
nS

n/2 − λ
2

(2−q)D0 for
all z ∈M .

Finally, we will show that there exists t−z > 0 such that t−z wε,z ∈ Nλ(cλ) for all
z ∈M . By Lemma 3.6 and

∫
B fλ|wε,z|

q dx1
x1
dx′ > 0 and

∫
B g|wε,z|

2∗ dx1
x1
dx′ > 0, there

exists t−z > 0 such that t−z wε,z ∈ N−λ and Jλ(t−z wε,z) < cλ = 1
nS

n/2 − λ
2

(2−q)D0 for
all z ∈ M . Thus t−z wε,z ∈ Nλ(cλ). Moreover, we have Φ(t−z wε,z) = Φ(wε,z) ∈ Mδ

for all z ∈M by the definition of wε,z. We complete the proof. �

Theorem 4.9. Let δ, dδ > 0 be as in Theorem 4.7. Then there exists 0 < Λδ ≤ Λ∗
such that for λ < Λδ, we have Φ(u) ∈Mδ for all u ∈ Nλ(cλ).
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Proof. For u ∈ Nλ(cλ), by Lemma 3.7, there exists a unique tu > 0 such that
tuu ∈ N1

0 and

J1
0 (tuu) ≤ (1− λ)−n/2(Jλ(u) +

λ(2− q)
2q

(‖f+‖
L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q )

≤ (1− λ)−n/2(
1
n
Sn/2 − λ

2
(2−q)D0 +

λ(2− q)
2q

(‖f+‖
L
n
q∗
q∗ (B)

S−
q
2 )

2
2−q ).

Then there exists 0 < Λδ ≤ Λ∗ such that for λ < Λδ,

J1
0 (tuu) ≤ 1

n
Sn/2 + dδ

for all u ∈ Nλ(cλ). By Theorem 4.7, we have tuu ∈ N1
0 (dδ) and

Φ(u) =

∫
B x|tuu|

2∗ dx1
x1
dx′∫

B |tuu|2
∗ dx1
x1
dx′

= Φ(tuu) ∈Mδ

for all u ∈ Nλ(cλ). This completes the proof. �

Now, we want to show that Jλ satisfies the (PS)c condition in H1
0 (Ω) for c ∈

(−∞, cλ), where cλ is defined in Theorem 4.8.

Theorem 4.10. Jλ satisfies the (PS)c condition in H1,n/2
2,0 (B) for c ∈ (−∞, cλ).

Proof. Let {uk} be a (PS)c sequence in H1,n/2
2,0 (B) for Jλ. It is easy to see that

{uk} is bounded in H1,n/2
2,0 (B) by a standard argument. Going if necessary to a

subsequence, we can assume that uk ⇀ u weakly in H1,n/2
2,0 (B). By Proposition 2.6,

we know uk → u a.e. in B and uk → u strongly in L
n
s
s (B) for any 1 ≤ s < 2∗. Then

we obtain ∫
B
fλ|uk|q

dx1

x1
dx′ =

∫
B
fλ|u|q

dx1

x1
dx′ + o(1),

‖uk − u‖2H1,n/2
2,0 (B)

= ‖uk‖2H1,n/2
2,0 (B)

− ‖u‖2
H1,n/2

2,0 (B)
+ o(1),∫

B
g|uk − u|2

∗ dx1

x1
dx′ =

∫
B
g|uk|2

∗ dx1

x1
dx′ −

∫
B
g|u|2

∗ dx1

x1
dx′ + o(1)

Moreover, we can obtain J ′λ(u) = 0 in H−1,−n2
2,0 (B). Since Jλ(uk) = c + o(1) and

J ′λ(uk) = o(1) in H−1,−n2
2,0 (B), we deduce that

1
2
‖uk − u‖2H1,n/2

2,0 (B)
− 1

2∗

∫
Ω

g|uk − u|2
∗ dx1

x1
dx′ = c− Jλ(u) + o(1) (4.7)

and

‖uk − u‖2H1,n/2
2,0 (B)

−
∫

B
g|uk − u|2

∗ dx1

x1
dx′ = o(1).

Now, we may assume that

‖uk − u‖2H1,n/2
2,0 (B)

→ l,

∫
B
|uk − u|2

∗ dx1

x1
dx′ → l as k →∞. (4.8)

Suppose l 6= 0. Applying Theorem 4.5, we obtain

(
1
2
− 1

2∗
)l ≥ 1

n
Sn/2.
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Then by Lemma 3.1, (4.7) and (4.8), we have

c = (
1
2
− 1

2∗
)l + Jλ(u) ≥ 1

n
Sn/2 −D0λ

2
2−q = cλ,

which contradicts the definition of c. Hence l = 0; that is, un → u strongly in
H1,n/2

2,0 (B). �

Now, by Theorems 4.6, 4.8, and 4.10, we can find Λδ > 0 such that Jλ satisfies
the (PS) condition on Nλ(cλ) and Φ(u) ∈ Mδ for all u ∈ Nλ(cλ) and λ < Λδ.
Let Fε(z) = t−z wε,z ∈ Nλ(cλ) as that in Theorem 4.7. Then we have the following
result.

Theorem 4.11. Let δ, Λδ > 0 be as in Theorems 4.7 and 4.9, then for each λ <
Λδ, Jλ has at least catMδ

(M) critical points on Nλ,+(cλ) = {u ∈ Nλ(cλ);u ≥ 0}.

Proof. By Theorem 4.8, we can assume that for any such λ and for any z ∈M ,

Jλ(Fε(z)) < cλ =
1
n
Sn/2 − λ

2
(2−q)D0.

Thus Fε(M) ⊂ Nλ(cλ).
Moreover, by Theorem 4.9, we get Φ(Nλ(cλ)) ⊂ Mδ. Then, by Theorem 4.8,

the map Φ ◦ F is homotopic to the inclusion j : M → Mδ, for any λ < Λδ. Thus
by Theorem 4.10 and Propositions 4.2, 4.3, we obtain Jλ has at least catMδ

(M)
critical points on Nλ,+(cλ). This completes the proof. �

Proof of Theorem 1.2. By Theorems 3.8 and 4.11 and by considering Lemmas 3.2
and 3.5, we complete the proof of Theorem 1.2. �

Acknowledgments. This research was supported by grant 11171261 from the
NSFC.

References

[1] Chen, H.; Liu, X.; Wei, Y.; Dirichlet problem for semilinear edge-degenerate elliptic equations

with singular potential term. J. Differential Equations, 252, 4289-4314 (2012).

[2] Chen, H.; Liu, X.; Wei, Y.; Existence theorem for a class of semilinear elliptic equations with
critical cone Sobolev exponent. Annals of Global Analysis and Geometry, 39, 27-43 (2011).

[3] Chen, H.; Liu, X.; Wei, Y.; Cone Sobolev inequality and Dirichlet problem for nonlinear

elliptic equations on manifold with conical singularities. Calculus of Variations and Partial
Differential, 7, 1-22 (2011).

[4] Chen, H.; Liu, X.; Wei, Y.; Multiple solutions for semilinear totally characteristic equations
with subcritical or critical cone sobolev exponents. J. Differential Equations, 252, 4200-4228
(2012).

[5] Cingolani, S.; Lazzo, M.; Multiple positive solutions to nonlinear Schrödinger equations with
competing potential functions. J. Differential Equations, 160, 118-138 (2000).

[6] Egorov, J. V.; Schulze, B.-W.; Pseudo-differential operators, singularities, applications, Op-

erator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997.
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