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RECONSTRUCTING THE POTENTIAL FUNCTION FOR
INDEFINITE STURM-LIOUVILLE PROBLEMS USING INFINITE

PRODUCT FORMS

MOHAMMAD DEHGHAN, ALI ASGHAR JODAYREE

Abstract. In this article we consider the linear second-order equation of

Sturm-Liouville type

y′′ + (λφ2(t)− q(t))y = 0, 0 ≤ t ≤ 1,

where λ is a real parameter, q(t) is the potential function and φ2(t) is the

weight function. We use the infinite product representation of the derivative
of the solution to the differential equation with Dirichlet-Neumann conditions,

and for the system of dual equations which is needed for expressing inverse

problem and for retrieving potential. It must be mentioned that the weight
function has a zero whose order is an integer called a turning point.

1. Introduction

We consider the indefinite Sturm-Liouville equation

ly := −y′′ + q(t)y = λφ2(t)y, 0 ≤ t ≤ x, (1.1)

with Dirichlet conditions
y(0) = y(x) = 0, (1.2)

and with Dirichlet-Neumann conditions

y(0) = y′(x) = 0, (1.3)

where λ = ρ2 is the spectral parameter, x is a fixed point in the interval (0, 1) and
also the weight function φ2(t) and the potential function q(t) satisfies

• φ2(t) = (t− t0)l0φ0(t) is real and has one zero, t0, so called turning point of
odd order l0 ∈ N in [0, 1] and also φ0(t) is positive and twice continuously
differentiable.

• q(t) is bounded and integrable on [0, 1].
The asymptotic solutions of (1.1) depend on a complex parameter ρ as |ρ| → ∞.

We assume t0 to be a turning point of type IV; i.e., l0 is odd. The operator l
defined in (1.1) is called the indefinite Sturm-Liouville operator. The differential
equation (1.1) with conditions (1.2) and (1.3) are denoted by L1(φ2(t), q(t), x) and
L2(φ2(t), q(t), x), respectively.
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Inverse spectral theory can be considered as the determination of an operator
(usually differential) from its spectral data. The literature on such subjects is im-
mense for the definite cases in which the weight function φ2(t) is positive throughout
the interval such as [16, 22, 15, 20], while for the indefinite cases is not. The trans-
formation operator method and the Gelfand-Levitan integral equation with respect
to the kernel of the transformation operator [12] in this case is not suitable for the
solution of the inverse problems.

The eigenvalue problem for the indefinite Sturm-Liouville problem has been dis-
cussed in [14]. The potential q(x) of an indefinite Sturm-Liouville problem has
been determined uniquely by three spectra in [7]. We present a new approach to
reconstruct the operator l (indefinite Sturm-Liouville operator); i.e., retrieving po-
tential function q(t) in (1.1) from its spectral data. The question at the core of
this paper involves the determination of the infinite product representation for the
derivative of the solution of the indefinite Sturm-Liouville problem as well as the
reconstruction of the potential function q(t) by means of two spectra, while the
weight function φ2(t) is given.

Differential equations with an indefinite weight function appear in several math-
ematical physics problems. For instance, turning points correspond to the limit of
motion of a wave mechanical particle bounded by a potential field. Turning points
arise also in various fields such as optics, elasticity, spectroscopy, stratification and
radio engineering problems to design directional couplers for non-uniform electronic
lines (see [3, 17, 18, 19, 23, 25] for further references).

The presence of turning points yields fundamental qualitative changes in the
study of this kind of differential equation. In problem L1(φ2(t), q(t), x), for the
special case φ2(t) = t in the interval [−1, 1], Jodayree et al. obtained the infinite
product representation of the solution in the closed form [9]:

U(x, λ) =


p(x)

(−x)1/4
∏
k≥1

λ−λk(x)
z2k(x)

, −1 ≤ x < 0,
π
√
x

6

∏
k≥1

(λ−rk(x))p2(0)
j̃2k

∏
k≥1

f2(x)(uk(x)−λ)

j̃2k
, 0 < x ≤ 1,

where x is a fixed point in (−1, 1), U(x, λ) is the solution of the differential equation
L1(t, q(t), x) which satisfies the initial condition

U(−1, λ) = 0,
∂U

∂t
(−1, λ) = 1.

Here p(x) = −(2/3)(−x)3/2 + 2/3, f(x) = (2/3)x3/2, zk(x) = kπ/p(x), j̃k are
the positive zeros of Bessel function J ′1(z), {λk(x)} are the eigenvalues of problem
with the Dirichlet condition on [−1, x] for x < 0 and {rk(x)} and {uk(x)} are
the negative and positive eigenvalues of problem, respectively, with the Dirichlet
condition on [−1, x] for x > 0. Finding the solution in the infinite product form
led to construct the dual equations which are necessary to retrieve the potential
function q(t) in the inverse problem [10].

Barcilon [2] introduced {λn(x)} and {µn(x)} as the eigenvalues of classical
Sturm-Liouville equation (vibrating string equation),

y′′ + λφ2(t)y = 0, x ≤ t ≤ L, (1.4)

with conditions y(x) = y(L) = 0 and y′(x) = y(L) = 0, respectively, in where x is a
fixed point in the interval (0, L). In contrast with problem (1.1), the function φ2(t)
is positive throughout the interval (0, L). It has been shown that if u(t, λ) is the
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solution of equation (1.4) with the initial conditions u(L, λ) = 0 and ∂u
∂t (L, λ) = 1,

then by using Hadamard’s factorization, for fixed x belonging to [0, L], it can be
written

u(x, λ) = −(L− x)
∞∏
k=1

(1− λ

λn(x)
),

u′(x, λ) =
∞∏
k=1

(1− λ

µn(x)
),

which are the infinite product form of the solution and its derivative for vibrating
string problem [2]. He also derived the dual equations of problem (1.4) in the form

dλn(x)
dx

= −λn(x)
L− x

∏∞
k=1(1− λn(x)

µk(x)
)∏∞

k 6=n(1− λn(x)
λk(x)

)
,

dµn(x)
dx

= µ2
n(x)φ2(x)(L− x)

∏∞
k=1(1− µn(x)

λk(x)
)∏∞

k 6=n(1− µn(x)
µk(x)

)
,

(1.5)

with the initial condition

λn(0) = λn, µn(0) = µn.

In fact, the pair of sequences (λn(0), µn(0)) suffices as data to guarantee the exis-
tence and uniqueness of function φ2(t) in (1.4) [2]. Hence, by using the solution
(λn(x), µn(x)) of (1.5), one can construct the original equation (1.4). For this
reason, the equation (1.5) is referred to as dual equation of (1.4) in the classical
literature.

Pranger [21] studied the recovery of the function φ2(t) from the eigenvalues in
equation (1.4) with the Dirichlet boundary condition on the interval [0, 1], replacing
{µn} by {λ′n} and introducing the infinite product form of the solution to construct
the dual equation

λ′′n +
2
x
λn + 2λnλ′n

∑
j 6=n

(
λ′j
λ2
j

)(1− λn
λj

)−1 − 2
(λ′n)2

λn
= 0,

where {λn} are eigenvalues of equation (1.4) on the interval [0, x], 0 < x ≤ 1. It is
well known that if there is a c > 0 so that φ2(t) ≥ c for all t and φ2(t) ∈ C2(0, L),
then Equation (1.4) can be transformed into the canonical Sturm-Liouville equation
[8]

y′′ + (λ− q)y = 0.

In section 2 we introduce some notation which we use throughout this article. In
section 3 we find the infinite product form for the derivative of the solution of the
indefinite Sturm-Liouville equation (1.1) before and after the turning point at the
interval (0, 1). The main results of the paper are expressed by theorems 4.2 and 4.3.
The infinite product representation for the solution of problem (1.1) in [13] and its
derivative given here, enable us to construct the dual equations of this problem, in
section 4, which this system of equations identifies the two spectra of eigenvalues
for an arbitrary fixed point in the whole interval. Using these two spectra, one can
retrieve the potential function q(t) by the algorithm stated in the end of section 4.
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2. Preliminaries

Let ε > 0 be fixed and sufficiently small, and let Dε = [0, t0 − ε] ∪ [t0 + ε, 1].
Further, we set µ = 1

2+l0
(l0 is order of turning point), λ = ρ2 (ρ is a complex

parameter) and θ = 4µ. We also denote

I+ = {t : φ2(t) > 0}, I− = {t : φ2(t) < 0},

ξ(t) =

{
0 for t ∈ I+(t),
1 for t ∈ I−(t),

φ2
+(t) = max(0, φ2(t)), φ2

−(t) = max(0,−φ2(t)),

K±(t) =

{
1 for t ∈ I−(t),
1
2 csc(πµ2 ) exp(∓iπ4 ) for t ∈ I+(t),

K∗±(t) =

{
±i for t ∈ I−(t),
2 sin(πµ2 ) exp(±iπ4 ) for t ∈ I+(t),

Let

Sk = {ρ : arg ρ ∈ [
kπ

4
,

(k + 1)π
4

]}, k = 0, 1.

Here the choice of the root φ of φ2 depends on the interval and the sector under
consideration and has to be determined carefully. Due to the type of turning point
t0, we have

φ(t) =

{
|φ(t)| for t > t0,

|φ(t)|eiπ2 l0 for t < t0.

In [5] it is shown that for each fixed sector Sk (k = 0, 1), there exist Fundamental
Solutions (FS) of (1.1) {z1(t, ρ), z2(t, ρ)}, t ∈ (0, 1), ρ ∈ Sk such that the functions
(t, ρ) → z

(j)
s (t, ρ)(s = 1, 2; j = 0, 1) are continuous and holomorphic for t ∈ (0, 1),

ρ ∈ Sk. Moreover, for |ρ| → ∞, ρ ∈ Sk, t ∈ Dε, j = 0, 1

z
(j)
1 (t, ρ) = (±iρ)j |φ(t)|j− 1

2 (e∓i
π
2 ξ(t))jeρ

R t
0 |φ−(τ)|dτ

× e±iρ
R t
0 |φ+(τ)|dτK±(t)κ(t, ρ),

(2.1)

z
(j)
2 (t, ρ) = (∓iρ)j |φ(t)|j− 1

2 (e∓i
π
2 ξ(t))je−ρ

R t
0 |φ−(τ)|dτ

× e∓iρ
R t
0 |φ+(τ)|dτK∗±(t)κ(t, ρ),

(2.2)

ω(λ) =
∣∣∣∣z1(t, ρ) z2(t, ρ)
z′1(t, ρ) z′2(t, ρ)

∣∣∣∣ = ∓(2iρ)[1].

Here and in the following:
(i) The upper or lower signs in formulae correspond to the sectors S0, S1

respectively.
(ii) [1] = 1 +O( 1

ρθ
) uniformly in t ∈ Dε.

(iii) κ(t, ρ) = O(1) as |ρ| → ∞, ρ ∈ Sk.

3. Infinite product representation

Let S(t, λ) be the solution of equation (1.1) with initial conditions

S(0, λ) = 0, S′(0, λ) = 1. (3.1)
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Using {z1(t, ρ), z2(t, ρ)}, we can write

S(t, λ) = c1z1(t, ρ) + c2z2(t, ρ).

By imposing the initial conditions (3.1) we have

c1z1(0, ρ) + c2z2(0, ρ) = 0,

c1z
′
1(0, ρ) + c2z

′
2(0, ρ) = 1.

After getting c1 and c2 by using Cramer’s rule we obtain

S(t, λ) =
z1(0, ρ)z2(t, ρ)− z2(0, ρ)z1(t, ρ)

ω(λ)
, (3.2)

S′(t, λ) =
z1(0, ρ)z′2(t, ρ)− z2(0, ρ)z′1(t, ρ)

ω(λ)
. (3.3)

According to [5], we can also write the fundamental solutions {z1(t, ρ), z2(t, ρ)}, of
(1.1), in the asymptotic form

z1(t, ρ) =


|φ(t)|−1/2eρ

R t
0 |φ(τ)|dτ [1] 0 ≤ t < t0,

1
2 csc(πµ2 )|φ(t)|−1/2eρ

R t0
0 |φ(τ)|dτ

×
{
e
iρ

R t
t0
|φ(τ)|dτ−iπ4 [1] + e

−iρ
R t
t0
|φ(τ)|dτ+iπ4 [1]

}
t0 < t ≤ 1,

(3.4)

z2(t, ρ) =


i|φ(t)|−1/2e−ρ

R t
0 |φ(τ)|dτ [1] 0 ≤ t < t0,

2 sin(πµ2 )|φ(t)|−1/2e−ρ
R t0
0 |φ(τ)|dτ

×eiρ
R t
t0
|φ(τ)|dτ−iπ4 [1] t0 < t ≤ 1,

(3.5)

z′1(t, ρ) =


ρ|φ(t)|1/2eρ

R t
0 |φ(τ)|dτ [1] 0 ≤ t < t0,

iρ
2 csc(πµ2 )|φ(t)|1/2eρ

R t0
0 |φ(τ)|dτ

×
{
e
iρ

R t
t0
|φ(τ)|dτ−iπ4 [1]− e−iρ

R t
t0
|φ(τ)|dτ+iπ4 [1]

}
t0 < t ≤ 1,

(3.6)

z′2(t, ρ) =


−iρ|φ(t)|1/2e−ρ

R t
0 |φ(τ)|dτ [1] 0 ≤ t < t0,

2iρ sin(πµ2 )|φ(t)|1/2

×e−ρ
R t0
0 |φ(τ)|dτe

iρ
R t
t0
|φ(τ)|dτ−iπ4 [1] t0 < t ≤ 1.

(3.7)

Then, by (3.2) and (3.3) and asymptotic forms of FS in (3.4)-(3.7), we can write

S(t, λ) =


|φ(0)φ(t)|−1/2

ρ sinh(ρ
∫ t
0
|φ(τ)|dτ)[1] 0 ≤ t < t0,

|φ(0)|−1/2|φ(t)|1/2
−2iρ

{
D1(ρ)eiρ

R t
t0
|φ(τ)|dτ [1]

+D2(ρ)e−iρ
R t
t0
|φ(τ)|dτ [1]

}
t0 < t ≤ 1,

(3.8)

S′(t, λ) =


|φ(0)|−1/2|φ(t)|1/2 cosh

(
ρ
∫ t
0
|φ(τ)|dτ

)
[1] 0 ≤ t < t0,

|φ(0)|−1/2|φ(t)|1/2
−2

{
D1(ρ)eiρ

R t
t0
|φ(τ)|dτ [1]

−D2(ρ)e−iρ
R t
t0
|φ(τ)|dτ [1]

}
t0 < t ≤ 1,

(3.9)

where

D1(ρ) = 2 sin(
πµ

2
)e−ρ

R t0
0 |φ(τ)|dτ−iπ4 − 1

2
csc(

πµ

2
)eρ

R t0
0 |φ(τ)|dτ−iπ4 ,

D2(ρ) = −1
2

csc(
πµ

2
)eρ

R t0
0 |φ(τ)|dτ+iπ4 .

The functions S(x, λ) and S′(x, λ) have zero sets for each fixed point x ∈ (0, 1) re-
ferred to as λn(x) and µn(x), respectively; i.e., S(x, λn(x)) = 0 and S′(x, µn(x)) =
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0. These two zero sets correspond to the eigenvalues of problems L1(φ2(t), q(t), x)
and L2(φ2(t), q(t), x), respectively. So, for fixed x, x < t0, the asymptotic approxi-
mation of the infinite sequence of negative eigenvalues for boundary-value problem
(1.1) associated with boundary conditions y(0) = y(x) = 0 can be obtained from
(3.8) of the form √

−λn(x) =
nπ

p(x)
+O(

1
n

), as n→∞,

while for boundary value problem (1.1) associated with boundary conditions y(0) =
y′(x) = 0, the asymptotic form of eigenvalues can be derived similarly from (3.9)√

−µn(x) =
nπ − π

2

p(x)
+O(

1
n

), as n→∞,

where

p(x) =
∫ x

0

|φ(τ)|dτ. (3.10)

Note that in the case x < t0, the boundary value problem has only infinitely many
negative eigenvalues according to classical results. For fixed x:

· · · < µ2(x) < λ2(x) < µ1(x) < λ1(x), lim
n→∞

λn(x) = lim
n→∞

µn(x) = −∞.

By applying (2.1) and (2.2), we infer that for ρ ∈ Sk, t ∈ Dε, j = 0, 1,

S(j)(t, λ) =
1
2

(±iρ)j−1|φ(0)|−1/2|φ(t)|j− 1
2 (e∓i

π
2 ξ(t))je±i

π
2

× eρ
R t
0 |φ−(τ)|dτe±iρ

R t
0 |φ+(τ)|dτK±(t)κ(t, ρ),

(3.11)

and
|S(j)(t, λ)| ≤ C|ρ|j−1|eρ

R t
0 |φ−(τ)|dτe±iρ

R t
0 |φ+(τ)|dτ |. (3.12)

It follows from (3.12) that the functions S(j)(t, .) are entire of order 1/2. So, by
Hadamard’s theorem S(x, λ) and S′(x, λ) can be represented in the infinite product
form

S(x, λ) = C1,0(x)
∞∏
n=1

(1− λ

λn(x)
), (3.13)

S′(x, λ) = C2,0(x)
∞∏
n=1

(1− λ

µn(x)
), (3.14)

where Cr,0 (r=1,2) are functions of x only. The index r in Cr,0 is denoted to related
problem Lr(φ2(t), q(t), x) and the index ’0’ in Cr,0 shows that the fixed point x lies
before turning point (x < t0). The function C1,0(x) has been calculated in [13]:

C1,0(x) = (φ(0)φ(x))−1/2p(x)
∏
n

λn(x)
w2
n(x)

, (3.15)

where wn(x) = nπ/p(x), and p(x) is defined in (3.10).
To estimate C2,0(x) we rewrite the infinite product as

S′(x, λ) = C2,0(x)
∞∏
n=1

µn(x)− λ
µn(x)

= B2,0(x)
∞∏
n=1

λ− µn(x)
w̃2
n(x)

(3.16)

with

B2,0(x) = C2,0(x)
∞∏
n=1

−w̃2
n(x)

µn(x)
, (3.17)
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where

w̃n(x) =
nπ − π

2

p(x)
.

It follows from the asymptotic form of eigenvalues that −w̃
2
n(x)

µn(x) = 1+O( 1
n2 ), then the

infinite product
∏∞
n=1

−w̃2
n(x)

µn(x) is absolutely convergent on any compact subinterval
of (0, t0).

Lemma 3.1. Let w̃m(x) = mπ−π2
p(x) and µm(x), 1 ≤ m be a sequence of continuous

functions such that for each x

µm(x) = −m
2π2

p2(x)
+

mπ2

p2(x)
+O(1), 0 < x < t0.

Then, the infinite product
∞∏
m=1

(
λ− µm(x)
w̃2
m(x)

)

is an entire function of λ for fixed x in (0, t0) whose roots are precisely µm(x),
m ≥ 1. Moreover

∞∏
m=1

(
λ− µm(x)
w̃2
m(x)

) = cosh(
√
λp(x))(1 +O(

log n
n

)),

uniformly on the circles |λ| = n2π2

p2(x) , where p(x) is defined in (3.10).

Proof. Since µm(x) + w̃2
m(x) = π2

4p2(x) +O(1),m ≥ 1 are uniformly bounded, then

∞∑
m=1

∣∣∣λ− µm(x)
w̃2
m(x)

− 1
∣∣∣ =

∞∑
m=1

∣∣∣λ− µm(x)− w̃2
m(x)

w̃2
m(x)

∣∣∣ =
∞∑
m=1

∣∣∣λ+O(1)
w̃2
m(x)

∣∣∣
converges uniformly on bounded subsets of complex plane. Therefore, the infinite
product converges to an entire function of λ, whose zeroes are precisely w̃m(x),m ≥
1 (see [6]). By [1, 4.5.69], we have

cosh(p(x)
√
λ) =

∞∏
m=1

[
1 +

4p2(x)λ
(2m− 1)2π2

]
.

On the other hand, since 4p2(x)
(2m−1)2π2 = 1

w̃2
m(x) , we obtain∏∞

m=1
λ−µm(x)
w̃2
m(x)∏∞

m=1[1 + 4p2(x)λ
(2m−1)2π2 ]

=
∞∏
m=1

−µm(x) + λ

w̃2
m(x) + λ

.

Furthermore, ∣∣−µm(x) + λ

w̃2
m(x) + λ

− 1
∣∣ ≤ |O(1)|∣∣|λ| − (2m−1)2π2

4p2(x)

∣∣ .
Therefore, on the circles |λ| = n2π2

p2(x) , the uniform estimates

−µm(x) + λ

w̃2
m(x) + λ

=

{
1 +O( 1

n ) if n = m

1 +O( 1
m2−n2 ) if n 6= m
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hold. by [24, page 165], we can write∏
1≤m

−µm(x) + λ

λ+ w̃2
m(x)

= 1 +O
( log n

n

)
,

uniformly on these circles. Then∏
1≤m

λ− µm(x)
w̃2
m(x)

= cosh(p(x)
√
λ)
(

1 +O
( log n

n

))
.

�

Theorem 3.2. For 0 ≤ x < t0,

S′(x, λ) = |φ(0)|−1/2|φ(x)|1/2
∞∏
n=1

−µn(x)
w̃2
n(x)

∞∏
n=1

(1− λ

µn(x)
),

where w̃n(x) = nπ−π2
p(x) , p(x) is defined in (3.10), and {µn(x)} is the sequence of

eigenvalues for the Dirichlet-Neumann problem associated with (1.1) on [0, x].

Proof. For 0 ≤ x < t0, ρ ∈ S0 and |ρ| → ∞, by virtue of (3.11) for j = 1 we
calculate

S′(x, λ) =
1
2
|φ(0)|−1/2|φ(x)|1/2eρ

R x
0 |φ(τ)|dτκ(x, ρ). (3.18)

Now from (3.16), (3.18) and using lemma 3.1 uniformly on the circles |λ| = n2π2

p2(x) ,
we obtain

B2,0(x) =
S′(x, λ)∏∞

m=1
λ−µm(x)
w̃2
m(x)

= |φ(0)|−1/2|φ(x)|1/2,

as |ρ| → ∞. So, by (3.17), we obtain

C2,0(x) = |φ(0)|−1/2|φ(x)|1/2
∞∏
n=1

−µn(x)
w̃2
n(x)

. (3.19)

The proof is completed by (3.14). �

For x ∈ (t0, 1], fixed, both of problems L1(φ2(t), q(t), x) and L2(φ2(t), q(t), x)
have an infinite number of positive and negative eigenvalues, which we denote by
{λ+

n (x)}, {λ−n (x)} and {µ+
n (x)}, {µ−n (x)} respectively. In reference to [4, 11], we

derive √
λ+
n (x) =

nπ − π
4

f(x)
+O(

1
n

),
√
−λ−n (x) =

nπ − π
4

p(t0)
+O(

1
n

),√
µ+
n (x) =

nπ − 3π4
f(x)

+O(
1
n

),
√
−µ−n (x) =

nπ − π
4

p(t0)
+O(

1
n

),

where

f(x) =
∫ x

t0

|φ(τ)|dτ (3.20)

and p(x) is defined in (3.10). By Hadamard’s theorem, the solution of equation
(1.1) and its derivative on [0, x] for x > t0 is of the form

S(x, λ) = C1,1(x)
∞∏
n=1

(1− λ

λ−n (x)
)
∞∏
n=1

(1− λ

λ+
n (x)

), (3.21)
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S′(x, λ) = C2,1(x)
∞∏
n=1

(1− λ

µ−n (x)
)
∞∏
n=1

(1− λ

µ+
n (x)

). (3.22)

Index ’1’ in Cr,1(r = 1, 2) means that the fixed point x lies after turning point
(x > t0).

The function C1,1(x) has been estimated in [13]:

C1,1(x) =
1
16
π|φ(0)φ(x)|−1/2 csc(

πµ

2
)p(t0)1/2f(x)1/2

×
∞∏
n=1

−λ
−
n (x)p2(t0)

j̃2n

∞∏
n=1

λ+
n (x)f2(x)

j̃2n
,

(3.23)

where p(x) and f(x) are defined in (3.10) and (3.20) respectively and j̃n(n =
1, 2, . . . ) are the positive zeros of the derivative of the Bessel function of first kind
(J ′1(z)).

Let Jν(z) and J ′ν(z) be the Bessel function of order ν and its derivative, respec-
tively. From [1] we have

Jν(z) =
(z/2)ν

Γ(ν + 1)

∞∏
m=1

(1− z2

j2ν,m
),

where

jν,m ∼ β −
α− 1

8β
− 4(α− 1)(7α− 31)

3(8β)3
− . . . ,

β = (m+
ν

2
− 1

4
)π, α = 4ν2.

By inserting ν = 0, we can write

J0(z) =
∞∏
m=1

(1− z2

j20,m
),

where

j20,m = m2π2 − mπ2

2
+O(1), m = 1, 2, . . . ,

are the positive zeros of J0(z). Also, from [1], We have

J ′ν(z) =
(z/2)ν−1

2Γ(ν)

∞∏
m=1

(1− z2

j̃2ν,m
), ν > 0,

where

j̃ν,m ∼ β′ −
α+ 3
8β′

− 4(7α2 + 82α− 9)
3(8β′)3

− . . . ,

β′ = (m+
ν

2
− 3

4
)π, α = 4ν2.

In reference to [1], as a result of J ′0(z) = −J1(z) the zeros of J1(z) and J ′0(z) are
the same, namely j̃0,m = j1,m for m = 1, 2, . . . . Therefore, we can write

J ′0(z) = −J1(z) = −z
2

∞∏
m=1

(1− z2

j21,m
),

where
j1,m = (m+

1
4

)π + . . . , m = 1, 2, . . . .
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Replacing m by m− 1 in the previous relation we obtain

j1,m−1 = (m− 3
4

)π + . . . , m = 2, 3, . . . ,

j21,m−1 = m2π2 − 3
2
mπ2 +O(1), m = 2, 3, . . . .

Consequently,

−j20,n
p2(t0)µ−n (x)

= 1 +O(
1
n2

),
j21,n−1

f2(x)µ+
n (x)

= 1 +O(
1
n2

).

Therefore, the infinite products
∏∞
n=1

−j20,n
p2(t0)µ

−
n (x)

and
∏∞
n=2

j21,n−1

f2(x)µ+
n (x)

are abso-
lutely convergent for each x > t0. Then, from (3.22), we may write

S′(x, λ) = B2,1(x)(1− λ

µ+
1

)
∞∏
n=1

(λ− µ−n (x))p2(t0)
j20,n

∞∏
n=2

(µ+
n (x)− λ)f2(x)

j21,n−1

, (3.24)

where

B2,1(x) = C2,1(x)
∞∏
n=1

−j20,n
p2(t0)µ−n (x)

∞∏
n=2

j21,n−1

f2(x)µ+
n (x)

. (3.25)

Lemma 3.3. Let j0,m be the positive zeros of J0(z) and for fixed x in (t0, 1)

µ−m(x) = −m
2π2

p2(t0)
+

3
2
mπ2

p2(t0)
+O(1),m ≥ 1,

be a negative sequence of continuous functions. The infinite product
∞∏
m=1

(λ− µ−m(x))p2(t0)
j20,m

is an entire function of λ for fixed x, whose roots are precisely µ−m(x), m ≥ 1.
Moreover,

∞∏
m=1

(λ− µ−m(x))p2(t0)
j20,m

= J0(i
√
λp(t0))(1 +O(

log n
n

)),

uniformly on the circles |λ| = n2π2

p2(t0)
.

Proof. This follows from using the method of the proof of lemma 3.1. For more
details, see [9]. �

Lemma 3.4. Let j1,m be the positive zeros of J1(z) and for fixed x in (t0, 1)

µ+
m(x) =

m2π2

f2(x)
− mπ2

2f2(x)
+O(1), m ≥ 1,

be a positive sequence of continuous functions. Then, the infinite product
∞∏
m=2

(µ+
m(x)− λ)f2(x)

j21,m−1

is an entire function of λ for fixed x, whose roots are precisely µ+
m(x), m ≥ 1.

Moreover,
∞∏
m=2

(µ+
m(x)− λ)f2(x)

j21,m−1

= − 2√
λf(x)

J ′0(
√
λf(x))(1 +O(

log n
n

)),
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uniformly on the circles |λ| = n2π2

p2(t0)
.

Proof. This follows from using the method of the proof of lemma 3.1. For more
details, see [9]. �

Theorem 3.5. Let S′(t, λ) be the derivative of the solution of problem (1.1) in
association with initial condition (3.1). Then, for each fixed x > t0,

S′(x, λ) = −1
4
|φ(0)|−1/2|φ(x)|1/2i1/2πµ+

1 (x)ei
π
4 csc(

πµ

2
)f3/2(x)p1/2(t0)

×
∞∏
n=1

−µ
−
n (x)p2(t0)
j20,n

∞∏
n=2

µ+
n (x)f2(x)
j21,n−1

∞∏
n=1

(1− λ

µ−n (x)
)
∞∏
n=2

(1− λ

µ+
n (x)

),

where p(x) and f(x) is defined in (3.10) and (3.20). Sequences {µ+
n (x)} and

{µ−n (x)} represent the positive and negative eigenvalues of L2(φ2(t), q(t), x), re-
spectively and jν,n(ν = 0, 1) are the positive zeros of Jν(z).

Proof. Using (3.9) for t0 < x < 1 it is obtained that

S′(x, λ) =
|φ(0)|1/2|φ(x)|1/2

−2
{

(2 sin(
πµ

2
)e−
√
λp(t0)−iπ4

− 1
2

csc(
πµ

2
)e
√
λp(t0)−iπ4 )ei

√
λf(x)[1]

+
1
2

csc(
πµ

2
)e
√
λp(t0)+i

π
4 e−i

√
λf(x)[1]}.

As |λ| → ∞, the first expression in the accolade tends to zero, resulting in

S′(x, λ) =
|φ(0)|−1/2|φ(x)|1/2i

2
csc(

πµ

2
)e
√
λp(t0) sin(

√
λf(x)− π

4
)[1]. (3.26)

On the other hand, by use of (3.24) and lemma 3.3, lemma 3.4, on the circles
|λ| = min{ n

2π2

p2(t0)
, n

2π2

f2(x)}, we obtain

S′(x, λ) = − 2√
λf(x)

B2,1(x)(1− λ

µ+
1

)J0(i
√
λp(t0))J ′0(

√
λf(x))1 +O(

log n
n

)).

Using the asymptotic form of the Bessel function and its derivative in the previous
relation, we have

S′(x, λ) =
2√
λf(x)

B2,1(x)(1− λ

µ+
1

)(
2

i
√
λp(t0)π

)1/2 cos(i
√
λp(t0)− π

4
)

× (
2√

λf(x)π
)1/2 sin(

√
λf(x)− π

4
)[1](1 +O(

log n
n

)).

After some calculations, we obtain

S′(x, λ) =
2

λπi1/2f3/2(x)p1/2(t0)
B2,1(x)(1− λ

µ+
1

)(e
√
λp(t0)+i

π
4 + e−

√
λp(t0)−iπ4 )

× sin(
√
λf(x)− π

4
)[1](1 +O(

log n
n

)).

(3.27)
We know that in the above relation, the expression exp

(
−
√
λp(t0)− iπ4

)
vanishes

as |λ| → ∞. Comparing (3.26) and (3.27) and considering |λ| → ∞ we obtain

B2,1(x) = −1
4
|φ(0)|−1/2|φ(x)|1/2i1/2πµ+

1 e
iπ4 csc(

πµ

2
)f3/2(x)p1/2(t0).
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So, by (3.25), we obtain

C2,1(x) = −1
4
|φ(0)|−1/2|φ(x)|1/2i1/2πµ+

1 e
iπ4 csc(

πµ

2
)

× f3/2(x)p1/2(t0)
∞∏
n=1

−µ
−
n p

2(t0)
j20,n

∞∏
n=2

µ+
n f

2(x)
j21,n−1

,
(3.28)

which depends only on x. By(3.22) the proof is complete. �

4. Dual equations

In this section, we derive the dual equations associated with problem (1.1) by
using the infinite product representation. First we prove some lemmas which are
necessary to present the main theorem.

Lemma 4.1. C2,j(x) = C ′1,j(x)(j = 0, 1), where C1,0(x), C2,0(x), C1,1(x) and
C2,1(x) are defined in (3.15), (3.19), (3.23) and (3.28), respectively.

Proof. If one inserts λ = 0 in (3.13), (3.14), (3.21) and (3.22), the proof becomes
trivial. �

Theorem 4.2. The functions q(x) and φ2(x) in problem (1.1) satisfy the following
relations:

q(x) =


C′2,0(x)

C1,0(x)
= C′′1,0(x)

C1,0(x)
0 ≤ x < t0,

C′2,1(x)

C1,1(x)
= C′′1,1(x)

C1,1(x)
t0 < x ≤ 1,

(4.1)

φ2(x) =


C′2,0(x)

C1,0(x)

∑
i(

1
µi(x)

− 1
λi(x)

)− C2,0(x)
C1,0(x)

∑
i
µ′i(x)

µ2
i (x)

0 ≤ x < t0,
C′2,1(x)

C1,1(x)

∑
i(

1
µ−i (x)

+ 1
µ+
i (x)
− 1

λ−i (x)
− 1

λ+
i (x)

)

−C2,1(x)
C1,1(x)

∑
i(
µ−
′

i (x)

µ−i
2
(x)

+ µ+′
i (x)

µ+
i

2
(x)

) t0 < x ≤ 1,

(4.2)

where C1,0(x), C2,0(x), C1,1(x) and C2,1(x) are defined in (3.15), (3.19), (3.23) and
(3.28).

Proof. We prove it for the case 0 ≤ x < t0. There is a similar proof for t0 < x ≤ 1.
We know that S(x, λ) satisfies the original problem (1.1), so

∂

∂x
S′(x, λ) + (λφ2(x)− q(x))S(x, λ) = 0.

Using (3.13) and (3.14) in the previous relation we obtain

C ′2,0(x)
∏
k=1

(1− λ

µk(x)
) + C2,0(x)

∑
i

µ′i(x)
µ2
i (x)

· λ
∏

k 6=i,1≤k

(1− λ

µk(x)
)

+ [λφ2(x)− q(x)]C1,0(x)
∏
k=1

(1− λ

λk(x)
) = 0.

(4.3)

By putting the coefficients of different powers of λ equal to zero in the previous
relation, we obtain

Coefficient of λ0: C ′2,0(x)− q(x).C1,0(x) = 0 which implies

q(x) =
C ′2,0(x)
C1,0(x)

,
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and from Lemma 4.1,

q(x) =
C ′′1,0(x)
C1,0(x)

.

From the coefficient of λ1,

−C ′2,0(x)
∑
i

1
µi(x)

+C2,0(x)
∑
i

µ′i(x)
µ2
i (x)

+φ2(x)C1,0(x) + q(x)C1,0(x)
∑
i

1
λi(x)

= 0,

we obtain

φ2(x) =
C ′2,0(x)
C1,0(x)

∑
i

(
1

µi(x)
− 1
λi(x)

)− C2,0(x)
C1,0(x)

∑
i

µ′i(x)
µ2
i (x)

.

The proof is complete. �

Theorem 4.3. (a) For fixed value x in [0, t0), the sequences {λn(x)}∞n=1 and
{µn(x)}∞n=1 which are the negative eigenvalues of problems L1(φ2(t), q(t), x) and
L2(φ2(t), q(t), x), respectively, satisfy the system of equations:

dλn(x)
dx

=
C2,0(x)
C1,0(x)

λn(x)

∏∞
k=1(1− λn(x)

µk(x)
)∏∞

k 6=n(1− λn(x)
λk(x)

)
,

dµn(x)
dx

= −C1,0(x)
C2,0(x)

[µ2
n(x)φ2(x)− µn(x)

C ′2,0(x)
C1,0(x)

]

∏∞
k=1(1− µn(x)

λk(x)
)∏∞

k 6=n(1− µn(x)
µk(x)

)
.

(4.4)

(b) For fixed value x in (t0, 1], the sequences {λ−n (x)}∞n=1, {λ+
n (x)}∞n=1 and

{µ−n (x)}∞n=1, {µ+
n (x)}∞n=1 which are the negative, positive eigenvalues of problems

L1(φ2(t), q(t), x) and L2(φ2(t), q(t), x), respectively, satisfy the system of equations:

dλ−n (x)
dx

=
C2,1(x)
C1,1(x)

λ−n (x)

∏∞
k=1(1− λ−n (x)

µ−k (x)
)
∏∞
k=1(1− λ−n (x)

µ+
k (x)

)∏∞
k 6=n(1− λ−n (x)

λ−k (x)
)
∏∞
k=1(1− λ−n (x)

λ+
k (x)

)
,

dλ+
n (x)
dx

=
C2,1(x)
C1,1(x)

λ+
n (x)

∏∞
k=1(1− λ+

n (x)

µ−k (x)
)
∏∞
k=1(1− λ+

n (x)

µ+
k (x)

)∏∞
k=1(1− λ+

n (x)

λ−k (x)
)
∏∞
k 6=n(1− λ+

n (x)

λ+
k (x)

)
,

dµ−n (x)
dx

= −C1,1(x)
C2,1(x)

[µ−n
2(x)φ2(x)− µ−n (x)

C ′2,1
C1,1

]

×

∏∞
k=1(1− µ−n (x)

λ−k (x)
)
∏∞
k=1(1− µ−n (x)

λ+
k (x)

)∏∞
k 6=n(1− µ−n (x)

µ−k (x)
)
∏∞
k=1(1− µ−n (x)

µ+
k (x)

)
,

dµ+
n (x)
dx

= −C1,1(x)
C2,1(x)

[µ+
n

2(x)φ2(x)− µ+
n (x)

C ′2,1(x)
C1,1(x)

]

×

∏∞
k=1(1− µ+

n (x)

λ−k (x)
)
∏∞
k=1(1− µ+

n (x)

λ+
k (x)

)∏∞
k=1(1− µ+

n (x)

µ−k (x)
)
∏∞
k 6=n(1− µ+

n (x)

µ+
k (x)

)
.

(4.5)

Proof. We prove it for the case 0 ≤ x < t0. There is a similar proof for t0 < x ≤ 1.
Since {λn(x)} is the eigenvalues of problem (1.1) associated with the boundary
condition (1.2), we have

S(x, λn(x)) = 0.
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By differentiating,
∂

∂x
S(x, λ) +

∂

∂λ
S(x, λ)λ′n(x) = 0.

Therefore, at the points (x, λn(x)), we obtain

λ′n(x) = −
∂
∂xS(x, λn(x))
∂
∂λS(x, λn(x))

= − S′(x, λn(x)
∂
∂λS(x, λn(x))

. (4.6)

We calculate ∂S
∂λ at the points (x, λn(x)). Using (3.13), we reach

∂S

∂λ
= C1,0(x)

∞∑
i=1

−1
λi(x)

∏
k 6=i,1≤k

(1− λ

λk(x)
).

So, we have
∂

∂λ
S(x, λn(x)) = −C1,0(x)

λn(x)

∏
k 6=n,1≤k

(1− λn(x)
λk(x)

). (4.7)

Therefore, substituting (4.7) and (3.14) in (4.6) we obtain

λ′n(x) =
C2,0(x)
C1,0(x)

λn(x)

∏∞
k=1(1− λn(x)

µk(x)
)∏∞

k 6=n(1− λn(x)
λk(x)

)
.

On the other hand, replacing λ by µn(x) in (4.3), the first statement in the relation
vanishes and we have

C2,0(x)
µ′n(x)
µ2
n(x)

· µn(x)
∏

k 6=n,1≤k

(1− µn(x)
µk(x)

)

+ [µn(x)φ2(x)− q(x)]C1,0(x)
∏
k≥1

(1− µn(x)
λk(x)

) = 0,

so, we obtain

µ′n(x) = −C1,0(x)
C2,0(x)

[µ2
n(x)φ2(x)− µn(x)q(x)]

∏∞
k=1(1− µn(x)

λk(x)
)∏∞

k 6=n(1− µn(x)
µk(x)

)
.

By inserting q(x) = C′2,0(x)

C1,0(x)
from theorem 4.2, the proof is complete. �

Theorem 4.3 which is the main result of this article gives us an algorithm for the
solution of the inverse problem, i.e., retrieving q(x) in (0, 1).

Algorithm. Suppose that φ2(t) = (t − t0)l0φ0(t) is given where l0 is odd and
φ2(t)(t− t0)−l0 > 0 in [0, t0) ∪ (t0, 1]; i.e., t0 is a turning point of type IV and the
sequences {λ−n }, {λ+

n }, {µ−n } and {µ+
n } satisfy the following relations:√

λ+
n =

nπ − π
4∫ 1

t0
|φ(τ)|dτ

+O(
1
n

),
√
−λ−n =

nπ − π
4∫ t0

0
|φ(τ)|dτ

+O(
1
n

),

√
µ+
n =

nπ − 3π4∫ 1

t0
|φ(τ)|dτ

+O(
1
n

),
√
−µ−n =

nπ − π
4∫ t0

0
|φ(τ)|dτ)

+O(
1
n

).

(1) By solving the dual equation (4.5) with initial conditions

λ−n (1) = λ−n , λ+
n (1) = λ+

n , µ−n (1) = µ−n , µ+
n (1) = µ+

n , (4.8)

we find λ−n (x), λ+
n (x), µ−n (x) and µ+

n (x) for x ∈ (t0, 1).
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(2) Calculate q(x) = C′2,1(x)

C1,1(x)
where C1,1(x) and C2,1(x) are defined in (3.23)

and (3.28), respectively.
(3) By solving the dual equation (4.4) with initial conditions

λn(t0) = lim
x→t+0

λ−n (x), µn(t0) = lim
x→t+0

µ−n (x), (4.9)

we find λn(x) and µn(x) for x ∈ (0, t0).

(4) Calculate q(x) = C′2,0(x)

C1,0(x)
where C1,0(x) and C2,0(x) are defined in (3.15)

and (3.19), respectively.

Remark 4.4. It is obvious that the system of equations (4.4) are dual equations
for indefinite Sturm-Liouville equation (1.1), corresponds to the system of equa-
tions (1.5) in the classic Sturm-Liouville case (vibrating string). It means that
the classical result is a particular case of our result; i.e., by inserting q(x) ≡ 0,
C1,0(x) = −(L − x) and C2,0(x) = 1 in (4.4), one can obtain (1.5). We can use
the method stated in [2] to show that the systems of equations (4.4) and (4.5) with
initial conditions (4.9) and (4.8), respectively, satisfy the Lipschitz condition which
guarantees the existence of a unique solution to the initial value problem.

Proposition 4.5. Putting (4.1) in (4.2) for 0 < x < t0, we obtain

φ2(x) = q(x)
∑
i

(
1

µi(x)
− 1
λi(x)

)− C2,0(x)
C1,0(x)

∑
i

µ′i(x)
µ2
i (x)

,

which shows the relationship between weight function φ2(x) and potential function
q(x) by means of eigenvalues {λn(x)} and {µn(x)}. The same relation can be
written for t0 < x < 1.

Proposition 4.6. By differentiating relation (3.13) with respect to x, 0 < x < t0,
and then replacing λ by µn(x) for each n ∈ N, we can write

S′(x, µn(x)) = C ′1,0(x)
∞∏
k=1

(1−µn(x)
λk(x)

)+µn(x)·C1,0(x)
∑
i

λ′i(x)
λ2
i (x)

∏
k 6=i,1≤k

(1− µn(x)
λk(x)

).

On the other hand, S′(x, µn(x)) = 0, so∏
k

(1− µn(x)
λk(x)

){C ′1,0(x) + µn(x) · C1,0(x)
∑
i

λ′i(x)
λi(x)

· 1
λi(x)− µn(x)

} = 0.

From lemma 4.1 this implies

C2,0(x) + µn(x) · C1,0(x)
∑
i

λ′i(x)
λi(x)

1
λi(x)− µn(x)

= 0, ∀n ∈ N,

which represents the relationship between eigenvalues and coefficients C1,0(x) and
C2,0(x). The same relation can be written for t0 < x < 1.
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