STEPANOV-LIKE PSEUDO-ALMOST AUTOMORPHIC FUNCTIONS IN LEBESGUE SPACES WITH VARIABLE EXPONENTS $L^{p(x)}$

TOKA DIAGANA, MOHAMED ZITANE

Abstract

In this article we introduce and study a new class of functions called Stepanov-like pseudo-almost automorphic functions with variable exponents, which generalizes in a natural way classical Stepanov-like pseudo-almost automorphic spaces. Basic properties of these new spaces are investigated. The existence of pseudo-almost automorphic solutions to some first-order differential equations with $S^{p, q(x)}$-pseudo-almost automorphic coefficients will also be studied.

1. Introduction

The impetus of this article comes from three main sources. The first one is a series of papers by Liang et al [16, 22, 23] in which the concept of pseudo-almost automorphy was introduced and intensively studied. Pseudo-almost automorphic functions are natural generalizations to various classes of functions including almost periodic functions, almost automorphic functions, and pseudo-almost periodic functions.

The second source is a paper by Diagana [7] in which the concept of S^{p}-pseudoalmost automorphy ($p \geq 1$ being a constant) was introduced and studied. Note that S^{p}-pseudo-almost automorphic functions (or Stepanov-like pseudo-almost automorphic functions) are natural generalizations of pseudo-almost automorphic functions. The spaces of Stepanov-like pseudo-almost automorphic functions are now fairly well-understood as most of their fundamental properties have recently been established through the combined efforts of several mathematicians. Some of the recent developments on these functions can be found in [6, 9, 12, 13, 15].

The third and last source is a paper by Diagana and Zitane [11] in which the class of $S^{p, q(x)}$-pseudo-almost periodic functions was introduced and studied, where $q: \mathbb{R} \mapsto \mathbb{R}$ is a measurable function satisfying some additional conditions. The construction of these new spaces makes extensive use of basic properties of the Lebesgue spaces with variable exponents $L^{q(x)}$ (see [5, 14, 21).

[^0]In this article we extend S^{p}-pseudo-almost automorphic spaces by introducing $S^{p, q(x)}$-pseudo-almost automorphic spaces (or Stepanov-like pseudo-almost automorphic spaces with variable exponents). Basic properties as well as some composition results for these new spaces are established (see Theorems 4.18 and 4.20 .

To illustrate our above-mentioned findings, we will make extensive use of the newly-introduced functions to investigate the existence of pseudo-almost automorphic solutions to the first-order differential equations

$$
\begin{equation*}
u^{\prime}(t)=A(t) u(t)+f(t), \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime}(t)=A(t) u(t)+F(t, B u(t)), \quad t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

where $A(t): D(A(t)) \subset \mathbb{X} \mapsto \mathbb{X}$ is a family of closed linear operators on a Banach space \mathbb{X}, satisfying the well-known Acquistapace-Terreni conditions, the forcing terms $f: \mathbb{R} \rightarrow \mathbb{X}$ is an $S^{p, q(x)}$-pseudo-almost automorphic function and $F: \mathbb{R} \times$ $\mathbb{X} \rightarrow \mathbb{X}$ is an $S^{p, q}$-pseudo-almost automorphic function, satisfying some additional conditions, and $B: \mathbb{X} \mapsto \mathbb{X}$ is a bounded linear operator. Such result (Theorems 5.3 and 5.4 generalize most of the known results encountered in the literature on the existence and uniqueness of pseudo-almost automorphic solutions to Equations (1.1)- 1.2).

2. Preliminaries

Let $(\mathbb{X},\|\cdot\|),\left(\mathbb{Y},\|\cdot\|_{\mathbb{Y}}\right)$ be two Banach spaces. Let $B C(\mathbb{R}, \mathbb{X})$ (respectively, $B C(\mathbb{R} \times \mathbb{Y}, \mathbb{X}))$ denote the collection of all bounded continuous functions from \mathbb{R} into \mathbb{X} (respectively, the class of jointly bounded continuous functions $F: \mathbb{R} \times \mathbb{Y} \rightarrow$ $\mathbb{X})$. The space $B C(\mathbb{R}, \mathbb{X})$ equipped with the sup norm $\|\cdot\|_{\infty}$ is a Banach space. Furthermore, $C(\mathbb{R}, \mathbb{Y})$ (respectively, $C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denotes the class of continuous functions from \mathbb{R} into \mathbb{Y} (respectively, the class of jointly continuous functions $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X})$. Let $B(\mathbb{X}, \mathbb{Y})$ stand for the Banach space of bounded linear operators from \mathbb{X} into \mathbb{Y} equipped with its natural operator topology $\|\cdot\|_{B(\mathbb{X}, \mathbb{Y})}$ with $B(\mathbb{X}, \mathbb{X}):=B(\mathbb{X})$.

2.1. Pseudo-almost automorphic functions.

Definition 2.1 ([4, 6, 20]). A function $f \in C(\mathbb{R}, \mathbb{X})$ is said to be almost automorphic if for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$ there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ such that

$$
g(t):=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)
$$

is well defined for each $t \in \mathbb{R}$ and

$$
f(t)=\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)
$$

for each $t \in \mathbb{R}$.
The collection of all such functions will be denoted by $A A(\mathbb{X})$, which turns out to be a Banach space when it is equipped with the sup-norm.

Definition 2.2 ([6, [16]). A function $F \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is said to be almost automorphic if $F(t, u)$ is almost automorphic in $t \in \mathbb{R}$ uniformly for all $u \in K$, where $K \subset \mathbb{Y}$ is an arbitrary bounded subset. The collection of all such functions will be denoted by $A A(\mathbb{R} \times \mathbb{X})$.

Definition 2.3 ([15]). A function $L \in C(\mathbb{R} \times \mathbb{R}, \mathbb{X})$ is called bi-almost automorphic if for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n}$ we can extract a subsequence $\left(s_{n}\right)_{n}$ such that

$$
H(t, s):=\lim _{n \rightarrow \infty} L\left(t+s_{n}, s+s_{n}\right)
$$

is well defined for each $t, s \in \mathbb{R}$, and

$$
L(t, s)=\lim _{n \rightarrow \infty} H\left(t-s_{n}, s-s_{n}\right)
$$

for each $t, s \in \mathbb{R}$. The collection of all such functions will be denoted by $b A A(\mathbb{R} \times$ $\mathbb{R}, \mathbb{X})$.

Proposition 2.4 ([20]). Assume $f, g: \mathbb{R} \rightarrow \mathbb{X}$ are almost automorphic and λ is any scalar. Then the following hold
(a) $f+g, \lambda f, f_{\tau}(t):=f(t+\tau)$ and $\widehat{f}(t):=f(-t)$ are almost automorphic;
(b) The range R_{f} of f is precompact, so f is bounded;
(c) If $\left\{f_{n}\right\}$ is a sequence of almost automorphic functions and $f_{n} \rightarrow f$ uniformly on \mathbb{R}, then f is almost automorphic.

Define

$$
P A A_{0}(\mathbb{X}):=\left\{f \in B C(\mathbb{R}, \mathbb{X}): \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\|f(\sigma)\| d \sigma=0\right\}
$$

Similarly, define $P A A_{0}(\mathbb{R} \times \mathbb{X})$ as the collection of jointly continuous functions $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ such that $F(\cdot, y)$ is bounded for each $y \in \mathbb{Y}$ and

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\|F(s, y)\| d s=0
$$

uniformly in $y \in \mathbb{Y}$.
Definition 2.5 ([4]). A function $f \in B C(\mathbb{R}, \mathbb{X})$ is said to be pseudo-almost automorphic if it can be decomposed as $f=g+\varphi$ where $g \in A A(\mathbb{X})$ and $\varphi \in P A A_{0}(\mathbb{X})$. The set of all such functions will be denoted by $P A A(\mathbb{X})$.

Definition 2.6 ([16). A function $F \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is said to be pseudo-almost automorphic if it can be decomposed as $f=G+\Phi$ where $G \in A A(\mathbb{R} \times \mathbb{X})$ and $\Phi \in A A_{0}(\mathbb{R} \times \mathbb{X})$. The collection of such functions will be denoted by $P A A(\mathbb{R} \times \mathbb{X})$.

Theorem $2.7([22])$. The space $P A A(\mathbb{X})$ equipped with the sup-norm is a Banach space.

Theorem $2.8([15])$. If $u \in P A A(\mathbb{X})$ and if $C \in B(\mathbb{X})$, then the function $t \mapsto C u(t)$ belongs to $P A A(\mathbb{X})$.

Theorem 2.9 ([7, 15). Assume $F \in P A A(\mathbb{R} \times \mathbb{X})$. Suppose that $u \mapsto F(t, u)$ is Lipschitz uniformly in $t \in \mathbb{R}$, in the sense that there exists $L>0$ such that

$$
\begin{equation*}
\|F(t, u)-F(t, v)\| \leq L\|u-v\| \quad \text { for all } t \in \mathbb{R}, u, v \in \mathbb{X} \tag{2.1}
\end{equation*}
$$

If $\Phi \in P A A(\mathbb{X})$, then $F(., \Phi().) \in P A A(\mathbb{X})$.

2.2. Evolution family and exponential dichotomy.

Definition 2.10 ($\underline{6}, 18]$). A family of bounded linear operators $(U(t, s))_{t \geq s}$ on a Banach space \mathbb{X} is called a strongly continuous evolution family if
(i) $U(t, t)=I$ for all $t \in \mathbb{R}$;
(ii) $U(t, s)=U(t, r) U(r, s)$ for all $t \geq r \geq s$ and $t, r, s \in \mathbb{R}$; and
(iii) the map $(t, s) \mapsto U(t, s) x$ is continuous for all $x \in \mathbb{X}, t \geq s$ and $t, s \in \mathbb{R}$.

Definition 2.11 ([6], 18]). An evolution family $(U(t, s))_{t \geq s}$ on a Banach space \mathbb{X} is called hyperbolic (or has exponential dichotomy) if there exist projections $P(t), t \in$ \mathbb{R}, uniformly bounded and strongly continuous in t, and constants $M>0, \delta>0$ such that
(i) $U(t, s) P(s)=P(t) U(t, s)$ for $t \geq s$ and $t, s \in \mathbb{R}$;
(ii) The restriction $U_{Q}(t, s): Q(s) \mathbb{X} \mapsto Q(t) \mathbb{X}$ of $U(t, s)$ is invertible for $t \geq s$ (and we set $U_{Q}(s, t):=U(t, s)^{-1}$);
(iii) $\|U(t, s) P(s)\| \leq M e^{-\delta(t-s)},\left\|U_{Q}(s, t) Q(t)\right\| \leq M e^{-\delta(t-s)}$ for $t \geq s$ and $t, s \in \mathbb{R}$,
where $Q(t):=I-P(t)$ for all $t \in \mathbb{R}$.
Definition 2.12 ([18]). Given a hyperbolic evolution family $U(t, s)$, we define its so-called Green's function by

$$
\Gamma(t, s):=\left\{\begin{array}{ll}
U(t, s) P(s), & \text { for } t \geq s, \tag{2.2}\\
U_{Q}(t, s) Q(s), & \text { for } t<s,
\end{array} \quad t, s \in \mathbb{R},\right.
$$

3. Lebesgue spaces with variable exponents $L^{p(x)}$

The setting of this section follows that of Diagana and Zitane [11. This section is mainly devoted to the so-called Lebesgue spaces with variable exponents $L^{p(x)}(\mathbb{R}, \mathbb{X})$. Various basic properties of these functions are reviewed. For more on these spaces and related issues we refer to Diening et al 5.

Let $(\mathbb{X},\|\cdot\|)$ be a Banach space and let $\Omega \subseteq \mathbb{R}$ be a subset. Let $M(\Omega, \mathbb{X})$ denote the collection of all measurable functions $f: \Omega \mapsto \mathbb{X}$. Let us recall that two functions f and g of $M(\Omega, \mathbb{X})$ are equal whether they are equal almost everywhere. Set $m(\Omega):=M(\Omega, \mathbb{R})$ and fix $p \in m(\Omega)$. Let $\varphi(x, t)=t^{p(x)}$ for all $x \in \Omega$ and $t \geq 0$, and define

$$
\begin{gathered}
\rho(u)=\rho_{p(x)}(u)=\int_{\Omega} \varphi(x,\|u(x)\|) d x=\int_{\Omega}\|u(x)\|^{p(x)} d x, \\
L^{p(x)}(\Omega, \mathbb{X})=\left\{u \in M(\Omega, \mathbb{X}): \lim _{\lambda \rightarrow 0^{+}} \rho(\lambda u)=0\right\}, \\
L_{O C}^{p(x)}(\Omega, \mathbb{X})=\left\{u \in L^{p(x)}(\Omega, \mathbb{X}): \rho(u)<\infty\right\}, \text { and } \\
E^{p(x)}(\Omega, \mathbb{X})=\left\{u \in L^{p(x)}(\Omega, \mathbb{X}): \text { for all } \lambda>0, \rho(\lambda u)<\infty\right\} .
\end{gathered}
$$

Note that the space $L^{p(x)}(\Omega, \mathbb{X})$ defined above is a Musielak-Orlicz type space while $L_{O C}^{p(x)}(\Omega, \mathbb{X})$ is a generalized Orlicz type space. Further, the sets $E^{p(x)}(\Omega, \mathbb{X})$ and $L^{p(x)}(\Omega, \mathbb{X})$ are vector subspaces of $M(\Omega, \mathbb{X})$. In addition, $L_{O C}^{p(x)}(\Omega, \mathbb{X})$ is a convex subset of $L^{p(x)}(\Omega, \mathbb{X})$, and the following inclusions hold

$$
E^{p(x)}(\Omega, \mathbb{X}) \subset L_{O C}^{p(x)}(\Omega, \mathbb{X}) \subset L^{p(x)}(\Omega, \mathbb{X})
$$

Definition 3.1 ([5]). A convex and left-continuous function $\psi:[0, \infty) \rightarrow[0, \infty]$ is called a Φ-function if it satisfies the following conditions:
(a) $\psi(0)=0$;
(b) $\lim _{t \rightarrow 0^{+}} \psi(t)=0$; and
(c) $\lim _{t \rightarrow \infty} \psi(t)=\infty$.

Moreover, ψ is said to be positive whether $\psi(t)>0$ for all $t>0$.
Let us mention that if ψ is a Φ-function, then on the set $\{t>0: \psi(t)<\infty\}$, the function ψ is of the form

$$
\psi(t)=\int_{0}^{t} k(t) d t
$$

where $k(\cdot)$ is the right-derivative of $\psi(t)$. Moreover, k is a non-increasing and rightcontinuous function. For more on these functions and related issues we refer to [5].

Example 3.2. (a) Consider the function $\varphi_{p}(t)=p^{-1} t^{p}$ for $1 \leq p<\infty$. It can be shown that φ_{p} is a Φ-function. Furthermore, the function φ_{p} is continuous and positive.
(b) It can be shown that the function φ defined above; that is, $\varphi(x, t)=t^{p(x)}$ for all $x \in \mathbb{R}$ and $t \geq 0$ is a Φ-function.

For any $p \in m(\Omega)$, we define

$$
p^{-}:=\operatorname{essinf}_{x \in \Omega} p(x), \quad p^{+}:=\operatorname{ess}_{\sup }^{x \in \Omega} \text { } p(x)
$$

Define

$$
C_{+}(\Omega):=\left\{p \in m(\Omega): 1<p^{-} \leq p(x) \leq p^{+}<\infty, \text { for each } x \in \Omega\right\}
$$

Let $p \in C_{+}(\Omega)$. Using similar argument as in [5, Theorem 3.4.1], it can be shown that

$$
E^{p(x)}(\Omega, \mathbb{X})=L_{O C}^{p(x)}(\Omega, \mathbb{X})=L^{p(x)}(\Omega, \mathbb{X})
$$

In view of the above, we define the Lebesgue space $L^{p(x)}(\Omega, \mathbb{X})$ with variable exponents $p \in C_{+}(\Omega)$, by

$$
L^{p(x)}(\Omega, \mathbb{X}):=\left\{u \in M(\Omega, \mathbb{X}): \int_{\Omega}\|u(x)\|^{p(x)} d x<\infty\right\}
$$

Define, for each $u \in L^{p(x)}(\Omega, \mathbb{X})$,

$$
\|u\|_{p(x)}:=\inf \left\{\lambda>0: \int_{\Omega}\left\|\frac{u(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}
$$

It can be shown that $\|\cdot\|_{p(x)}$ is a norm upon $L^{p(x)}(\Omega, \mathbb{X})$, which is referred to as the Luxemburg norm.
Remark 3.3. Let $p \in C_{+}(\Omega)$. If p is constant, then the space $L^{p(\cdot)}(\Omega, \mathbb{X})$, as defined above, coincides with the usual space $L^{p}(\Omega, \mathbb{X})$.

We now establish some basic properties for these spaces. For more on these functions and related issues we refer to (5].

Proposition $3.4([1])$. Let $p \in C_{+}(\Omega)$ and let $u, u_{k}, v \in M(\Omega, \mathbb{X})$ for $k=1,2, \ldots$. Then the following statements hold,
(a) If $u_{k} \rightarrow u$ a.e., then $\rho_{p}(u) \leq \lim _{k \rightarrow \infty} \inf \left(\rho_{p}\left(u_{k}\right)\right)$;
(b) If $\left\|u_{k}\right\| \rightarrow\|u\|$ a.e., then $\rho_{p}(u)=\lim _{k \rightarrow \infty} \rho_{p}\left(u_{k}\right)$;
(c) If $u_{k} \rightarrow u$ a.e., $\left\|u_{k}\right\| \leq\|v\|$ and $v \in E^{p(x)}(\Omega, \mathbb{X})$, then $u_{k} \rightarrow u$ in the space $L^{p(x)}(\Omega, \mathbb{X})$.

Proposition 3.5 ([5, 21]). Let $p \in C_{+}(\Omega)$. If $u, v \in L^{p(x)}(\Omega, \mathbb{X})$, then the following properties hold,
(a) $\|u\|_{p(x)} \geq 0$, with equality if and only if $u=0$;
(b) $\rho_{p}(u) \leq \rho_{p}(v)$ and $\|u\|_{p(x)} \leq\|v\|_{p(x)}$ if $\|u\| \leq\|v\|$;
(c) $\rho_{p}\left(u\|u\|_{p(x)}^{-1}\right)=1$ if $u \neq 0$;
(d) $\rho_{p}(u) \leq 1$ if and only if $\|u\|_{p(x)} \leq 1$;
(e) If $\|u\|_{p(x)} \leq 1$, then

$$
\left[\rho_{p}(u)\right]^{1 / p^{-}} \leq\|u\|_{p(x)} \leq\left[\rho_{p}(u)\right]^{1 / p^{+}}
$$

(f) If $\|u\|_{p(x)} \geq 1$, then

$$
\left[\rho_{p}(u)\right]^{1 / p^{+}} \leq\|u\|_{p(x)} \leq\left[\rho_{p}(u)\right]^{1 / p^{-}}
$$

Proposition 3.6 ([5]). Let $p \in C_{+}(\Omega)$ and let $u, u_{k}, v \in M(\Omega, \mathbb{X})$ for $k=1,2, \ldots$. Then the following statements hold:
(a) If $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $0 \leq\|v\| \leq\|u\|$, then $v \in L^{p(x)}(\Omega, \mathbb{X})$ and $\|v\|_{p(x)} \leq$ $\|u\|_{p(x)}$.
(b) If $u_{k} \rightarrow u$ a.e., then $\|u\|_{p(x)} \leq \lim _{k \rightarrow \infty} \inf \left(\left\|u_{k}\right\|_{p(x)}\right)$.
(c) If $\left\|u_{k}\right\| \rightarrow\|u\|$ a.e. with $u_{k} \in L^{p(x)}(\Omega, \mathbb{X})$ and $\sup _{k}\left\|u_{k}\right\|_{p(x)}<\infty$, then $u \in L^{p(x)}(\mathbb{R}, \mathbb{X})$ and $\left\|u_{k}\right\|_{p(x)} \rightarrow\|u\|_{p(x)}$.
Using similar arguments as in Fan et al [14], we obtain the following result.
Proposition 3.7. If $u, u_{n} \in L^{p(x)}(\Omega, \mathbb{X})$ for $k=1,2, \ldots$, then the following statements are equivalent:
(a) $\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{p(x)}=0$;
(b) $\lim _{k \rightarrow \infty} \rho_{p}\left(u_{k}-u\right)=0$;
(c) $u_{k} \rightarrow u$ and $\lim _{k \rightarrow \infty} \rho_{p}\left(u_{k}\right)=\rho_{p}(u)$.

Theorem 3.8 ([5, 14]). Let $p \in C_{+}(\Omega)$. The space $\left(L^{p(x)}(\Omega, \mathbb{X}),\|\cdot\|_{p(x)}\right)$ is a Banach space that is separable and uniform convex. Its topological dual is $L^{q(x)}(\Omega, \mathbb{X})$, where $p^{-1}(x)+q^{-1}(x)=1$. Moreover, for any $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{q(x)}(\Omega, \mathbb{R})$, we have

$$
\begin{equation*}
\left\|\int_{\Omega} u v d x\right\| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)\|u\|_{p(x)}|v|_{q(x)} \tag{3.1}
\end{equation*}
$$

Define

$$
D_{+}(\Omega):=\left\{p \in m(\Omega): 1 \leq p^{-} \leq p(x) \leq p^{+}<\infty, \text { for each } x \in \Omega\right\}
$$

Corollary $3.9([21])$. Let $p, r \in D_{+}(\Omega)$. If the function q defined by the equation

$$
\frac{1}{q(x)}=\frac{1}{p(x)}+\frac{1}{r(x)}
$$

is in $D_{+}(\Omega)$, then there exists a constant $C=C(p, r) \in[1,5]$ such that

$$
\|u v\|_{q(x)} \leq C\|u\|_{p(x)}|v|_{r(x)}
$$

for every $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{r(x)}(\Omega, \mathbb{R})$.

Corollary 3.10 ([5]). Let meas $(\Omega)<\infty$ where meas(•) stands for the Lebesgue measure and $p, q \in D_{+}(\Omega)$. If $q(\cdot) \leq p(\cdot)$ almost everywhere in Ω, then the embedding $L^{p(x)}(\Omega, \mathbb{X}) \hookrightarrow L^{q(x)}(\Omega, \mathbb{X})$ is continuous whose norm does not exceed $2(\operatorname{meas}(\Omega)+1)$.

4. Stepanov-Like pseudo-almost automorphic functions with variable EXPONENTS

Definition 4.1. The Bochner transform $f^{b}(t, s), t \in \mathbb{R}, s \in[0,1]$ of a function $f: \mathbb{R} \rightarrow \mathbb{X}$ is defined by $f^{b}(t, s):=f(t+s)$.

Remark 4.2. A function $\varphi(t, s), t \in \mathbb{R}, s \in[0,1]$, is the Bochner transform of a certain function $f, \varphi(t, s)=f^{b}(t, s)$, if and only if $\varphi(t+\tau, s-\tau)=\varphi(s, t)$ for all $t \in \mathbb{R}, s \in[0,1]$ and $\tau \in[s-1, s]$. Moreover, if $f=h+\varphi$, then $f^{b}=h^{b}+\varphi^{b}$. Moreover, $(\lambda f)^{b}=\lambda f^{b}$ for each scalar λ.

Definition 4.3. The Bochner transform $F^{b}(t, s, u), t \in \mathbb{R}, s \in[0,1], u \in \mathbb{X}$ of a function $F: \mathbb{R} \times \mathbb{X} \mapsto \mathbb{X}$, is defined by $F^{b}(t, s, u):=F(t+s, u)$ for each $u \in \mathbb{X}$.

Definition 4.4. Let $p \in[1, \infty)$. The space $B S^{p}(\mathbb{X})$ of all Stepanov bounded functions, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in \mathbb{X} such that $f^{b} \in L^{\infty}\left(\mathbb{R}, L^{p}((0,1), \mathbb{X})\right)$. This is a Banach space with the norm

$$
\|f\|_{S^{p}}=\left\|f^{b}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)}=\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\|f(\tau)\|^{p} d \tau\right)^{1 / p}
$$

Note that for each $p \geq 1$, we have the following continuous inclusion:

$$
\left(B C(\mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p}(\mathbb{X}),\|\cdot\|_{S^{p}}\right)
$$

Definition 4.5 (Diagana and Zitane [11]). Let $p \in C_{+}(\mathbb{R})$. The space $B S^{p(x)}(\mathbb{X})$ consists of all functions $f \in M(\mathbb{R}, \mathbb{X})$ such that $\|f\|_{S^{p}(x)}<\infty$, where

$$
\begin{aligned}
\|f\|_{S^{p(x)}} & =\sup _{t \in \mathbb{R}}\left[\inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{f(x+t)}{\lambda}\right\|^{p(x+t)} d x \leq 1\right\}\right] \\
& =\sup _{t \in \mathbb{R}}\left[\inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{f(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}\right] .
\end{aligned}
$$

Note that the space $\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right)$ is a Banach space, which, depending on $p(\cdot)$, may or may not be translation-invariant.

Definition 4.6 (Diagana and Zitane [11]). If $p, q \in C_{+}(\mathbb{R})$, we then define the space $B S^{p(x), q(x)}(\mathbb{X})$ as follows

$$
\begin{aligned}
B S^{p(x), q(x)}(\mathbb{X}) & :=B S^{p(x)}(\mathbb{X})+B S^{q(x)}(\mathbb{X}) \\
& =\left\{f=h+\varphi \in M(\mathbb{R}, \mathbb{X}): h \in B S^{p(x)}(\mathbb{X}) \text { and } \varphi \in B S^{q(x)}(\mathbb{X})\right\}
\end{aligned}
$$

We equip $B S^{p(x), q(x)}(\mathbb{X})$ with the norm $\|\cdot\|_{S^{p(x), q(x)}}$ defined by

$$
\|f\|_{S^{p(x), q(x)}}:=\inf \left\{\|h\|_{S^{p(x)}}+\|\varphi\|_{S^{q(x)}}: f=h+\varphi\right\}
$$

Clearly, $\left(B S^{p(x), q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x), q(x)}}\right)$ is a Banach space, which, depending on both $p(\cdot)$ and $q(\cdot)$, may or may not be translation-invariant.

Lemma 4.7 (Diagana and Zitane [11]). Let $p, q \in C_{+}(\mathbb{R})$. Then the following continuous inclusion holds,

$$
\left(B C(\mathbb{R}, \mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right) \hookrightarrow\left(B S^{p(x), q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x), q(x)}}\right)
$$

Proof. The fact that $\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right) \hookrightarrow\left(B S^{p(x), q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x), q(x)}}\right)$ is obvious. Thus we will only show that $\left(B C(\mathbb{R}, \mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right)$. Indeed, let $f \in B C(\mathbb{R}, \mathbb{X}) \subset M(\mathbb{R}, \mathbb{X})$. If $\|f\|_{\infty}=0$, which yields $f=0$, then there is nothing to prove. Now suppose that $\|f\|_{\infty} \neq 0$. Using the facts that $0<\left\|\frac{f(x)}{\|f\|_{\infty}}\right\| \leq 1$ and that $p \in C_{+}(\mathbb{R})$ it follows that for every $t \in \mathbb{R}$,

$$
\int_{t}^{t+1}\left\|\frac{f(x)}{\|f\|_{\infty}}\right\|^{p(x)} d x \leq \int_{t}^{t+1} 1^{p(x)} d x=1
$$

and hence $\|f\|_{\infty} \in\left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{f(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}$, which yields

$$
\inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{f(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\} \leq\|f\|_{\infty}
$$

Therefore, $\|f\|_{S^{p(x)}} \leq\|f\|_{\infty}<\infty$. This shows that not only $f \in\left(B S^{p(x)}(\mathbb{X})\right), \| \cdot$ $\left.\|_{S^{p(x)}}\right)$ but also the injection $\left(B C(\mathbb{R}, \mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right)$ is continuous.

Definition 4.8. Let $p \geq 1$ be a constant. A function $f \in B S^{p}(\mathbb{X})$ is said to be S^{p}-almost automorphic (or Stepanov-like almost automorphic function) if $f^{b} \in$ $A A\left(L^{p}((0,1), \mathbb{X})\right)$. That is, a function $f \in L_{\text {loc }}^{p}(\mathbb{R}, \mathbb{X})$ is said to be Stepanovlike almost automorphic if its Bochner transform $f^{b}: \mathbb{R} \rightarrow L^{p}(0,1 ; \mathbb{X})$ is almost automorphic in the sense that for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n}$, there exists a subsequence $\left(s_{n}\right)_{n}$ and a function $g \in L_{\mathrm{loc}}^{p}(\mathbb{R}, \mathbb{X})$ such that
$\left(\int_{0}^{1}\left\|f\left(t+s+s_{n}\right)-g(t+s)\right\|^{p} d s\right)^{1 / p} \rightarrow 0, \quad\left(\int_{0}^{1}\left\|g\left(t+s-s_{n}\right)-f(t+s)\right\|^{p} d s\right)^{1 / p} \rightarrow 0$ as $n \rightarrow \infty$ pointwise on \mathbb{R}. The collection of such functions will be denoted by $S_{a a}^{p}(\mathbb{X})$.
Remark 4.9. There are some difficulties in defining $S_{a a}^{p(x)}(\mathbb{X})$ for a function $p \in$ $C_{+}(\mathbb{R})$ that is not necessarily constant. This is mainly due to the fact that the space $B S^{p(x)}(\mathbb{X})$ is not always translation-invariant. In other words, the quantities $f^{b}(t+\tau, s)$ and $f^{b}(t, s)$ (for $t \in \mathbb{R}, s \in[0,1]$) that are used in the definition of $S^{p(x)}$-almost automorphy, do not belong to the same space, unless p is constant.
Remark 4.10. It is clear that if $1 \leq p<q<\infty$ and $f \in L_{\mathrm{loc}}^{q}(\mathbb{R}, \mathbb{X})$ is S^{q}-almost automorphic, then f is S^{p}-almost automorphic. Also if $f \in A A(\mathbb{X})$, then f is S^{p}-almost automorphic for any $1 \leq p<\infty$.

Taking into account Remark 4.9 we introduce the concept of $S^{p, q(x)}$-pseudoalmost automorphy as follows, which obviously generalizes the notion of S^{p}-pseudoalmost automorphy.
Definition 4.11. Let $p \geq 1$ be a constant and let $q \in C_{+}(\mathbb{R})$. A function $f \in B S^{p, q(x)}(\mathbb{X})$ is said to be $S^{p, q(x)}$-pseudo-almost automorphic (or Stepanov-like pseudo-almost automorphic with variable exponents $p, q(x)$) if it can be decomposed as

$$
f=h+\varphi
$$

where $h \in S_{a a}^{p}(\mathbb{X})$ and $\varphi \in S_{\text {paa }}^{q(x)}(\mathbb{X})$ with $S_{\text {paa }}^{q(x)}(\mathbb{X})$ being the space of all $\psi \in$ $B S^{q(x)}(\mathbb{X})$ such that

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{\psi(x)}{\lambda}\right\|^{q(x)} d x \leq 1\right\} d t=0
$$

The collection of $S^{p, q(x)}$-pseudo-almost automorphic functions will be denoted by $S_{p a a}^{p, q(x)}(\mathbb{X})$.
Lemma 4.12. Let $r, s \geq 1, p, q \in D_{+}(\mathbb{R})$. If $s<r, q^{+}<p^{-}$and $f \in B S^{r, p(x)}(\mathbb{X})$ is $S_{p a a}^{r, p(x)}$-pseudo-almost automorphic, then f is $S_{p a a}^{s, q(x)}$-pseudo-almost automorphic.
Proof. Suppose that $f \in B S^{r, p(x)}(\mathbb{X})$ is $S^{r, p(x)}$-pseudo-almost automorphic. Thus there exist two functions $h, \varphi: \mathbb{R} \rightarrow \mathbb{X}$ such that

$$
f=h+\varphi
$$

where $h \in S_{a a}^{r}(\mathbb{X})$ and $\varphi \in S_{p a a_{0}}^{p(x)}(\mathbb{X})$. From remark 4.10, h is S^{s}-almost automorphic.

In view of $q(\cdot) \leq q^{+}<p^{-} \leq p(\cdot)$, it follows from Corollary 3.10 that,

$$
\begin{aligned}
& {\left[\inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{\varphi(x)}{\lambda}\right\|^{q(x)} d x \leq 1\right\}\right]} \\
& \leq 4\left[\inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{\varphi(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}\right]
\end{aligned}
$$

Using the fact that $\varphi \in S_{\text {paa }}^{p(x)}(\mathbb{X})$ and the previous inequality it follows that

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{\varphi(x)}{\lambda}\right\|^{q(x)} d x \leq 1\right\} d t=0
$$

that is, $\varphi \in S_{\text {paa }}^{q(x)}(\mathbb{X})$. Therefore, $f \in S_{p a a}^{s, q(x)}(\mathbb{X})$.
Proposition 4.13. Let $p \geq 1$ be a constant and let $q \in C_{+}(\mathbb{R})$. If $f \in P A A(\mathbb{X})$, then f is $S^{p, q(x)}$-pseudo-almost automorphic.
Proof. Let $f \in P A A(\mathbb{X})$, that is, there exist two functions $h, \varphi: \mathbb{R} \rightarrow \mathbb{X}$ such that $f=h+\varphi$ where $h \in A A(\mathbb{X})$ and $\varphi \in P A A_{0}(\mathbb{X})$. Now from remark 4.10, $h \in A A(\mathbb{X}) \subset S_{a a}^{p}(\mathbb{X})$. The proof of $\varphi \in S_{p a a_{0}}^{q(x)}(\mathbb{X})$ was given in [11. However for the sake of clarity, we reproduce it here. Using (e)-(f) of Proposition 3.5 and the usual Hölder inequality, it follows that

$$
\begin{aligned}
& \int_{-T}^{T} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d t \\
& \leq \int_{-T}^{T}\left(\int_{0}^{1}\|\varphi(t+x)\|^{q(t+x)} d x\right)^{\gamma} d t \\
& \leq(2 T)^{1-\gamma}\left[\int_{-T}^{T}\left(\int_{0}^{1}\|\varphi(t+x)\|^{q(t+x)} d x\right) d t\right]^{\gamma} \\
& \leq(2 T)^{1-\gamma}\left[\int_{-T}^{T}\left(\int_{0}^{1}\|\varphi(t+x)\|\|\varphi\|_{\infty}^{q(t+x)-1} d x\right) d t\right]^{\gamma} \\
& \leq(2 T)^{1-\gamma}\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{-T}^{T}\left(\int_{0}^{1}\|\varphi(t+x)\| d x\right) d t\right]^{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
& =(2 T)^{1-\gamma}\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{0}^{1}\left(\int_{-T}^{T}\|\varphi(t+x)\| d t\right) d x\right]^{\gamma} \\
& =(2 T)\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{0}^{1}\left(\frac{1}{2 T} \int_{-T}^{T}\|\varphi(t+x)\| d t\right) d x\right]^{\gamma}
\end{aligned}
$$

where

$$
\gamma= \begin{cases}\frac{1}{q^{+}} & \text {if }\|\varphi\|<1 \\ \frac{1}{q^{-}} & \text {if }\|\varphi\| \geq 1\end{cases}
$$

Using the fact that $P A A_{0}(\mathbb{X})$ is translation invariant and the (usual) Dominated Convergence Theorem, it follows that

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d t \\
& \leq\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{0}^{1}\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\|\varphi(t+x)\| d t\right) d x\right]^{\gamma}=0
\end{aligned}
$$

Using similar argument as in [22], the following Lemma can be established.
Lemma 4.14. Let $p, q \geq 1$ be a constants. If $f=h+\varphi \in S_{p a a}^{p, q}(\mathbb{X})$ such that $h^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in P A A_{0}\left(L^{q}((0,1), \mathbb{X})\right)$, then

$$
\{h(t+.): t \in \mathbb{R}\} \subset \overline{\{f(t+.): t \in \mathbb{R}\}}, \quad \text { in } S^{p, q}(\mathbb{X})
$$

Proof. We prove it by contradiction. Indeed, if this is not true, then there exist a $t_{0} \in \mathbb{R}$ and an $\varepsilon>0$ such that

$$
\left\|h\left(t_{0}+\cdot\right)-f(t+\cdot)\right\|_{S^{p, q}} \geq 2 \varepsilon, \quad t \in \mathbb{R}
$$

Since $h^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\left(B S^{p}(\mathbb{X}),\|\cdot\|_{S^{p}}\right) \hookrightarrow\left(B S^{p, q}(\mathbb{X}),\|\cdot\|_{S^{p, q}}\right)$, fix $t_{0} \in \mathbb{R}, \varepsilon>0$ and write, $B_{\varepsilon}:=\left\{\tau \in \mathbb{R} ;\left\|h\left(t_{0}+\tau+\cdot\right)-g\left(t_{0}+\cdot\right)\right\|_{S^{p, q}}<\varepsilon\right\}$. By [22, Lemma 2.1], there exist $s_{1}, \ldots, s_{m} \in \mathbb{R}$ such that

$$
\cup_{i=1}^{m}\left(s_{i}+B_{\varepsilon}\right)=\mathbb{R}
$$

Write

$$
\hat{s}_{i}=s_{i}-t_{0} \quad(1 \leq i \leq m), \quad \eta=\max _{1 \leq i \leq m}\left|\hat{s}_{i}\right| .
$$

For $T \in \mathbb{R}$ with $|T|>\eta$; we put

$$
B_{\varepsilon, T}^{(i)}=\left[-T+\eta-\hat{s}_{i}, T-\eta-\hat{s}_{i}\right] \cap\left(t_{0}+B_{\varepsilon}\right), \quad 1 \leq i \leq m
$$

one has $\cup_{i=1}^{m}\left(\hat{s}_{i}+B_{\varepsilon, T}^{(i)}\right)=[-T+\eta, T-\eta]$.
Using the fact that $B_{\varepsilon, T}^{(i)} \subset[-T, T] \cap\left(t_{0}+B_{\varepsilon}\right), i=1, \ldots, m$, we obtain

$$
\begin{aligned}
2(T-\eta) & =\operatorname{meas}([-T+\eta, T-\eta]) \\
& \leq \sum_{i=1}^{m} \operatorname{meas}\left(\hat{s}_{i}+B_{\varepsilon, T}^{(i)}\right) \\
& =\sum_{i=1}^{m} \operatorname{meas}\left(B_{\varepsilon, T}^{(i)}\right) \\
& \leq m \max _{1 \leq i \leq m}\left\{\operatorname{meas}\left(B_{\varepsilon, T}^{(i)}\right)\right\}
\end{aligned}
$$

$$
\leq m \operatorname{meas}\left([-T, T] \cap\left(t_{0}+B_{\varepsilon}\right)\right)
$$

On the other hand, by using the Minkowski inequality, for any $t \in t_{0}+B_{\varepsilon}$, one has

$$
\begin{aligned}
\|\varphi(t+\cdot)\|_{S^{q}} & =\|\varphi(t+\cdot)\|_{S^{p, q}} \\
& =\|f(t+\cdot)-h(t+\cdot)\|_{S^{p, q}} \\
& \geq\left\|h\left(t_{0}+\cdot\right)-f(t+\cdot)\right\|_{S^{p, q}}-\left\|h(t+\cdot)-h\left(t_{0}+\cdot\right)\right\|_{S^{p, q}}>\varepsilon
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{2 T} \int_{-T}^{T}\|\varphi(t+\cdot)\|_{S^{q}} d t & \geq \frac{1}{2 T} \int_{[-T, T] \cap\left(t_{0}+B_{\varepsilon}\right)}\|\varphi(t+\cdot)\|_{S^{q}} d t \\
& \geq \varepsilon(T-\eta)(m T)^{-1} \rightarrow \varepsilon m^{-1}, \quad \text { as } T \rightarrow \infty
\end{aligned}
$$

This is a contradiction, since $\varphi^{b} \in P A A_{0}\left(L^{q}((0,1), \mathbb{X})\right)$.
Theorem 4.15. Let $p, q \geq 1$ be constants. The space $S_{p a a}^{p, q}(\mathbb{X})$ equipped with the norm $\|\cdot\|_{S^{p, q}}$ is a Banach space.

Proof. It is sufficient to prove that $S_{p a a}^{p, q}(\mathbb{X})$ is a closed subspace of $B S^{p, q}(\mathbb{X})$. Let $f_{n}=h_{n}+\varphi_{n}$ be a Cauchy sequence in $S_{p a a}^{p, q}(\mathbb{X})$ with $\left(h_{n}^{b}\right)_{n \in \mathbb{N}} \subset A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\left(\varphi_{n}^{b}\right)_{n \in \mathbb{N}} \subset P A A_{0}\left(L^{q}((0,1), \mathbb{X})\right)$ such that $\left\|f_{n}-f\right\|_{S^{p, q}} \rightarrow 0$ as $n \rightarrow \infty$. By Lemma 4.14, one has

$$
\left\{h_{n}(t+.): t \in \mathbb{R}\right\} \subset \overline{\left\{f_{n}(t+.): t \in \mathbb{R}\right\}}
$$

and hence

$$
\left\|h_{n}\right\|_{S^{p}}=\left\|h_{n}\right\|_{S^{p, q}} \leq\left\|f_{n}\right\|_{S^{p, q}} \quad \text { for all } n \in \mathbb{N}
$$

Consequently, there exists a function $h \in S_{a a}^{p}(\mathbb{X})$ such that $\left\|h_{n}-h\right\|_{S^{p}} \rightarrow 0$ as $n \rightarrow$ ∞. Using the previous fact, it easily follows that the function $\varphi:=f-h \in B S^{q}(\mathbb{X})$ and that $\left\|\varphi_{n}-\varphi\right\|_{S^{q}}=\left\|\left(f_{n}-h_{n}\right)-(f-h)\right\|_{S^{q}} \rightarrow 0$ as $n \rightarrow \infty$. Using the fact that $\varphi=\left(\varphi-\varphi_{n}\right)+\varphi_{n}$ it follows that

$$
\begin{aligned}
& \frac{1}{2 T} \int_{-T}^{T}\left(\int_{0}^{1}\|\varphi(\tau+t)\|^{q} d \tau\right)^{1 / q} d t \\
& \leq \frac{1}{2 T} \int_{-T}^{T}\left(\int_{0}^{1}\left\|\varphi(\tau+t)-\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{1 / q} d t \\
&+\frac{1}{2 T} \int_{-T}^{T}\left(\int_{0}^{1}\left\|\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{1 / q} d t \\
& \leq\left\|\varphi_{n}-\varphi\right\|_{S^{q}}+\frac{1}{2 T} \int_{-T}^{T}\left(\int_{0}^{1}\left\|\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{1 / q} d t
\end{aligned}
$$

Letting $T \rightarrow \infty$ and then $n \rightarrow \infty$ in the previous inequality, we obtain that $\varphi^{b} \in$ $P A A_{0}\left(L^{q}((0,1), \mathbb{X})\right)$; that is, $f=h+\varphi \in S_{p a a}^{p, q}(\mathbb{X})$.

Using similar arguments as in the proof of [15. Theorem 3.4], we obtain the next theorem.

Theorem 4.16. If $u \in S_{p a a}^{p, q}(\mathbb{Y})$ and if $C \in B(\mathbb{Y}, \mathbb{X})$, then the function $t \mapsto C u(t)$ belongs to $S_{p a a}^{p, q}(\mathbb{X})$.

Definition 4.17. Let $p \geq 1$ and $q \in C_{+}(\mathbb{R})$. A function $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ with $F(., u) \in B S^{p, q(x)}(\mathbb{X})$ for each $u \in \mathbb{Y}$, is said to be $S^{p, q(x)}$-pseudo-almost automorphic in $t \in \mathbb{R}$ uniformly in $u \in \mathbb{Y}$ if $t \mapsto F(t, u)$ is $S^{p, q(x)}$-pseudo-almost automorphic for each $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set. This means, there exist two functions $G, H: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ such that $F=G+H$, where $G^{b} \in A A\left(\mathbb{Y}, L^{p}((0,1), \mathbb{X})\right)$ and $H^{b} \in P A A_{0}\left(\mathbb{Y}, L^{q^{b}(x)}((0,1), \mathbb{X})\right)$; that is,

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{H(x+t, u)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d t=0
$$

uniformly in $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set. The collection of such functions will be denoted by $S_{p a a}^{p, q(x)}(\mathbb{Y}, \mathbb{X})$.

Let $\operatorname{Lip}^{r}(\mathbb{Y}, \mathbb{X})$ denote the collection of functions $f: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ satisfying: there exists a nonnegative function $L_{f} \in L^{r}(\mathbb{R})$ such that

$$
\|f(t, u)-f(t, v)\| \leq L_{f}(t)\|u-v\|_{\mathbb{Y}} \quad \text { for all } u, v \in \mathbb{Y}, t \in \mathbb{R}
$$

Now, we recall the following composition theorem for $S_{a a}^{p}$ functions.
Theorem 4.18 (17). Let $p>1$ be a constant. We suppose that the following conditions hold:
(a) $f \in S_{a a}^{p}(\mathbb{Y}, \mathbb{X}) \cap \operatorname{Lip}^{r}(\mathbb{Y}, \mathbb{X})$ with $r \geq \max \left\{p, \frac{p}{p-1}\right\}$.
(b) $\phi \in S_{a a}^{p}(\mathbb{X})$ and there exists a set $E \subset \mathbb{R}$ such that $K:=\overline{\{\phi(t): t \in \mathbb{R} \backslash E\}}$ is compact in \mathbb{X}.
Then there exists $m \in[1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{a a}^{m}(\mathbb{X})$.
To obtain a composition theorem for $S_{p a a}^{p, q}$ functions, we need the following lemma.
Lemma 4.19. Let $p, q>1$ be a constants. Assume that $f=g+h \in S_{p a a}^{p, q}(\mathbb{R} \times$ $\mathbb{X})$ with $g^{b} \in A A\left(\mathbb{R} \times L^{p}((0,1), \mathbb{X})\right)$ and $h^{b} \in P A A_{0}\left(\mathbb{R} \times L^{q}((0,1), \mathbb{X})\right)$. If $f \in$ $\operatorname{Lip}^{p}(\mathbb{R}, \mathbb{X})$, then g satisfies

$$
\left(\int_{0}^{1}\|g(t+s, u(s))-g(t+s, v(s))\|^{p} d s\right)^{1 / p} \leq c\left\|L_{f}\right\|_{S^{p}}\|u-v\|_{\mathbb{Y}}
$$

for all $u, v \in \mathbb{Y}$ and $t \in \mathbb{R}$, where c is a nonnegative constant.
Proof. Let $f=g+h \in S_{p a a}^{p, q(x)}(\mathbb{R} \times \mathbb{X})$ with $g^{b}(\cdot, u) \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $h^{b}(\cdot, u) \in$ $P A A_{0}\left(L^{q}((0,1), \mathbb{X})\right)$ for each $u \in \mathbb{Y}$. Using Lemma 4.14 it follows that

$$
\{g(t+\cdot, u): t \in \mathbb{R}\} \subset \overline{\{f(t+\cdot, u): t \in \mathbb{R}\}} \quad \text { in } \quad S^{p, q}(\mathbb{X})
$$

for each $u \in \mathbb{Y}$.
Since $f \in \operatorname{Lip}^{p}(\mathbb{R}, \mathbb{X})$ and $\left(B S^{p}(\mathbb{X}),\|\cdot\|_{S^{p}}\right) \hookrightarrow\left(B S^{p, q}(\mathbb{X}),\|\cdot\|_{S^{p, q}}\right)$, it follows that

$$
\begin{aligned}
\left(\int_{0}^{1}\|g(t+s, u(s))-g(t+s, v(s))\|^{p} d s\right)^{1 / p} & \leq\|g(\cdot, u)-g(\cdot, v)\|_{S^{p}} \\
& =\|g(\cdot, u)-g(\cdot, v)\|_{S^{p, q}} \\
& \leq\|f(\cdot, u)-f(\cdot, v)\|_{S^{p, q}} \\
& \leq c\|f(\cdot, u)-f(\cdot, v)\|_{S^{p}} \\
& \leq c\left\|L_{f}\right\|_{S^{p}}\|u-v\|_{\mathbb{Y}}
\end{aligned}
$$

for all $u, v \in \mathbb{Y}$ and $t \in \mathbb{R}$.

Theorem 4.20. Let $p, q>1$ be a constants such that $p \leq q$. Assume that the following conditions hold:
(a) $f=g+h \in S_{p a a}^{p, q}(\mathbb{R} \times \mathbb{X})$ with $\left.g \in S_{a a}^{p}(\mathbb{R} \times \mathbb{X})\right)$ and $h \in S_{p a a_{0}}^{q}(\mathbb{R} \times \mathbb{X})$. Moreover, $f, g \in \operatorname{Lip}^{r}(\mathbb{R}, \mathbb{X})$ with $r \geq \max \left\{p, \frac{p}{p-1}\right\}$;
(b) $\phi=\alpha+\beta \in S_{p a a}^{p, q}(\mathbb{Y})$ with $\alpha \in S_{a a}^{p}(\mathbb{Y})$ and $\beta \in S_{p a a_{0}}^{q}(\mathbb{Y})$, and $K:=$ $\overline{\{\alpha(t): t \in \mathbb{R}\}}$ is compact in \mathbb{Y}.
Then there exists $m \in[1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{\text {paa }}^{m, m}(\mathbb{R} \times \mathbb{X})$.
Proof. First of all, write

$$
f^{b}\left(\cdot, \phi^{b}(\cdot)\right)=g^{b}\left(\cdot, \alpha^{b}(\cdot)\right)+f^{b}\left(\cdot, \phi^{b}(\cdot)\right)-f^{b}\left(\cdot, \alpha^{b}(\cdot)\right)+h^{b}\left(\cdot, \alpha^{b}(\cdot)\right)
$$

From Lemma 4.19, one has $g \in S_{a a}^{p}(\mathbb{R} \times \mathbb{X})$. Now using the theorem of composition of S^{p}-almost automorphic functions (Theorem 4.18), it is easy to see that there exists $m \in[1, p)$ with $\frac{1}{m}=\frac{1}{p}+\frac{1}{r}$ such that $g^{b}\left(\cdot, \alpha^{b}(\cdot)\right) \in A A\left(\mathbb{R} \times L^{m}((0,1), \mathbb{X})\right)$.

Set $\Phi^{b}(\cdot)=f^{b}\left(\cdot, \phi^{b}(\cdot)\right)-f^{b}\left(\cdot, \alpha^{b}(\cdot)\right)$. Clearly, $\Phi^{b} \in P A A_{0}\left(\mathbb{R} \times L^{m}((0,1), \mathbb{X})\right)$. Now, for $T>0$,

$$
\begin{aligned}
& \frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\left\|\Phi^{b}(s)\right\|^{m} d s\right)^{1 / m} d t \\
& =\frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\left\|f^{b}\left(s, \phi^{b}(s)\right)-f^{b}\left(s, \alpha^{b}(s)\right)\right\|^{m} d s\right)^{1 / m} d t \\
& \leq \frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\left(L_{f}^{b}(s)\left\|\beta^{b}(s)\right\|_{\mathbb{Y}}\right)^{m} d s\right)^{1 / m} d t \\
& \leq\left\|L_{f}^{b}\right\|_{S^{r}}\left[\frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\left\|\beta^{b}(s)\right\|_{\mathbb{Y}}^{p} d s\right)^{1 / p} d t\right] \\
& \leq\left\|L_{f}^{b}\right\|_{S^{r}}\left[\frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\left\|\beta^{b}(s)\right\|_{\mathbb{Y}}^{q} d s\right)^{1 / q} d t\right]
\end{aligned}
$$

Using the fact that $\beta^{b} \in P A A_{0}\left(L^{q}((0,1), \mathbb{Y})\right)$, it follows that $\Phi^{b} \in P A A_{0}(\mathbb{R} \times$ $\left.L^{m}((0,1), \mathbb{X})\right)$.

On the other hand, since $f, g \in \operatorname{Lip}^{r}(\mathbb{R}, \mathbb{X}) \subset \operatorname{Lip}^{p}(\mathbb{R}, \mathbb{X})$, one has

$$
\begin{aligned}
&(\left.\int_{0}^{1}\|h(t+s, u(s))-h(t+s, v(s))\|^{m} d s\right)^{1 / m} \\
& \leq\left(\int_{0}^{1}\|f(t+s, u(s))-f(t+\cdot, v(s))\|^{m} d s\right)^{1 / m} \\
& \quad+\left(\int_{0}^{1}\|g(t+s, u(s))-g(t+s, v(s))\|^{m} d s\right)^{1 / m} \\
& \leq\left(\int_{0}^{1}\left(L_{f}(t+s)\|u(s)-v(s)\|_{\mathbb{Y}}\right)^{m} d s\right)^{1 / m} \\
& \quad+\left(\int_{0}^{1}\left(L_{g}(t+s)\|u(s)-v(s)\|_{\mathbb{Y}}\right)^{m} d s\right)^{1 / m} \\
& \leq\left(\left\|L_{f}\right\|_{S^{r}}+\left\|L_{g}\right\|_{S^{r}}\right)\|u(s)-v(s)\|_{p}
\end{aligned}
$$

Since $K:=\overline{\{\alpha(t): t \in \mathbb{R}\}}$ is compact in \mathbb{Y}, then for each $\varepsilon>0$, there exists a finite number of open balls $B_{k}=B\left(x_{k}, \varepsilon\right)$, centered at $x_{k} \in K$ with radius ε such
that

$$
\{\alpha(t): t \in \mathbb{R}\} \subset \cup_{k=1}^{m} B_{k}
$$

Therefore, for $1 \leq k \leq m$, the set $U_{k}=\left\{t \in \mathbb{R}: \alpha \in B_{k}\right\}$ is open and $\mathbb{R}=\cup_{k=1}^{m} U_{k}$. Now, for $2 \leq k \leq m$, set $V_{k}=U_{k}-\cup_{i=1}^{k-1} U_{i}$ and $V_{1}=U_{1}$. Clearly, $V_{i} \cap V_{j}=\emptyset$ for all $i \neq j$. Define the step function $\bar{x}: \mathbb{R} \rightarrow \mathbb{Y}$ by $\bar{x}(t)=x_{k}, t \in V_{k}, k=1,2, \ldots, m$. It easy to see that

$$
\|\alpha(s)-\bar{x}(s)\|_{\mathbb{Y}} \leq \varepsilon, \quad \text { for all } s \in \mathbb{R}
$$

which yields

$$
\begin{aligned}
& \frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\|h(s, \alpha(s))\|^{m} d s\right)^{1 / m} d t \\
& \leq \frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\|h(s, \alpha(s))-h(s, \bar{x}(s))\|^{m} d s\right)^{1 / m} d t \\
& \quad+\frac{1}{2 T} \int_{-T}^{T}\left(\int_{t}^{t+1}\|h(s, \bar{x}(s))\|^{m} d s\right)^{1 / m} d t \\
& \leq\left(\left\|L_{f}\right\|_{S^{r}}+\left\|L_{g}\right\|_{S^{r}}\right) \varepsilon+\frac{1}{2 T} \int_{-T}^{T}\left(\sum_{k=1}^{m} \int_{V_{k} \cap[t, t+1]}\|h(s, \bar{x}(s))\|^{m} d s\right)^{1 / m} d t \\
& \leq\left(\left\|L_{f}\right\|_{S^{r}}+\left\|L_{g}\right\|_{S^{r}}\right) \varepsilon+\frac{1}{2 T} \int_{-T}^{T}\left(\sum_{k=1}^{m} \int_{V_{k} \cap[t, t+1]}\|h(s, \bar{x}(s))\|^{q} d s\right)^{1 / q} d t
\end{aligned}
$$

Since ε is arbitrary and $h^{b} \in P A A_{0}\left(\mathbb{R} \times L^{q}((0,1), \mathbb{X})\right)$, it follows that the function $h^{b}\left(\cdot, \alpha^{b}(\cdot)\right)$ belongs to $P A A_{0}\left(\mathbb{R} \times L^{m}((0,1), \mathbb{X})\right)$.

Remark 4.21. A general composition theorem in $S_{p a a}^{p, q(x)}(\mathbb{R} \times \mathbb{X})$ is unlikely as compositions of elements of $S_{p a a}^{p, q(x)}(\mathbb{R} \times \mathbb{X})$ may not be well-defined unless $q(\cdot)$ is the constant function.

5. Existence of pseudo-almost automorphic solutions

Let $p, q>1$ be constants such that $p \leq q$. In this section, we discuss the existence and uniqueness of pseudo-almost automorphic solutions to the first-order linear differential equation (1.1) and to the semilinear equation 1.2 . For that, we make the following assumptions:
(H1) The family of closed linear operators $A(t)$ satisfy Acquistapace-Terreni conditions.
(H2) The evolution family $(U(t, s))_{t \geq s}$ generated by $A(t)$ has an exponential dichotomy with constants $M>\overline{0}, \delta>0$, dichotomy projections $P(t), t \in \mathbb{R}$, and Green's function $\Gamma(t, s)$.
(H3) $\Gamma(t, s) \in b A A(\mathbb{R} \times \mathbb{R}, B(\mathbb{X}))$.
(H4) $B: \mathbb{X} \mapsto \mathbb{X}$ is a bounded linear operator and let $\|B\|_{B(\mathbb{X})}=c$.
(H5) $F=G+H \in S_{p a a}^{p, q}(\mathbb{R} \times \mathbb{X}) \cap C(\mathbb{R} \times \mathbb{X}, \mathbb{X})$ with $G^{b} \in A A\left(\mathbb{R} \times L^{p}((0,1), \mathbb{X})\right)$ and $H^{b} \in P A A_{0}\left(\mathbb{R} \times L^{q}((0,1), \mathbb{X})\right)$. Moreover, $F, G \in \operatorname{Lip}^{r}(\mathbb{R}, \mathbb{X})$ with

$$
r \geq \max \left\{p, \frac{p}{p-1}\right\}
$$

Let us also mention that (H1) was introduced in the literature by Acquistapace and Terreni in [2, 3]. Among other things, from [1, Theorem 2.3] (see also [3, [24, 25]), assumption (H1) does ensure that the family of operators $A(t)$ generates a unique strongly continuous evolution family on \mathbb{X}, which we will denote by $(U(t, s))_{t \geq s}$.
Definition 5.1. Under (H1), if $f: \mathbb{R} \rightarrow \mathbb{X}$ is a bounded continuous function, then a mild solution to 1.1 is a continuous function $u: \mathbb{R} \rightarrow \mathbb{X}$ satisfying

$$
\begin{equation*}
u(t)=U(t, s) u(s)+\int_{s}^{t} U(t, \sigma) f(\sigma) d \sigma \tag{5.1}
\end{equation*}
$$

for all $(t, s) \in \mathbb{T}:=\{(t, s) \in \mathbb{R} \times \mathbb{R}: \quad t \geq s\}$.
Definition 5.2. Suppose (H1) and (H4) hold. If $F: \mathbb{R} \times \mathbb{X} \rightarrow \mathbb{X}$ is a bounded continuous function, then a mild solution to $\sqrt{1.2}$ is a continuous function $u: \mathbb{R} \rightarrow \mathbb{X}$ satisfying

$$
\begin{equation*}
u(t)=U(t, s) u(s)+\int_{s}^{t} U(t, \sigma) F(\sigma, B u(\sigma)) d \sigma \tag{5.2}
\end{equation*}
$$

for all $(t, s) \in \mathbb{T}$.
Theorem 5.3. Let $p>1$ be a constant and let $q \in C_{+}(\mathbb{R})$. Suppose that (H1)(H3) hold. If $f \in S_{p a a}^{p, q(x)}(\mathbb{X}) \cap C(\mathbb{R}, \mathbb{X})$, then the (1.1) has a unique pseudo-almost automorphic solution given by

$$
\begin{equation*}
u(t)=\int_{-\infty}^{+\infty} \Gamma(t, \sigma) f(\sigma) d \sigma, \quad t \in \mathbb{R} \tag{5.3}
\end{equation*}
$$

Proof. Define the function $u: \mathbb{R} \mapsto \mathbb{X}$ by

$$
u(t):=\int_{-\infty}^{t} U(t, \sigma) P(\sigma) f(\sigma) d \sigma-\int_{t}^{+\infty} U_{Q}(t, \sigma) Q(\sigma) f(\sigma) d \sigma, \quad t \in \mathbb{R}
$$

Let us show that u satisfies (5.1) for all $t \geq s$, all $t, s \in \mathbb{R}$. Indeed, applying $U(t, s)$ for all $t \geq s$, to both sides of the expression of u, we obtain,

$$
\begin{aligned}
U(t, s) u(s)= & \int_{-\infty}^{s} U(t, \sigma) P(\sigma) f(\sigma) d \sigma-\int_{s}^{+\infty} U_{Q}(t, \sigma) Q(\sigma) f(\sigma) d \sigma \\
= & \int_{-\infty}^{t} U(t, \sigma) P(\sigma) f(\sigma) d \sigma-\int_{s}^{t} U(t, \sigma) P(\sigma) f(\sigma) d \sigma \\
& -\int_{t}^{+\infty} U_{Q}(t, \sigma) Q(\sigma) f(\sigma) d \sigma-\int_{s}^{t} U_{Q}(t, \sigma) Q(\sigma) f(\sigma) d \sigma \\
= & u(t)-\int_{s}^{t} U(t, \sigma) f(\sigma) d \sigma
\end{aligned}
$$

and hence u is a mild solution to 1.1.
Let us show that $u \in P A A(\mathbb{X})$. Indeed, since $f \in S_{p a a}^{p, q(x)}(\mathbb{X}) \cap C(\mathbb{R}, \mathbb{X})$, then $f=g+\varphi$, where $g^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in P A A_{0}\left(L^{q^{b}(x)}((0,1), \mathbb{X})\right)$. Then u can be decomposed as $u(t)=X(t)+Y(t)$, where

$$
X(t)=\int_{-\infty}^{t} U(t, s) P(s) g(s) d s+\int_{+\infty}^{t} U_{Q}(t, s) Q(s) g(s) d s
$$

$$
Y(t)=\int_{-\infty}^{t} U(t, s) P(s) \varphi(s) d s+\int_{+\infty}^{t} U_{Q}(t, s) Q(s) \varphi(s) d s
$$

The proof that $X \in A A(\mathbb{X})$ is obvious and hence is omitted. To prove that $Y \in P A A_{0}(\mathbb{X})$, we define for all $n=1,2, \ldots$, the sequence of integral operators

$$
\begin{aligned}
Y_{n}(t): & =\int_{t-n}^{t-n+1} U(t, s) P(s) \varphi(s) d s+\int_{t+n-1}^{t+n} U_{Q}(t, s) Q(s) \varphi(s) d s \\
& =\int_{n-1}^{n} U(t, t-s) P(t-s) \varphi(t-s) d s+\int_{n-1}^{n} U_{Q}(t, t+s) Q(t+s) \varphi(t+s) d s
\end{aligned}
$$

for each $t \in \mathbb{R}$.
Let $d \in m(\mathbb{R})$ such that $q^{-1}(x)+d^{-1}(x)=1$. From exponential dichotomy of $(U(t, s))_{t \geq s}$ and Hölder's inequality (Theorem 3.8), it follows that

$$
\begin{aligned}
\left\|Y_{n}(t)\right\| \leq & M \int_{t-n}^{t-n+1} e^{-\delta(t-s)}\|\varphi(s)\| d s+M \int_{t+n-1}^{t+n} e^{\delta(t-s)}\|\varphi(s)\| d s \\
\leq & M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right)\left[\inf \left\{\lambda>0: \int_{t-n}^{t-n+1}\left(\frac{e^{-\delta(t-s)}}{\lambda}\right)^{d(s)} d s \leq 1\right\}\right] \\
& \times\left[\inf \left\{\lambda>0: \int_{t-n}^{t-n+1}\left\|\frac{\varphi(s)}{\lambda}\right\|^{q(s)} d s \leq 1\right\}\right] \\
& +M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right)\left[\inf \left\{\lambda>0: \int_{t+n-1}^{t+n}\left(\frac{e^{\delta(t-s)}}{\lambda}\right)^{d(s)} d s \leq 1\right\}\right] \\
& \times\left[\inf \left\{\lambda>0: \int_{t+n-1}^{t+n}\left\|\frac{\varphi(s)}{\lambda}\right\|^{q(s)} d s \leq 1\right\}\right]
\end{aligned}
$$

Now since

$$
\begin{aligned}
\int_{t-n}^{t-n+1}\left[\frac{e^{-\delta(t-s)}}{e^{-\delta(n-1)}}\right]^{d(s)} d s & =\int_{t-n}^{t-n+1}\left[e^{\delta(s-t+n-1)}\right]^{d(s)} d s \\
& \leq \int_{t-n}^{t-n+1}[1]^{d(s)} d s \leq 1
\end{aligned}
$$

it follows that

$$
e^{-\delta(n-1)} \in\left\{\lambda>0: \int_{t-n}^{t-n+1}\left(\frac{e^{-\delta(t-s)}}{\lambda}\right)^{d(s)} d s \leq 1\right\}
$$

which shows that

$$
\left[\inf \left\{\lambda>0: \int_{t-n}^{t-n+1}\left(\frac{e^{-\delta(t-s)}}{\lambda}\right)^{d(s)} d s \leq 1\right\}\right] \leq e^{-\delta(n-1)}
$$

Consequently,

$$
\begin{aligned}
\left\|Y_{n}(t)\right\| & \leq M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right) e^{-\delta(n-1)}\|\varphi\|_{S^{q(x)}}+M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right) e^{\delta(1-n)}\|\varphi\|_{S^{q(x)}} \\
& \leq 2 M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right) e^{-\delta(n-1)}\|\varphi\|_{S^{q(x)}}
\end{aligned}
$$

Since the series $\sum_{n=1}^{\infty} e^{-\delta(n-1)}$ converges, we deduce from the well-known Weierstrass test that the series $\sum_{n=1}^{\infty} Y_{n}(t)$ is uniformly convergent on \mathbb{R}. Furthermore,

$$
Y(t)=\int_{-\infty}^{t} U(t, s) P(s) \varphi(s) d s+\int_{+\infty}^{t} U_{Q}(t, s) Q(s) \varphi(s) d s=\sum_{n=1}^{\infty} Y_{n}(t)
$$

$Y \in C(\mathbb{R}, \mathbb{X})$, and

$$
\|Y(t)\| \leq \sum_{n=1}^{\infty}\left\|Y_{n}(t)\right\| \leq 2 M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right) \sum_{n=1}^{\infty} e^{-\delta(n-1)}\|\varphi\|_{S q(x)}
$$

Next, we will show that

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\|Y(s)\| d s=0
$$

Indeed,

$$
\begin{aligned}
& \frac{1}{2 T} \int_{-T}^{T}\left\|Y_{n}(t)\right\| d t \\
& \leq 2 M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right) e^{-\delta(n-1)}\left[\frac{1}{2 T} \int_{-T}^{T} \inf \left\{\lambda>0: \int_{t+n-1}^{t+n}\left\|\frac{\varphi(s)}{\lambda}\right\|^{q(s)} d s \leq 1\right\}\right]
\end{aligned}
$$

Since $\varphi^{b} \in P A A_{0}\left(L^{q^{b}(x)}((0,1), \mathbb{X})\right)$, the above inequality leads to $Y_{n} \in P A A_{0}(\mathbb{X})$. Using the following inequality

$$
\frac{1}{2 T} \int_{-T}^{T}\|Y(s)\| d s \leq \frac{1}{2 T} \int_{-T}^{T}\left\|Y(s)-\sum_{n=1}^{\infty} Y_{n}(s)\right\| d t+\sum_{n=1}^{\infty} \frac{1}{2 T} \int_{-T}^{T}\left\|Y_{n}(s)\right\| d s
$$

we deduce that the uniform limit $Y(\cdot)=\sum_{n=1}^{\infty} Y_{n}(\cdot) \in P A A_{0}(\mathbb{X})$. Therefore $u \in$ $P A A(\mathbb{X})$.

It remains to prove the uniqueness of u as a mild solution. This has already been done by Diagana [6, 10. However, for the sake of clarity let us reproduce it here. Let u, v be two bounded mild solutions to (1.1). Setting $w=u-v$, one can easily see that w is bounded and that $w(t)=U(t, s) w(s)$ for all $(t, s) \in \mathbb{T}$. Now using property (i) from exponential dichotomy (Definition 2.11) it follows that $P(t) w(t)=P(t) U(t, s) w(s)=U(t, s) P(s) w(s)$, and hence

$$
\|P(t) w(t)\|=\|U(t, s) P(s) w(s)\| \leq M e^{-\delta(t-s)}\|w(s)\| \leq M e^{-\delta(t-s)}\|w\|_{\infty}
$$

for all $(t, s) \in \mathbb{T}$.
Now, given $t \in \mathbb{R}$ with $t \geq s$, if we let $s \rightarrow-\infty$, we then obtain that $P(t) w(t)=0$, that is, $P(t) u(t)=P(t) v(t)$. Since t is arbitrary it follows that $P(t) w(t)=0$ for all $t \geq s$. Similarly, from $w(t)=U(t, s) w(s)$ for all $t \geq s$ and property (i) from exponential dichotomy (Definition 2.11) it follows that $Q(t) w(t)=Q(t) U(t, s) w(s)=$ $U(t, s) Q(s) w(s)$, and hence $U_{Q}(s, t) Q(t) w(t)=Q(s) w(s)$ for all $t \geq s$. Moreover,

$$
\|Q(s) w(s)\|=\left\|U_{Q}(s, t) Q(t) w(t)\right\| \leq M e^{-\delta(t-s)}\|w\|_{\infty}
$$

for all $t \geq s$.
Now, given $s \in \mathbb{R}$ with $t \geq s$, if we let $t \rightarrow+\infty$, we then obtain that $Q(t) w(t)=0$, that is, $Q(s) u(s)=Q(s) v(s)$. Since s is arbitrary it follows that $Q(s) w(s)=0$ for all $t \geq s$.

Using Theorem 5.3 one easily proves the following theorem.

Theorem 5.4. Let $p, q>1$ be constants such that $p \leq q$. Under assumptions (H1)-(H5), then 1.2 has a unique solution whenever $\left\|L_{F}\right\|_{S^{r}}$ is small enough. And the solution satisfies the integral equation
$u(t)=\int_{-\infty}^{t} U(t, \sigma) P(\sigma) F(\sigma, B u(\sigma)) d \sigma-\int_{t}^{+\infty} U_{Q}(t, \sigma) Q(\sigma) F(\sigma, B u(\sigma)) d \sigma, t \in \mathbb{R}$.
Proof. Define $\Xi: P A A(\mathbb{X}) \rightarrow P A A(\mathbb{X})$ as

$$
(\Xi u)(t)=\int_{-\infty}^{t} U(t, \sigma) P(\sigma) F(\sigma, B u(\sigma)) d \sigma-\int_{t}^{+\infty} U_{Q}(t, \sigma) Q(\sigma) F(\sigma, B u(\sigma)) d \sigma
$$

Let $u \in P A A(\mathbb{X}) \subset S_{p a a}^{p, q}(\mathbb{X})$. From (H4) and Theorem 4.16 it is clear that $B u(.) \in$ $S_{p a a}^{p, q}(\mathbb{X})$. Using the composition theorem for $S_{p a a}^{p, q}$ functions, we deduce that there exists $m \in[1, p)$ such that $F(., B u().) \in S_{p a a}^{m, m}(\mathbb{X})$. applying the proof of Theorem 5.3, to $f()=.F(., B u()$.$) , one can easily see that the operator \Xi \operatorname{maps} P A A(\mathbb{X})$ into its self. Moreover, for all $u, v \in P A A(\mathbb{X})$, it is easy to see that

$$
\begin{aligned}
&\|(\Xi u)(t)-(\Xi v)(t)\| \\
& \leq \int_{\mathbb{R}}\|\Gamma(t-s)\|\|F(s, B u(s))-F(s, B v(s))\| d s \\
& \leq \int_{-\infty}^{t} c M e^{-\delta(t-s)} L_{F}(s) d s\|u-v\|_{\infty}+\int_{t}^{+\infty} c M e^{\delta(t-s)} L_{F}(s) d s\|u-v\|_{\infty} \\
& \leq \sum_{n=1}^{\infty} \int_{t-n}^{t-n+1} c M e^{-\delta(t-s)} L_{F}(s) d s\|u-v\|_{\infty} \\
&+\sum_{n=1}^{\infty} \int_{t+n-1}^{t+n} c M e^{\delta(t-s)} L_{F}(s) d s\|u-v\|_{\infty} \\
& \leq c M \sum_{n=1}^{\infty}\left(\int_{t-n}^{t-n+1} e^{-r_{0} \delta(t-s)} d s\right)^{\frac{1}{r_{0}}}\left\|L_{F}\right\|_{S^{r}}\|u-v\|_{\infty} \\
&+c M \sum_{n=1}^{\infty}\left(\int_{t+n-1}^{t+n} e^{r_{0} \delta(t-s)} d s\right)^{\frac{1}{r_{0}}}\left\|L_{F}\right\|_{S^{r}}\|u-v\|_{\infty} \\
& \leq 2 c M \sum_{n=1}^{\infty}\left(\frac{e^{-r_{0}(n-1) \delta}-e^{-r_{0} n \delta}}{r_{0} \delta}\right)^{\frac{1}{r_{0}}}\left\|L_{F}\right\|_{S^{r}}\|u-v\|_{\infty} \\
& \leq 2 c M \sqrt{r}_{r}^{\frac{1+e^{r_{0} \delta}}{r_{0} \delta}} \sum_{n=1}^{\infty} e^{-n \delta}\left\|L_{F}\right\|_{S^{r}}\|u-v\|_{\infty},
\end{aligned}
$$

for each $t \in \mathbb{R}$, where $\frac{1}{r}+\frac{1}{r_{0}}=1$. Hence whenever $\left\|L_{F}\right\|_{S^{r}}$ is small enough, that is,

$$
2 c M \sqrt[r]{\frac{1+e^{r_{0} \delta}}{r_{0} \delta}} \sum_{n=1}^{\infty} e^{-n \delta}\left\|L_{F}\right\|_{S^{r}}<1
$$

then Ξ has a unique fixed point, which obviously is the unique pseudo-almost automorphic solution to 1.2 .

References

[1] P. Acquistapace; Evolution operators and strong solutions of abstract linear parabolic equations. Differential Integral Equations. 1 (1988), pp. 433-457.
[2] P. Acquistapace, F. Flandoli, B. Terreni; Initial boundary value problems and optimal control for nonautonomous parabolic systems. SIAM J. Control Optim. 29 (1991), pp. 89-118.
[3] P. Acquistapace, B. Terreni; A unified approach to abstract linear parabolic equations. Rend. Sem. Mat. Univ. Padova 78 (1987), pp. 47-107.
[4] S. Bochner; A new approach to almost periodicity. Proc. Nat. Acad. Sci. U.S.A. 48 (1962), pp. 2039-2043.
[5] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka; Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, 2011. Springer, Heidelberg, 2011.
[6] T. Diagana; Almost automorphic type and almost periodic type functions in abstract spaces. Springer, 2013, New York, 303 pages.
[7] T. Diagana; Existence of pseudo-almost automorphic solutions to some abstract differential equations with S^{p}-pseudo-almost automorphic coefficients, Nonlinear Anal. 70 (2009), no. 11, pp. 3781-3790.
[8] T. Diagana, G. M. N'Guérékata; Stepanov-like almost automorphic functions and applications to some semilinear equations. Applicable Anal. 86 (2007), no. 6, pp. 723-733.
[9] T. Diagana; Evolution equations in generalized Stepanov-like pseudo almost automorphic spaces. Electron. J. Differential Equations (2012), No. 49, pp. 1-19.
[10] T. Diagana; Existence results for some higher-order evolution equations with time-dependent unbounded operator coefficients. Mathematica Slovaca preprint.
[11] T. Diagana, M. Zitane; Stepanov-like pseudo-almost periodic functions in the Lebesgue space with variable exponents $L^{p(x)}$. (Submitted).
[12] Z. Fan, J. Liang, T. J. Xiao; Composition of Stepanov-like pseudo-almost automorphic functions and applications to nonautonomous evolution equations. Nonlinear Anal. (RWA) 13 (2012), pp. 131-140.
[13] Z. Fan, J. Liang, T. J. Xiao; On Stepanov-like (pseudo) almost automorphic functions. Nonlinear Anal. 74 (2011), pp. 2853-2861.
[14] X.L. Fan, D. Zhao; On the spaces $L^{p(x)}(O)$ and $W^{m, p(x)}(O)$. J. Math. Anal. Appl. 263 (2001), pp. 424-446.
[15] Z. Hu, Z. jin; Stepanov-like pseudo-almost automorphic mild solutions to nonautonomous evolution equations. Nonlinear Anal. (TMA) 71 (2009), pp. 2349-2360.
[16] J. Liang, J. Zhang, T. J. Xiao; Composition of pseudo-almost automorphic and asymptotically almost automorphic functions. J. Math. Anal. Appl. 340 (2008), pp. 1493-1499.
[17] H. S. Ding, J. Liang, T. J. Xiao; Almost automorphic solutions to nonautonomous semilinear evolution equations in Banach spaces. Nonlinear Anal. (TMA) 73 (2010), no. 5, pp. 14261438.
[18] K. J. Negel; One-parameter semigroups for linear evolution equations. Springer-Verlag, Vol. 194, 2000.
[19] G. M. N'Guérékata, A. Pankov; Stepanov-like almost automorphic functions and monotone evolution equations. Nonlinear Anal. 68 (2008), no. 9, pp. 2658-2667
[20] G. M. N'Guérékata; Topics in almost automorphy. Springer-Verlag, New York, 2005.
[21] P. Q. H. Nguyen; On variable Lebesgue spaces. Thesis Ph.D., Kansas State University. ProQuest LLC, Ann Arbor, MI, 2011. 63 pp.
[22] T. J. Xiao, J. Liang, J. Zhang; Pseudo-almost automorphic solutions to semilinear differential equations in Banach space, Semigroup Forum. 76 (2008), pp. 518-524.
[23] T. J. Xiao, X. X. Zhu, J. Liang; Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications, Nonlinear Anal. 70 (2009), pp. 4079-4085.
[24] A. Yagi; Abstract quasilinear evolution equations of parabolic type in Banach spaces, Bull. Unione Mat. Ital. Sez $\mathrm{B}(7) 5$ (1991), pp. 341-368.
[25] A. Yagi; Parabolic equations in which the coefficients are generators of infinitely differentiable semigroups II. Funkcial. Ekvac. 33 (1990), pp. 139-150.

Toka Diagana
Department of Mathematics, Howard University, 2441 6th Street NW, Washington, DC 20059, USA

E-mail address: tokadiag@gmail.com

Mohamed Zitane
Université Ibn Tofaïl, Faculté des Sciences, Département de Mathématiques, Laboratoire d'An. Maths et GNC, B.P. 133, Kénitra 1400, Maroc

E-mail address: zitanem@gmail.com

[^0]: 2000 Mathematics Subject Classification. 34C27, 35B15, 46E30.
 Key words and phrases. Pseudo-almost automorphy; $S^{p, q(x)}$-pseudo-almost automorphic; Lebesgue space with variable exponents; variable exponents.
 (C) 2013 Texas State University - San Marcos.

 Submitted May 23, 2013. Published August 28, 2013.

