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STEPANOV-LIKE PSEUDO-ALMOST AUTOMORPHIC
FUNCTIONS IN LEBESGUE SPACES WITH VARIABLE

EXPONENTS Lp(x)

TOKA DIAGANA, MOHAMED ZITANE

Abstract. In this article we introduce and study a new class of functions

called Stepanov-like pseudo-almost automorphic functions with variable expo-

nents, which generalizes in a natural way classical Stepanov-like pseudo-almost
automorphic spaces. Basic properties of these new spaces are investigated. The

existence of pseudo-almost automorphic solutions to some first-order differen-

tial equations with Sp,q(x)-pseudo-almost automorphic coefficients will also be
studied.

1. Introduction

The impetus of this article comes from three main sources. The first one is a
series of papers by Liang et al [16, 22, 23] in which the concept of pseudo-almost
automorphy was introduced and intensively studied. Pseudo-almost automorphic
functions are natural generalizations to various classes of functions including almost
periodic functions, almost automorphic functions, and pseudo-almost periodic func-
tions.

The second source is a paper by Diagana [7] in which the concept of Sp-pseudo-
almost automorphy (p ≥ 1 being a constant) was introduced and studied. Note that
Sp-pseudo-almost automorphic functions (or Stepanov-like pseudo-almost automor-
phic functions) are natural generalizations of pseudo-almost automorphic functions.
The spaces of Stepanov-like pseudo-almost automorphic functions are now fairly
well-understood as most of their fundamental properties have recently been estab-
lished through the combined efforts of several mathematicians. Some of the recent
developments on these functions can be found in [6, 9, 12, 13, 15].

The third and last source is a paper by Diagana and Zitane [11] in which the
class of Sp,q(x)-pseudo-almost periodic functions was introduced and studied, where
q : R 7→ R is a measurable function satisfying some additional conditions. The
construction of these new spaces makes extensive use of basic properties of the
Lebesgue spaces with variable exponents Lq(x) (see [5, 14, 21]).
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In this article we extend Sp-pseudo-almost automorphic spaces by introducing
Sp,q(x)-pseudo-almost automorphic spaces (or Stepanov-like pseudo-almost auto-
morphic spaces with variable exponents). Basic properties as well as some compo-
sition results for these new spaces are established (see Theorems 4.18 and 4.20).

To illustrate our above-mentioned findings, we will make extensive use of the
newly-introduced functions to investigate the existence of pseudo-almost automor-
phic solutions to the first-order differential equations

u′(t) = A(t)u(t) + f(t), t ∈ R, (1.1)

and
u′(t) = A(t)u(t) + F (t, Bu(t)), t ∈ R, (1.2)

where A(t) : D(A(t)) ⊂ X 7→ X is a family of closed linear operators on a Banach
space X, satisfying the well-known Acquistapace–Terreni conditions, the forcing
terms f : R → X is an Sp,q(x)-pseudo-almost automorphic function and F : R ×
X → X is an Sp,q-pseudo-almost automorphic function, satisfying some additional
conditions, and B : X 7→ X is a bounded linear operator. Such result (Theorems
5.3 and5.4) generalize most of the known results encountered in the literature on
the existence and uniqueness of pseudo-almost automorphic solutions to Equations
(1.1)-(1.2).

2. Preliminaries

Let (X, ‖ · ‖), (Y, ‖ · ‖Y) be two Banach spaces. Let BC(R,X) (respectively,
BC(R × Y,X)) denote the collection of all bounded continuous functions from R
into X (respectively, the class of jointly bounded continuous functions F : R×Y→
X). The space BC(R,X) equipped with the sup norm ‖ · ‖∞ is a Banach space.
Furthermore, C(R,Y) (respectively, C(R × Y,X)) denotes the class of continuous
functions from R into Y (respectively, the class of jointly continuous functions
F : R × Y → X). Let B(X,Y) stand for the Banach space of bounded linear
operators from X into Y equipped with its natural operator topology ‖ · ‖B(X,Y)

with B(X,X) := B(X).

2.1. Pseudo-almost automorphic functions.

Definition 2.1 ([4, 6, 20]). A function f ∈ C(R,X) is said to be almost auto-
morphic if for every sequence of real numbers (s′n)n∈N there exists a subsequence
(sn)n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R and

f(t) = lim
n→∞

g(t− sn)

for each t ∈ R.

The collection of all such functions will be denoted by AA(X), which turns out
to be a Banach space when it is equipped with the sup-norm.

Definition 2.2 ([6, 16]). A function F ∈ C(R × Y,X) is said to be almost auto-
morphic if F (t, u) is almost automorphic in t ∈ R uniformly for all u ∈ K, where
K ⊂ Y is an arbitrary bounded subset. The collection of all such functions will be
denoted by AA(R× X).
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Definition 2.3 ([15]). A function L ∈ C(R×R,X) is called bi-almost automorphic
if for every sequence of real numbers (s′n)n we can extract a subsequence (sn)n such
that

H(t, s) := lim
n→∞

L(t+ sn, s+ sn)

is well defined for each t, s ∈ R, and

L(t, s) = lim
n→∞

H(t− sn, s− sn)

for each t, s ∈ R. The collection of all such functions will be denoted by bAA(R×
R,X).

Proposition 2.4 ([20]). Assume f, g : R → X are almost automorphic and λ is
any scalar. Then the following hold

(a) f + g, λf, fτ (t) := f(t+ τ) and f̂(t) := f(−t) are almost automorphic;
(b) The range Rf of f is precompact, so f is bounded;
(c) If {fn} is a sequence of almost automorphic functions and fn → f uniformly

on R, then f is almost automorphic.

Define

PAA0(X) :=
{
f ∈ BC(R,X) : lim

T→∞

1
2T

∫ T

−T
‖f(σ)‖dσ = 0

}
.

Similarly, define PAA0(R × X) as the collection of jointly continuous functions
F : R× Y→ X such that F (·, y) is bounded for each y ∈ Y and

lim
T→∞

1
2T

∫ T

−T
‖F (s, y)‖ds = 0

uniformly in y ∈ Y.

Definition 2.5 ([4]). A function f ∈ BC(R,X) is said to be pseudo-almost auto-
morphic if it can be decomposed as f = g+ϕ where g ∈ AA(X) and ϕ ∈ PAA0(X).
The set of all such functions will be denoted by PAA(X).

Definition 2.6 ([16]). A function F ∈ C(R × Y,X) is said to be pseudo-almost
automorphic if it can be decomposed as f = G + Φ where G ∈ AA(R × X) and
Φ ∈ AA0(R×X). The collection of such functions will be denoted by PAA(R×X).

Theorem 2.7 ([22]). The space PAA(X) equipped with the sup-norm is a Banach
space.

Theorem 2.8 ([15]). If u ∈ PAA(X) and if C ∈ B(X), then the function t 7→ Cu(t)
belongs to PAA(X).

Theorem 2.9 ([7, 15]). Assume F ∈ PAA(R × X). Suppose that u 7→ F (t, u) is
Lipschitz uniformly in t ∈ R, in the sense that there exists L > 0 such that

‖F (t, u)− F (t, v)‖ ≤ L‖u− v‖ for all t ∈ R, u, v ∈ X (2.1)

If Φ ∈ PAA(X), then F (.,Φ(.)) ∈ PAA(X).
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2.2. Evolution family and exponential dichotomy.

Definition 2.10 ([6, 18]). A family of bounded linear operators (U(t, s))t≥s on a
Banach space X is called a strongly continuous evolution family if

(i) U(t, t) = I for all t ∈ R;
(ii) U(t, s) = U(t, r)U(r, s) for all t ≥ r ≥ s and t, r, s ∈ R; and
(iii) the map (t, s) 7→ U(t, s)x is continuous for all x ∈ X, t ≥ s and t, s ∈ R.

Definition 2.11 ([6, 18]). An evolution family (U(t, s))t≥s on a Banach space X is
called hyperbolic (or has exponential dichotomy) if there exist projections P (t), t ∈
R, uniformly bounded and strongly continuous in t, and constants M > 0, δ > 0
such that

(i) U(t, s)P (s) = P (t)U(t, s) for t ≥ s and t, s ∈ R;
(ii) The restriction UQ(t, s) : Q(s)X 7→ Q(t)X of U(t, s) is invertible for t ≥ s

(and we set UQ(s, t) := U(t, s)−1);
(iii) ‖U(t, s)P (s)‖ ≤ Me−δ(t−s), ‖UQ(s, t)Q(t)‖ ≤ Me−δ(t−s) for t ≥ s and

t, s ∈ R,
where Q(t) := I − P (t) for all t ∈ R.

Definition 2.12 ([18]). Given a hyperbolic evolution family U(t, s), we define its
so-called Green’s function by

Γ(t, s) :=

{
U(t, s)P (s), for t ≥ s, t, s ∈ R,
UQ(t, s)Q(s), for t < s, t, s ∈ R.

(2.2)

3. Lebesgue spaces with variable exponents Lp(x)

The setting of this section follows that of Diagana and Zitane [11]. This sec-
tion is mainly devoted to the so-called Lebesgue spaces with variable exponents
Lp(x)(R,X). Various basic properties of these functions are reviewed. For more on
these spaces and related issues we refer to Diening et al [5].

Let (X, ‖ · ‖) be a Banach space and let Ω ⊆ R be a subset. Let M(Ω,X)
denote the collection of all measurable functions f : Ω 7→ X. Let us recall that two
functions f and g of M(Ω,X) are equal whether they are equal almost everywhere.
Set m(Ω) := M(Ω,R) and fix p ∈ m(Ω). Let ϕ(x, t) = tp(x) for all x ∈ Ω and t ≥ 0,
and define

ρ(u) = ρp(x)(u) =
∫

Ω

ϕ(x, ‖u(x)‖)dx =
∫

Ω

‖u(x)‖p(x)dx,

Lp(x)(Ω,X) =
{
u ∈M(Ω,X) : lim

λ→0+
ρ(λu) = 0

}
,

L
p(x)
OC (Ω,X) =

{
u ∈ Lp(x)(Ω,X) : ρ(u) <∞

}
, and

Ep(x)(Ω,X) =
{
u ∈ Lp(x)(Ω,X) : for all λ > 0, ρ(λu) <∞

}
.

Note that the space Lp(x)(Ω,X) defined above is a Musielak-Orlicz type space
while Lp(x)

OC (Ω,X) is a generalized Orlicz type space. Further, the sets Ep(x)(Ω,X)
and Lp(x)(Ω,X) are vector subspaces of M(Ω,X). In addition, Lp(x)

OC (Ω,X) is a
convex subset of Lp(x)(Ω,X), and the following inclusions hold

Ep(x)(Ω,X) ⊂ Lp(x)
OC (Ω,X) ⊂ Lp(x)(Ω,X).
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Definition 3.1 ([5]). A convex and left-continuous function ψ : [0,∞)→ [0,∞] is
called a Φ−function if it satisfies the following conditions:

(a) ψ(0) = 0;
(b) limt→0+ ψ(t) = 0; and
(c) limt→∞ ψ(t) =∞.

Moreover, ψ is said to be positive whether ψ(t) > 0 for all t > 0.

Let us mention that if ψ is a Φ-function, then on the set {t > 0 : ψ(t) <∞}, the
function ψ is of the form

ψ(t) =
∫ t

0

k(t)dt,

where k(·) is the right-derivative of ψ(t). Moreover, k is a non-increasing and right-
continuous function. For more on these functions and related issues we refer to
[5].

Example 3.2. (a) Consider the function ϕp(t) = p−1tp for 1 ≤ p < ∞. It can
be shown that ϕp is a Φ-function. Furthermore, the function ϕp is continuous and
positive.

(b) It can be shown that the function ϕ defined above; that is, ϕ(x, t) = tp(x)

for all x ∈ R and t ≥ 0 is a Φ−function.

For any p ∈ m(Ω), we define

p− := ess infx∈Ω p(x), p+ := ess supx∈Ω p(x).

Define

C+(Ω) :=
{
p ∈ m(Ω) : 1 < p− ≤ p(x) ≤ p+ <∞, for each x ∈ Ω

}
.

Let p ∈ C+(Ω). Using similar argument as in [5, Theorem 3.4.1], it can be shown
that

Ep(x)(Ω,X) = L
p(x)
OC (Ω,X) = Lp(x)(Ω,X).

In view of the above, we define the Lebesgue space Lp(x)(Ω,X) with variable expo-
nents p ∈ C+(Ω), by

Lp(x)(Ω,X) :=
{
u ∈M(Ω,X) :

∫
Ω

‖u(x)‖p(x)dx <∞
}
.

Define, for each u ∈ Lp(x)(Ω,X),

‖u‖p(x) := inf
{
λ > 0 :

∫
Ω

∥∥u(x)
λ

∥∥p(x)
dx ≤ 1

}
.

It can be shown that ‖ · ‖p(x) is a norm upon Lp(x)(Ω,X), which is referred to as
the Luxemburg norm.

Remark 3.3. Let p ∈ C+(Ω). If p is constant, then the space Lp(·)(Ω,X), as
defined above, coincides with the usual space Lp(Ω,X).

We now establish some basic properties for these spaces. For more on these
functions and related issues we refer to [5].

Proposition 3.4 ([11]). Let p ∈ C+(Ω) and let u, uk, v ∈M(Ω,X) for k = 1, 2, . . ..
Then the following statements hold,

(a) If uk → u a.e., then ρp(u) ≤ limk→∞ inf(ρp(uk));
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(b) If ‖uk‖ → ‖u‖ a.e., then ρp(u) = limk→∞ ρp(uk);
(c) If uk → u a.e., ‖uk‖ ≤ ‖v‖ and v ∈ Ep(x)(Ω,X), then uk → u in the space

Lp(x)(Ω,X).

Proposition 3.5 ([5, 21]). Let p ∈ C+(Ω). If u, v ∈ Lp(x)(Ω,X), then the following
properties hold,

(a) ‖u‖p(x) ≥ 0, with equality if and only if u = 0;
(b) ρp(u) ≤ ρp(v) and ‖u‖p(x) ≤ ‖v‖p(x) if ‖u‖ ≤ ‖v‖;
(c) ρp(u‖u‖−1

p(x)) = 1 if u 6= 0;
(d) ρp(u) ≤ 1 if and only if ‖u‖p(x) ≤ 1;
(e) If ‖u‖p(x) ≤ 1, then

[ρp(u)
]1/p−

≤ ‖u‖p(x) ≤
[
ρp(u)]1/p

+
.

(f) If ‖u‖p(x) ≥ 1, then[
ρp(u)

]1/p+
≤ ‖u‖p(x) ≤

[
ρp(u)

]1/p−
.

Proposition 3.6 ([5]). Let p ∈ C+(Ω) and let u, uk, v ∈M(Ω,X) for k = 1, 2, . . ..
Then the following statements hold:

(a) If u ∈ Lp(x)(Ω,X) and 0 ≤ ‖v‖ ≤ ‖u‖, then v ∈ Lp(x)(Ω,X) and ‖v‖p(x) ≤
‖u‖p(x).

(b) If uk → u a.e., then ‖u‖p(x) ≤ limk→∞ inf(‖uk‖p(x)).
(c) If ‖uk‖ → ‖u‖ a.e. with uk ∈ Lp(x)(Ω,X) and supk ‖uk‖p(x) < ∞, then

u ∈ Lp(x)(R,X) and ‖uk‖p(x) → ‖u‖p(x).

Using similar arguments as in Fan et al [14], we obtain the following result.

Proposition 3.7. If u, un ∈ Lp(x)(Ω,X) for k = 1, 2, . . ., then the following state-
ments are equivalent:

(a) limk→∞ ‖uk − u‖p(x) = 0;
(b) limk→∞ ρp(uk − u) = 0;
(c) uk → u and limk→∞ ρp(uk) = ρp(u).

Theorem 3.8 ([5, 14]). Let p ∈ C+(Ω). The space (Lp(x)(Ω,X), ‖ · ‖p(x)) is a Ba-
nach space that is separable and uniform convex. Its topological dual is Lq(x)(Ω,X),
where p−1(x)+q−1(x) = 1. Moreover, for any u ∈ Lp(x)(Ω,X) and v ∈ Lq(x)(Ω,R),
we have ∥∥∫

Ω

uvdx
∥∥ ≤ ( 1

p−
+

1
q−

)
‖u‖p(x)|v|q(x). (3.1)

Define

D+(Ω) :=
{
p ∈ m(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ <∞, for each x ∈ Ω

}
.

Corollary 3.9 ([21]). Let p, r ∈ D+(Ω). If the function q defined by the equation
1

q(x)
=

1
p(x)

+
1

r(x)
is in D+(Ω), then there exists a constant C = C(p, r) ∈ [1, 5] such that

‖uv‖q(x) ≤ C‖u‖p(x)|v|r(x),

for every u ∈ Lp(x)(Ω,X) and v ∈ Lr(x)(Ω,R).
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Corollary 3.10 ([5]). Let meas(Ω) < ∞ where meas(·) stands for the Lebesgue
measure and p, q ∈ D+(Ω). If q(·) ≤ p(·) almost everywhere in Ω, then the
embedding Lp(x)(Ω,X) ↪→ Lq(x)(Ω,X) is continuous whose norm does not exceed
2(meas(Ω) + 1).

4. Stepanov-like pseudo-almost automorphic functions with variable
exponents

Definition 4.1. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of a function
f : R→ X is defined by f b(t, s) := f(t+ s).

Remark 4.2. A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of a
certain function f , ϕ(t, s) = f b(t, s), if and only if ϕ(t + τ, s − τ) = ϕ(s, t) for all
t ∈ R, s ∈ [0, 1] and τ ∈ [s − 1, s]. Moreover, if f = h + ϕ, then f b = hb + ϕb.
Moreover, (λf)b = λf b for each scalar λ.

Definition 4.3. The Bochner transform F b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a
function F : R× X 7→ X, is defined by F b(t, s, u) := F (t+ s, u) for each u ∈ X.

Definition 4.4. Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with
values in X such that f b ∈ L∞

(
R, Lp((0, 1),X)

)
. This is a Banach space with the

norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖p dτ
)1/p

.

Note that for each p ≥ 1, we have the following continuous inclusion:

(BC(X), ‖ · ‖∞) ↪→ (BSp(X), ‖ · ‖Sp).

Definition 4.5 (Diagana and Zitane [11]). Let p ∈ C+(R). The space BSp(x)(X)
consists of all functions f ∈M(R,X) such that ‖f‖Sp(x) <∞, where

‖f‖Sp(x) = sup
t∈R

[
inf
{
λ > 0 :

∫ 1

0

∥∥f(x+ t)
λ

∥∥p(x+t)
dx ≤ 1

}]
= sup

t∈R

[
inf
{
λ > 0 :

∫ t+1

t

∥∥f(x)
λ

∥∥p(x)
dx ≤ 1

}]
.

Note that the space
(
BSp(x)(X), ‖ · ‖Sp(x)

)
is a Banach space, which, depending

on p(·), may or may not be translation-invariant.

Definition 4.6 (Diagana and Zitane [11]). If p, q ∈ C+(R), we then define the
space BSp(x),q(x)(X) as follows

BSp(x),q(x)(X) := BSp(x)(X) +BSq(x)(X)

=
{
f = h+ ϕ ∈M(R,X) : h ∈ BSp(x)(X) and ϕ ∈ BSq(x)(X)

}
.

We equip BSp(x),q(x)(X) with the norm ‖ · ‖Sp(x),q(x) defined by

‖f‖Sp(x),q(x) := inf
{
‖h‖Sp(x) + ‖ϕ‖Sq(x) : f = h+ ϕ

}
.

Clearly,
(
BSp(x),q(x)(X), ‖ · ‖Sp(x),q(x)

)
is a Banach space, which, depending on both

p(·) and q(·), may or may not be translation-invariant.
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Lemma 4.7 (Diagana and Zitane [11]). Let p, q ∈ C+(R). Then the following
continuous inclusion holds,(
BC(R,X), ‖ · ‖∞

)
↪→
(
BSp(x)(X), ‖ · ‖Sp(x)

)
↪→
(
BSp(x),q(x)(X), ‖ · ‖Sp(x),q(x)

)
.

Proof. The fact that
(
BSp(x)(X), ‖ · ‖Sp(x)

)
↪→
(
BSp(x),q(x)(X), ‖ · ‖Sp(x),q(x)

)
is ob-

vious. Thus we will only show that
(
BC(R,X), ‖ · ‖∞

)
↪→
(
BSp(x)(X), ‖ · ‖Sp(x)

)
.

Indeed, let f ∈ BC(R,X) ⊂ M(R,X). If ‖f‖∞ = 0, which yields f = 0, then
there is nothing to prove. Now suppose that ‖f‖∞ 6= 0. Using the facts that
0 < ‖ f(x)

‖f‖∞ ‖ ≤ 1 and that p ∈ C+(R) it follows that for every t ∈ R,∫ t+1

t

∥∥∥ f(x)
‖f‖∞

∥∥∥p(x)

dx ≤
∫ t+1

t

1p(x)dx = 1,

and hence ‖f‖∞ ∈
{
λ > 0 :

∫ t+1

t
‖ f(x)

λ ‖
p(x)dx ≤ 1

}
, which yields

inf
{
λ > 0 :

∫ t+1

t

∥∥f(x)
λ

∥∥p(x)
dx ≤ 1

}
≤ ‖f‖∞.

Therefore, ‖f‖Sp(x) ≤ ‖f‖∞ < ∞. This shows that not only f ∈ (BSp(x)(X)), ‖ ·
‖Sp(x)) but also the injection (BC(R,X), ‖ · ‖∞) ↪→ (BSp(x)(X), ‖ · ‖Sp(x)) is contin-
uous. �

Definition 4.8. Let p ≥ 1 be a constant. A function f ∈ BSp(X) is said to
be Sp-almost automorphic (or Stepanov-like almost automorphic function) if f b ∈
AA
(
Lp((0, 1),X)

)
. That is, a function f ∈ Lploc(R,X) is said to be Stepanov-

like almost automorphic if its Bochner transform f b : R → Lp(0, 1; X) is almost
automorphic in the sense that for every sequence of real numbers (s′n)n, there
exists a subsequence (sn)n and a function g ∈ Lploc(R,X) such that(∫ 1

0

‖f(t+s+sn)−g(t+s)‖pds
)1/p

→ 0,
(∫ 1

0

‖g(t+s−sn)−f(t+s)‖pds
)1/p

→ 0

as n → ∞ pointwise on R. The collection of such functions will be denoted by
Spaa(X).

Remark 4.9. There are some difficulties in defining S
p(x)
aa (X) for a function p ∈

C+(R) that is not necessarily constant. This is mainly due to the fact that the
space BSp(x)(X) is not always translation-invariant. In other words, the quantities
f b(t + τ, s) and f b(t, s) (for t ∈ R, s ∈ [0, 1]) that are used in the definition of
Sp(x)-almost automorphy, do not belong to the same space, unless p is constant.

Remark 4.10. It is clear that if 1 ≤ p < q < ∞ and f ∈ Lqloc(R,X) is Sq-almost
automorphic, then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is
Sp-almost automorphic for any 1 ≤ p <∞.

Taking into account Remark 4.9, we introduce the concept of Sp,q(x)-pseudo-
almost automorphy as follows, which obviously generalizes the notion of Sp-pseudo-
almost automorphy.

Definition 4.11. Let p ≥ 1 be a constant and let q ∈ C+(R). A function
f ∈ BSp,q(x)(X) is said to be Sp,q(x)-pseudo-almost automorphic (or Stepanov-like
pseudo-almost automorphic with variable exponents p, q(x)) if it can be decomposed
as

f = h+ ϕ,
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where h ∈ Spaa(X) and ϕ ∈ S
q(x)
paa0(X) with S

q(x)
paa0(X) being the space of all ψ ∈

BSq(x)(X) such that

lim
T→∞

1
2T

∫ T

−T
inf
{
λ > 0 :

∫ t+1

t

∥∥ψ(x)
λ

∥∥q(x)
dx ≤ 1

}
dt = 0.

The collection of Sp,q(x)-pseudo-almost automorphic functions will be denoted by
S
p,q(x)
paa (X).

Lemma 4.12. Let r, s ≥ 1, p, q ∈ D+(R). If s < r, q+ < p− and f ∈ BSr,p(x)(X) is
S
r,p(x)
paa -pseudo-almost automorphic, then f is Ss,q(x)

paa -pseudo-almost automorphic.

Proof. Suppose that f ∈ BSr,p(x)(X) is Sr,p(x)-pseudo-almost automorphic. Thus
there exist two functions h, ϕ : R→ X such that

f = h+ ϕ,

where h ∈ Sraa(X) and ϕ ∈ Sp(x)
paa0(X). From remark 4.10, h is Ss-almost automor-

phic.
In view of q(·) ≤ q+ < p− ≤ p(·), it follows from Corollary 3.10 that,[

inf
{
λ > 0 :

∫ t+1

t

∥∥ϕ(x)
λ

∥∥q(x)
dx ≤ 1

}]
≤ 4
[

inf
{
λ > 0 :

∫ t+1

t

∥∥ϕ(x)
λ

∥∥p(x)
dx ≤ 1

}]
.

Using the fact that ϕ ∈ Sp(x)
paa0(X) and the previous inequality it follows that

lim
T→∞

1
2T

∫ T

−T
inf
{
λ > 0 :

∫ t+1

t

∥∥ϕ(x)
λ

∥∥q(x)
dx ≤ 1

}
dt = 0;

that is, ϕ ∈ Sq(x)
paa0(X). Therefore, f ∈ Ss,q(x)

paa (X). �

Proposition 4.13. Let p ≥ 1 be a constant and let q ∈ C+(R). If f ∈ PAA(X),
then f is Sp,q(x)-pseudo-almost automorphic.

Proof. Let f ∈ PAA(X), that is, there exist two functions h, ϕ : R → X such
that f = h + ϕ where h ∈ AA(X) and ϕ ∈ PAA0(X). Now from remark 4.10,
h ∈ AA(X) ⊂ Spaa(X). The proof of ϕ ∈ Sq(x)

paa0(X) was given in [11]. However for
the sake of clarity, we reproduce it here. Using (e)-(f) of Proposition 3.5 and the
usual Hölder inequality, it follows that∫ T

−T
inf
{
λ > 0 :

∫ 1

0

∥∥ϕ(x+ t)
λ

∥∥q(x+t)
dx ≤ 1

}
dt

≤
∫ T

−T

(∫ 1

0

‖ϕ(t+ x)‖q(t+x) dx
)γ

dt

≤ (2T )1−γ
[ ∫ T

−T

(∫ 1

0

‖ϕ(t+ x)‖q(t+x) dx
)
dt
]γ

≤ (2T )1−γ
[ ∫ T

−T

(∫ 1

0

‖ϕ(t+ x)‖‖ϕ‖q(t+x)−1
∞ dx

)
dt
]γ

≤ (2T )1−γ
(
‖ϕ‖∞ + 1

) q+−1
γ
[ ∫ T

−T

(∫ 1

0

‖ϕ(t+ x)‖ dx
)
dt
]γ
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= (2T )1−γ
(
‖ϕ‖∞ + 1

) q+−1
γ
[ ∫ 1

0

(∫ T

−T
‖ϕ(t+ x)‖ dt

)
dx
]γ

= (2T )
(
‖ϕ‖∞ + 1

) q+−1
γ
[ ∫ 1

0

( 1
2T

∫ T

−T
‖ϕ(t+ x)‖ dt

)
dx
]γ
,

where

γ =

{
1
q+ if ‖ϕ‖ < 1,
1
q− if ‖ϕ‖ ≥ 1.

Using the fact that PAA0(X) is translation invariant and the (usual) Dominated
Convergence Theorem, it follows that

lim
T→∞

1
2T

∫ T

−T
inf
{
λ > 0 :

∫ 1

0

∥∥ϕ(x+ t)
λ

∥∥q(x+t)
dx ≤ 1

}
dt

≤
(
‖ϕ‖∞ + 1

) q+−1
γ
[ ∫ 1

0

(
lim
T→∞

1
2T

∫ T

−T
‖ϕ(t+ x)‖ dt

)
dx
]γ

= 0.

�

Using similar argument as in [22], the following Lemma can be established.

Lemma 4.14. Let p, q ≥ 1 be a constants. If f = h + ϕ ∈ Sp,qpaa(X) such that
hb ∈ AA

(
Lp((0, 1),X)

)
and ϕb ∈ PAA0

(
Lq((0, 1),X)

)
, then{

h(t+ .) : t ∈ R
}
⊂
{
f(t+ .) : t ∈ R

}
, in Sp,q(X).

Proof. We prove it by contradiction. Indeed, if this is not true, then there exist a
t0 ∈ R and an ε > 0 such that

‖h(t0 + ·)− f(t+ ·)‖Sp,q ≥ 2ε, t ∈ R.
Since hb ∈ AA

(
Lp((0, 1),X)

)
and

(
BSp(X), ‖ · ‖Sp

)
↪→
(
BSp,q(X), ‖ · ‖Sp,q

)
, fix

t0 ∈ R, ε > 0 and write, Bε := {τ ∈ R; ‖h(t0 + τ + ·)− g(t0 + ·)‖Sp,q < ε}. By [22,
Lemma 2.1], there exist s1, . . . , sm ∈ R such that

∪mi=1(si +Bε) = R.
Write

ŝi = si − t0 (1 ≤ i ≤ m), η = max
1≤i≤m

|ŝi|.

For T ∈ R with |T | > η; we put

B
(i)
ε,T = [−T + η − ŝi, T − η − ŝi] ∩ (t0 +Bε), 1 ≤ i ≤ m,

one has ∪mi=1(ŝi +B
(i)
ε,T ) = [−T + η, T − η].

Using the fact that B(i)
ε,T ⊂ [−T, T ] ∩ (t0 +Bε), i = 1, . . . ,m, we obtain

2(T − η) = meas([−T + η, T − η])

≤
m∑
i=1

meas(ŝi +B
(i)
ε,T )

=
m∑
i=1

meas(B(i)
ε,T )

≤ m max
1≤i≤m

{
meas(B(i)

ε,T )
}
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≤ m meas([−T, T ] ∩ (t0 +Bε)),

On the other hand, by using the Minkowski inequality, for any t ∈ t0 +Bε, one has

‖ϕ(t+ ·)‖Sq = ‖ϕ(t+ ·)‖Sp,q
= ‖f(t+ ·)− h(t+ ·)‖Sp,q
≥ ‖h(t0 + ·)− f(t+ ·)‖Sp,q − ‖h(t+ ·)− h(t0 + ·)‖Sp,q > ε.

Then

1
2T

∫ T

−T
‖ϕ(t+ ·)‖Sq dt ≥

1
2T

∫
[−T,T ]∩(t0+Bε)

‖ϕ(t+ ·)‖Sq dt

≥ ε(T − η)(mT )−1 → εm−1, as T →∞.

This is a contradiction, since ϕb ∈ PAA0

(
Lq((0, 1),X)

)
. �

Theorem 4.15. Let p, q ≥ 1 be constants. The space Sp,qpaa(X) equipped with the
norm ‖ · ‖Sp,q is a Banach space.

Proof. It is sufficient to prove that Sp,qpaa(X) is a closed subspace of BSp,q(X). Let
fn = hn + ϕn be a Cauchy sequence in Sp,qpaa(X) with (hbn)n∈N ⊂ AA

(
Lp((0, 1),X)

)
and (ϕbn)n∈N ⊂ PAA0

(
Lq((0, 1),X)

)
such that ‖fn − f‖Sp,q → 0 as n → ∞. By

Lemma 4.14, one has

{hn(t+ .) : t ∈ R} ⊂ {fn(t+ .) : t ∈ R},

and hence
‖hn‖Sp = ‖hn‖Sp,q ≤ ‖fn‖Sp,q for all n ∈ N.

Consequently, there exists a function h ∈ Spaa(X) such that ‖hn−h‖Sp → 0 as n→
∞. Using the previous fact, it easily follows that the function ϕ := f −h ∈ BSq(X)
and that ‖ϕn − ϕ‖Sq = ‖(fn − hn) − (f − h)‖Sq → 0 as n → ∞. Using the fact
that ϕ = (ϕ− ϕn) + ϕn it follows that

1
2T

∫ T

−T

(∫ 1

0

‖ϕ(τ + t)‖qdτ
)1/q

dt

≤ 1
2T

∫ T

−T

(∫ 1

0

‖ϕ(τ + t)− ϕn(τ + t)‖qdτ
)1/q

dt

+
1

2T

∫ T

−T

(∫ 1

0

‖ϕn(τ + t)‖qdτ
)1/q

dt

≤ ‖ϕn − ϕ‖Sq +
1

2T

∫ T

−T

(∫ 1

0

‖ϕn(τ + t)‖qdτ
)1/q

dt.

Letting T → ∞ and then n → ∞ in the previous inequality, we obtain that ϕb ∈
PAA0

(
Lq((0, 1),X)

)
; that is, f = h+ ϕ ∈ Sp,qpaa(X). �

Using similar arguments as in the proof of [15, Theorem 3.4], we obtain the next
theorem.

Theorem 4.16. If u ∈ Sp,qpaa(Y) and if C ∈ B(Y,X), then the function t 7→ Cu(t)
belongs to Sp,qpaa(X).
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Definition 4.17. Let p ≥ 1 and q ∈ C+(R). A function F : R × Y → X with
F (., u) ∈ BSp,q(x)(X) for each u ∈ Y, is said to be Sp,q(x)-pseudo-almost auto-
morphic in t ∈ R uniformly in u ∈ Y if t 7→ F (t, u) is Sp,q(x)-pseudo-almost
automorphic for each u ∈ B where B ⊂ Y is an arbitrary bounded set. This
means, there exist two functions G,H : R × Y → X such that F = G + H, where
Gb ∈ AA(Y, Lp((0, 1),X)) and Hb ∈ PAA0(Y, Lqb(x)((0, 1),X)); that is,

lim
T→∞

1
2T

∫ T

−T
inf
{
λ > 0 :

∫ 1

0

∥∥H(x+ t, u)
λ

∥∥q(x+t)
dx ≤ 1

}
dt = 0,

uniformly in u ∈ B where B ⊂ Y is an arbitrary bounded set. The collection of
such functions will be denoted by Sp,q(x)

paa (Y,X).

Let Lipr(Y,X) denote the collection of functions f : R×Y→ X satisfying: there
exists a nonnegative function Lf ∈ Lr(R) such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖Y for all u, v ∈ Y, t ∈ R.
Now, we recall the following composition theorem for Spaa functions.

Theorem 4.18 ([17]). Let p > 1 be a constant. We suppose that the following
conditions hold:

(a) f ∈ Spaa(Y,X) ∩ Lipr(Y,X) with r ≥ max{p, p
p−1}.

(b) φ ∈ Spaa(X) and there exists a set E ⊂ R such that K := {φ(t) : t ∈ R \ E}
is compact in X.

Then there exists m ∈ [1, p) such that f(·, φ(·)) ∈ Smaa(X).

To obtain a composition theorem for Sp,qpaa functions, we need the following
lemma.

Lemma 4.19. Let p, q > 1 be a constants. Assume that f = g + h ∈ Sp,qpaa(R ×
X) with gb ∈ AA(R × Lp((0, 1),X)

)
and hb ∈ PAA0(R × Lq((0, 1),X)

)
. If f ∈

Lipp(R,X), then g satisfies(∫ 1

0

‖g(t+ s, u(s))− g(t+ s, v(s))‖p ds
)1/p

≤ c‖Lf‖Sp‖u− v‖Y.

for all u, v ∈ Y and t ∈ R, where c is a nonnegative constant.

Proof. Let f = g+h ∈ Sp,q(x)
paa (R×X) with gb(·, u) ∈ AA(Lp((0, 1),X)

)
and hb(·, u) ∈

PAA0(Lq((0, 1),X)
)

for each u ∈ Y. Using Lemma 4.14 it follows that

{g(t+ ·, u) : t ∈ R} ⊂ {f(t+ ·, u) : t ∈ R} in Sp,q(X)

for each u ∈ Y.
Since f ∈ Lipp(R,X) and

(
BSp(X), ‖ · ‖Sp

)
↪→
(
BSp,q(X), ‖ · ‖Sp,q

)
, it follows

that (∫ 1

0

‖g(t+ s, u(s))− g(t+ s, v(s))‖p ds
)1/p

≤ ‖g(·, u)− g(·, v)‖Sp

= ‖g(·, u)− g(·, v)‖Sp,q
≤ ‖f(·, u)− f(·, v)‖Sp,q
≤ c‖f(·, u)− f(·, v)‖Sp
≤ c‖Lf‖Sp‖u− v‖Y.

for all u, v ∈ Y and t ∈ R. �
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Theorem 4.20. Let p, q > 1 be a constants such that p ≤ q. Assume that the
following conditions hold:

(a) f = g + h ∈ Sp,qpaa(R × X) with g ∈ Spaa(R × X)
)

and h ∈ Sqpaa0
(R × X).

Moreover, f, g ∈ Lipr(R,X) with r ≥ max{p, p
p−1};

(b) φ = α + β ∈ Sp,qpaa(Y) with α ∈ Spaa(Y) and β ∈ Sqpaa0
(Y), and K :=

{α(t) : t ∈ R} is compact in Y.
Then there exists m ∈ [1, p) such that f(·, φ(·)) ∈ Sm,mpaa (R× X).

Proof. First of all, write

f b(·, φb(·)) = gb(·, αb(·)) + f b(·, φb(·))− f b(·, αb(·)) + hb(·, αb(·)).

From Lemma 4.19, one has g ∈ Spaa(R×X). Now using the theorem of composition
of Sp-almost automorphic functions (Theorem 4.18), it is easy to see that there
exists m ∈ [1, p) with 1

m = 1
p + 1

r such that gb(·, αb(·)) ∈ AA(R× Lm((0, 1),X)).
Set Φb(·) = f b(·, φb(·)) − f b(·, αb(·)). Clearly, Φb ∈ PAA0(R × Lm((0, 1),X)).

Now, for T > 0,

1
2T

∫ T

−T

(∫ t+1

t

‖Φb(s)‖mds
)1/m

dt

=
1

2T

∫ T

−T

(∫ t+1

t

‖f b(s, φb(s))− f b(s, αb(s))‖mds
)1/m

dt

≤ 1
2T

∫ T

−T

(∫ t+1

t

(
Lbf (s)‖βb(s)‖Y

)m
ds
)1/m

dt

≤ ‖Lbf‖Sr
[ 1

2T

∫ T

−T

(∫ t+1

t

‖βb(s)‖pYds
)1/p

dt
]

≤ ‖Lbf‖Sr
[ 1

2T

∫ T

−T

(∫ t+1

t

‖βb(s)‖qYds
)1/q

dt
]
.

Using the fact that βb ∈ PAA0(Lq((0, 1),Y)
)
, it follows that Φb ∈ PAA0(R ×

Lm((0, 1),X)).
On the other hand, since f, g ∈ Lipr(R,X) ⊂ Lipp(R,X), one has(∫ 1

0

‖h(t+ s, u(s))− h(t+ s, v(s))‖mds
)1/m

≤
(∫ 1

0

‖f(t+ s, u(s))− f(t+ ·, v(s))‖mds
)1/m

+
(∫ 1

0

‖g(t+ s, u(s))− g(t+ s, v(s))‖mds
)1/m

≤
(∫ 1

0

(
Lf (t+ s)‖u(s)− v(s)‖Y

)m
ds
)1/m

+
(∫ 1

0

(
Lg(t+ s)‖u(s)− v(s)‖Y

)m
ds
)1/m

≤
(
‖Lf‖Sr + ‖Lg‖Sr

)
‖u(s)− v(s)‖p.

Since K := {α(t) : t ∈ R} is compact in Y, then for each ε > 0, there exists a
finite number of open balls Bk = B(xk, ε), centered at xk ∈ K with radius ε such
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that
{α(t) : t ∈ R} ⊂ ∪mk=1Bk.

Therefore, for 1 ≤ k ≤ m, the set Uk = {t ∈ R : α ∈ Bk} is open and R = ∪mk=1Uk.
Now, for 2 ≤ k ≤ m, set Vk = Uk − ∪k−1

i=1 Ui and V1 = U1. Clearly, Vi ∩ Vj = ∅ for
all i 6= j. Define the step function x : R → Y by x(t) = xk, t ∈ Vk, k = 1, 2, . . . ,m.
It easy to see that

‖α(s)− x(s)‖Y ≤ ε, for all s ∈ R.

which yields

1
2T

∫ T

−T

(∫ t+1

t

‖h(s, α(s))‖mds
)1/m

dt

≤ 1
2T

∫ T

−T

(∫ t+1

t

‖h(s, α(s))− h(s, x(s))‖mds
)1/m

dt

+
1

2T

∫ T

−T

(∫ t+1

t

‖h(s, x(s))‖mds
)1/m

dt

≤
(
‖Lf‖Sr + ‖Lg‖Sr

)
ε+

1
2T

∫ T

−T

( m∑
k=1

∫
Vk∩[t,t+1]

‖h(s, x(s))‖mds
)1/m

dt

≤
(
‖Lf‖Sr + ‖Lg‖Sr

)
ε+

1
2T

∫ T

−T

( m∑
k=1

∫
Vk∩[t,t+1]

‖h(s, x(s))‖qds
)1/q

dt.

Since ε is arbitrary and hb ∈ PAA0(R× Lq((0, 1),X)
)
, it follows that the function

hb(·, αb(·)) belongs to PAA0(R× Lm((0, 1),X)). �

Remark 4.21. A general composition theorem in S
p,q(x)
paa (R × X) is unlikely as

compositions of elements of Sp,q(x)
paa (R × X) may not be well-defined unless q(·) is

the constant function.

5. Existence of pseudo-almost automorphic solutions

Let p, q > 1 be constants such that p ≤ q. In this section, we discuss the
existence and uniqueness of pseudo-almost automorphic solutions to the first-order
linear differential equation (1.1) and to the semilinear equation (1.2). For that, we
make the following assumptions:

(H1) The family of closed linear operators A(t) satisfy Acquistapace–Terreni con-
ditions.

(H2) The evolution family (U(t, s))t≥s generated by A(t) has an exponential
dichotomy with constants M > 0, δ > 0, dichotomy projections P (t), t ∈ R,
and Green’s function Γ(t, s).

(H3) Γ(t, s) ∈ bAA(R× R, B(X)).
(H4) B : X 7→ X is a bounded linear operator and let ‖B‖B(X) = c.
(H5) F = G+H ∈ Sp,qpaa(R×X)∩C(R×X,X) with Gb ∈ AA(R×Lp((0, 1),X)

)
and Hb ∈ PAA0(R× Lq((0, 1),X)

)
. Moreover, F,G ∈ Lipr(R,X) with

r ≥ max
{
p,

p

p− 1

}
.
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Let us also mention that (H1) was introduced in the literature by Acquistapace
and Terreni in [2, 3]. Among other things, from [1, Theorem 2.3] (see also [3,
24, 25]), assumption (H1) does ensure that the family of operators A(t) gener-
ates a unique strongly continuous evolution family on X, which we will denote by
(U(t, s))t≥s.

Definition 5.1. Under (H1), if f : R→ X is a bounded continuous function, then
a mild solution to (1.1) is a continuous function u : R→ X satisfying

u(t) = U(t, s)u(s) +
∫ t

s

U(t, σ)f(σ)dσ (5.1)

for all (t, s) ∈ T :=
{

(t, s) ∈ R× R : t ≥ s
}

.

Definition 5.2. Suppose (H1) and (H4) hold. If F : R × X → X is a bounded
continuous function, then a mild solution to (1.2) is a continuous function u : R→ X
satisfying

u(t) = U(t, s)u(s) +
∫ t

s

U(t, σ)F (σ,Bu(σ))dσ (5.2)

for all (t, s) ∈ T.

Theorem 5.3. Let p > 1 be a constant and let q ∈ C+(R). Suppose that (H1)–
(H3) hold. If f ∈ Sp,q(x)

paa (X) ∩ C(R,X), then the (1.1) has a unique pseudo-almost
automorphic solution given by

u(t) =
∫ +∞

−∞
Γ(t, σ)f(σ)dσ, t ∈ R. (5.3)

Proof. Define the function u : R 7→ X by

u(t) :=
∫ t

−∞
U(t, σ)P (σ)f(σ)dσ −

∫ +∞

t

UQ(t, σ)Q(σ)f(σ)dσ, t ∈ R.

Let us show that u satisfies (5.1) for all t ≥ s, all t, s ∈ R. Indeed, applying
U(t, s) for all t ≥ s, to both sides of the expression of u, we obtain,

U(t, s)u(s) =
∫ s

−∞
U(t, σ)P (σ)f(σ)dσ −

∫ +∞

s

UQ(t, σ)Q(σ)f(σ)dσ

=
∫ t

−∞
U(t, σ)P (σ)f(σ)dσ −

∫ t

s

U(t, σ)P (σ)f(σ)dσ

−
∫ +∞

t

UQ(t, σ)Q(σ)f(σ)dσ −
∫ t

s

UQ(t, σ)Q(σ)f(σ)dσ

= u(t)−
∫ t

s

U(t, σ)f(σ)dσ

and hence u is a mild solution to (1.1).
Let us show that u ∈ PAA(X). Indeed, since f ∈ S

p,q(x)
paa (X) ∩ C(R,X), then

f = g + ϕ, where gb ∈ AA(Lp((0, 1),X)
)

and ϕb ∈ PAA0(Lq
b(x)((0, 1),X)

)
. Then

u can be decomposed as u(t) = X(t) + Y (t), where

X(t) =
∫ t

−∞
U(t, s)P (s)g(s)ds+

∫ t

+∞
UQ(t, s)Q(s)g(s)ds,
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Y (t) =
∫ t

−∞
U(t, s)P (s)ϕ(s)ds+

∫ t

+∞
UQ(t, s)Q(s)ϕ(s)ds.

The proof that X ∈ AA(X) is obvious and hence is omitted. To prove that
Y ∈ PAA0(X), we define for all n = 1, 2, . . . , the sequence of integral operators

Yn(t) : =
∫ t−n+1

t−n
U(t, s)P (s)ϕ(s)ds+

∫ t+n

t+n−1

UQ(t, s)Q(s)ϕ(s)ds

=
∫ n

n−1

U(t, t− s)P (t− s)ϕ(t− s)ds+
∫ n

n−1

UQ(t, t+ s)Q(t+ s)ϕ(t+ s)ds

for each t ∈ R.
Let d ∈ m(R) such that q−1(x) + d−1(x) = 1. From exponential dichotomy of

(U(t, s))t≥s and Hölder’s inequality (Theorem 3.8), it follows that

‖Yn(t)‖ ≤M
∫ t−n+1

t−n
e−δ(t−s)‖ϕ(s)‖ds+M

∫ t+n

t+n−1

eδ(t−s)‖ϕ(s)‖ds

≤M
( 1
d−

+
1
q−
)[

inf
{
λ > 0 :

∫ t−n+1

t−n

(e−δ(t−s)
λ

)d(s)

ds ≤ 1
}]

×
[

inf
{
λ > 0 :

∫ t−n+1

t−n

∥∥ϕ(s)
λ

∥∥q(s)ds ≤ 1
}]

+M
( 1
d−

+
1
q−
)[

inf
{
λ > 0 :

∫ t+n

t+n−1

(eδ(t−s)
λ

)d(s)

ds ≤ 1
}]

×
[

inf
{
λ > 0 :

∫ t+n

t+n−1

∥∥∥ϕ(s)
λ

∥∥∥q(s)ds ≤ 1
}]
.

Now since ∫ t−n+1

t−n

[ e−δ(t−s)
e−δ(n−1)

]d(s)

ds =
∫ t−n+1

t−n

[
eδ(s−t+n−1)

]d(s)

ds

≤
∫ t−n+1

t−n

[
1
]d(s)

ds ≤ 1

it follows that

e−δ(n−1) ∈
{
λ > 0 :

∫ t−n+1

t−n

(e−δ(t−s)
λ

)d(s)

ds ≤ 1
}
,

which shows that[
inf
{
λ > 0 :

∫ t−n+1

t−n

(e−δ(t−s)
λ

)d(s)

ds ≤ 1
}]
≤ e−δ(n−1).

Consequently,

‖Yn(t)‖ ≤M
( 1
d−

+
1
q−
)
e−δ(n−1)‖ϕ‖Sq(x) +M

( 1
d−

+
1
q−
)
eδ(1−n)‖ϕ‖Sq(x)

≤ 2M
( 1
d−

+
1
q−
)
e−δ(n−1)‖ϕ‖Sq(x) .



EJDE-2013/188 STEPANOV-LIKE PSEUDO ALMOST AUTOMORPHY 17

Since the series
∑∞
n=1 e

−δ(n−1) converges, we deduce from the well-known Weier-
strass test that the series

∑∞
n=1 Yn(t) is uniformly convergent on R. Furthermore,

Y (t) =
∫ t

−∞
U(t, s)P (s)ϕ(s)ds+

∫ t

+∞
UQ(t, s)Q(s)ϕ(s)ds =

∞∑
n=1

Yn(t),

Y ∈ C(R,X), and

‖Y (t)‖ ≤
∞∑
n=1

‖Yn(t)‖ ≤ 2M
( 1
d−

+
1
q−
) ∞∑
n=1

e−δ(n−1)‖ϕ‖Sq(x) .

Next, we will show that

lim
T→∞

1
2T

∫ T

−T
‖Y (s)‖ ds = 0.

Indeed,

1
2T

∫ T

−T
‖Yn(t)‖ dt

≤ 2M
( 1
d−

+
1
q−
)
e−δ(n−1)

[ 1
2T

∫ T

−T
inf
{
λ > 0 :

∫ t+n

t+n−1

∥∥∥ϕ(s)
λ

∥∥∥q(s)ds ≤ 1
}]
.

Since ϕb ∈ PAA0(Lq
b(x)((0, 1),X)), the above inequality leads to Yn ∈ PAA0(X).

Using the following inequality

1
2T

∫ T

−T
‖Y (s)‖ ds ≤ 1

2T

∫ T

−T

∥∥∥Y (s)−
∞∑
n=1

Yn(s)
∥∥∥ dt+

∞∑
n=1

1
2T

∫ T

−T
‖Yn(s)‖ ds,

we deduce that the uniform limit Y (·) =
∑∞
n=1 Yn(·) ∈ PAA0(X). Therefore u ∈

PAA(X).
It remains to prove the uniqueness of u as a mild solution. This has already

been done by Diagana [6, 10]. However, for the sake of clarity let us reproduce
it here. Let u, v be two bounded mild solutions to (1.1). Setting w = u − v,
one can easily see that w is bounded and that w(t) = U(t, s)w(s) for all (t, s) ∈ T.
Now using property (i) from exponential dichotomy (Definition 2.11) it follows that
P (t)w(t) = P (t)U(t, s)w(s) = U(t, s)P (s)w(s), and hence

‖P (t)w(t)‖ = ‖U(t, s)P (s)w(s)‖ ≤Me−δ(t−s)‖w(s)‖ ≤Me−δ(t−s)‖w‖∞.
for all (t, s) ∈ T.

Now, given t ∈ R with t ≥ s, if we let s→ −∞, we then obtain that P (t)w(t) = 0,
that is, P (t)u(t) = P (t)v(t). Since t is arbitrary it follows that P (t)w(t) = 0 for
all t ≥ s. Similarly, from w(t) = U(t, s)w(s) for all t ≥ s and property (i) from ex-
ponential dichotomy (Definition 2.11) it follows that Q(t)w(t) = Q(t)U(t, s)w(s) =
U(t, s)Q(s)w(s), and hence UQ(s, t)Q(t)w(t) = Q(s)w(s) for all t ≥ s. Moreover,

‖Q(s)w(s)‖ = ‖UQ(s, t)Q(t)w(t)‖ ≤Me−δ(t−s)‖w‖∞.
for all t ≥ s.

Now, given s ∈ R with t ≥ s, if we let t→ +∞, we then obtain thatQ(t)w(t) = 0,
that is, Q(s)u(s) = Q(s)v(s). Since s is arbitrary it follows that Q(s)w(s) = 0 for
all t ≥ s. �

Using Theorem 5.3 one easily proves the following theorem.
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Theorem 5.4. Let p, q > 1 be constants such that p ≤ q. Under assumptions
(H1)–(H5), then (1.2) has a unique solution whenever ‖LF ‖Sr is small enough.
And the solution satisfies the integral equation

u(t) =
∫ t

−∞
U(t, σ)P (σ)F (σ,Bu(σ))dσ−

∫ +∞

t

UQ(t, σ)Q(σ)F (σ,Bu(σ))dσ, t ∈ R.

Proof. Define Ξ : PAA(X)→ PAA(X) as

(Ξu)(t) =
∫ t

−∞
U(t, σ)P (σ)F (σ,Bu(σ))dσ −

∫ +∞

t

UQ(t, σ)Q(σ)F (σ,Bu(σ))dσ

Let u ∈ PAA(X) ⊂ Sp,qpaa(X). From (H4) and Theorem 4.16 it is clear that Bu(.) ∈
Sp,qpaa(X). Using the composition theorem for Sp,qpaa functions, we deduce that there
exists m ∈ [1, p) such that F (., Bu(.)) ∈ Sm,mpaa (X). applying the proof of Theorem
5.3, to f(.) = F (., Bu(.)), one can easily see that the operator Ξ maps PAA(X)
into its self. Moreover, for all u, v ∈ PAA(X), it is easy to see that

‖(Ξu)(t)− (Ξv)(t)‖

≤
∫

R
‖Γ(t− s)‖‖F (s,Bu(s))− F (s,Bv(s))‖ ds

≤
∫ t

−∞
cMe−δ(t−s)LF (s) ds‖u− v‖∞ +

∫ +∞

t

cMeδ(t−s)LF (s) ds‖u− v‖∞

≤
∞∑
n=1

∫ t−n+1

t−n
cMe−δ(t−s)LF (s) ds‖u− v‖∞

+
∞∑
n=1

∫ t+n

t+n−1

cMeδ(t−s)LF (s) ds‖u− v‖∞

≤ cM
∞∑
n=1

(∫ t−n+1

t−n
e−r0δ(t−s) ds

) 1
r0 ‖LF ‖Sr‖u− v‖∞

+ cM

∞∑
n=1

(∫ t+n

t+n−1

er0δ(t−s) ds
) 1
r0 ‖LF ‖Sr‖u− v‖∞

≤ 2cM
∞∑
n=1

(e−r0(n−1)δ − e−r0nδ

r0δ

) 1
r0 ‖LF ‖Sr‖u− v‖∞

≤ 2cM r0

√
1 + er0δ

r0δ

∞∑
n=1

e−nδ‖LF ‖Sr‖u− v‖∞,

for each t ∈ R, where 1
r + 1

r0
= 1. Hence whenever ‖LF ‖Sr is small enough, that is,

2cM r0

√
1 + er0δ

r0δ

∞∑
n=1

e−nδ‖LF ‖Sr < 1,

then Ξ has a unique fixed point, which obviously is the unique pseudo-almost au-
tomorphic solution to (1.2). �
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