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BACKWARD UNIQUENESS FOR HEAT EQUATIONS WITH
COEFFICIENTS OF BOUNDED VARIATION IN TIME

SHIGEO TARAMA

ABSTRACT. Uniqueness of solutions to the backward Cauchy problem for heat
equations with coefficients of bounded variation in time is shown through the
Carleman estimate.

1. INTRODUCTION

We consider a heat operator in the time backward form
d
Lu=0;+ Y 0 (aji(2,t)0m,u), (1.1)

k=1
with real bounded and measurable coefficients ajx(x,t) on R? x [0,7], for some
T > 0, satisfying ajr(x,t) = ar;j(z,t) (4,k=1,2,...,d) and
d
ai (2, )€€ > Dol[? (1.2)
k=1

for any ¢ € R? with some positive Dy.

The Cauchy problem for Lu = f on R? x [0, T] with Cauchy data on ¢t = 0 is not
well-posed. But the uniqueness of solutions to the Cauchy problem is valid under
some conditions on the coefficients. Since the work of Mizohata [B], there are many
works on this problem. See for example the survey paper of Vessella [6] and the
papers cited therein. But it seems that the backward uniqueness for heat operators
with discontinuous coefficients is not well studied.

We consider an operator whose coefficients aji(x,t) (j,k = 1,2,...,d) are of
bounded variation in ¢ uniformly with respect to € R%. That is, there exists a
constant M > 0 such that we have

L
sup |a;x(z,t;) — ajp(x, ti—1)] < M (1.3)
1—1 T€RY
for any partition of [0,T], tp =0 < t; < --- <ty = T, which means that a;x(x,t) is
a Cp (R%)-valued function on [0, 7] with bounded variation. Here C?(R?) is a space
of bounded and continuous functions on R?. While we assume that a;i(z,t) are
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Lipschitz continuous in z uniformly with respect to ¢, that is, we assume that we
have, with some L > 0,

d

> lagk(@,t) — ar(y, 1) < Llz — y| (1.4)
Gk=1

for any z,y € R? and any ¢ € [0.T]. Under these conditions we show the following.

Theorem 1.1. Assume that the coefficients aji(x,t) (5,k = 1,2,...,d) of the

operator (1.1)) are real, bounded and symmetric and satisfy (1.2)), (1.3) and (L.4).
Let u(x,t) € L*([0,T], H'(RF))NCY([0, T], L*(RY)) satisfy Lu € L*([0,T], L*(RY)),

[Lu(-, 8)|| < Cllu(-,t)]]x  almost all t € [0,T],
and u(z,0) = 0. Then we have u(z,t) =0 on R% x [0, 7).

Here the spaces L? and H! and their norm ||| and ||-||; are standard ones whose
definitions are given below. For a Banach space X, we denote by L?([0,77], X) and
C°([0,T], X) the space of X-valued square integrable functions and the space of
X-valued continuous functions respectively.

Remark 1.2. We note that Lu € L2([0,T], L?(R%)) implies dyu(x,t) being in
L2([0,T], H~Y(RZ)). While dsu(x,t) being in L2([0,7], H '(R%)) and u(z,t) in
L2([0,T), H*(RY)) imply u(x,t) € C°([0,T], L%(R%)) (see for example [3, Theorem
1. §1.1 Ch. XVIII]). Then the assumption u(z,t) € C°([0, T], L?(R%)) follows from
the other assumptions.

Theorem is shown by using the Carleman estimate. Here, in order to indicate
the principal idea of proof, we show how to obtain the Carleman estimate for a
simple operator dyu + a(t)0%u. We assume that the coefficient a(t) satisfies that
Cy < a(t) < Oy with positive Cp,C5, and that for any positive ¢ there exists
T. € (0,¢] such that we have, for any h € [0, 7],

T
/ la(t + h) — a(t)| dt < ch.
0
We remark that the second assumption is satisfied if a(t) is of bounded variation

and continuous at ¢t = 0. .
We define the weight function y () by 11, (t) =~ [, © e¥*(®) dr, where

vy = [ 2l +1/9) a7 [ lalr+ 5/7) = al)ds) o

We note that 0 < 4., (t) < 5/2 when v > 1/T.. Under these conditions, we show
that there exist positive e, 79 and C such that we have the estimate

T. T
[ O e Oa < € [ et o+ ayou |
0 0

for any v > 79 and u(z,t) satisfying w(z,0) = 0 and u(x,T.) = 0. Plancherel’s
theorem implies that we have only to show the estimate

T T, A
(7+§2)/0 |62¢M(t)u(t)|2dt§0/0 120190 Eu(t)? dt (1.5)
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for any € € R, v > 7 and u(t) satisfying u(0) = 0 and w(7.) = 0. Here Lu =

d
preie a(t)€?u. By setting u(t) = e=¥17My(t), we see that the estimate above is
equivalent to

T. .
(7 + ) / w(t)[? dt < © / Lo(t)|? dt (16)

where L = % +ve? () — q(t)€2. In the following, we show (L.6) for a real valued
v(t) satisfying v(0) = 0 and v(T.) = 0.
We see from v(0) = v(T;) = 0 that

T B Te
- / v(t)Lo(t) dt = / (a(t)€? — eV D) (v(t))? dt.
0 0
Then, when C1£2 > 252+, we have
Te 5 Te
| wliede = @2 [ o
0 0
Hence we have
Ta - TE
Ca [ ILuoP dr= (& 4) [ oo ae
0 0

with some C3, when C1&2e7%/2/2 > ~ > 1.
For the case where 01526*5/2/2 < 7, we first remark that

Te ~ T.
| @o@pae= [ (@ ®)F + 00 - a0 P0)?) de+ 1
0 0
where

T
I=2/0 o (B)(re O — a(H)E ) (t) dt

To estimate I, we regularize a(t) by a,(t) = fo a(t + s/v)ds. Since a,(t) =
7ft+ a s) ds, we see that

lay(t) —a(t)| < /0 la(t +s/v) —a(t)|ds, |a,(t)] <~la(t +1/7) —a(t)].
Note that |a,(t)] < Cy. We set I = I + I, where

T
h=2 [ 0660 - o (06)(0(0) dr,
0
Te
B=2 [0 0) - ) d

From |a(t) — a(t)|* < 2Cs]ay(t) — a(t)| and Schwarz’s inequality, we obtain

T. T: 1
L) < / W (8)2 dt +2C / / alt + s/7) — a(t)| ds€*o(t)|? dt.

0
Note

T
L / (et — . (1)€2) &
0

v(0) =0, v(T:) =0, and
e (1)

(v(t))? dt,

_ )

! O L lalt £ 1) — alt m/ lalt + 5/7) — a(t)] ds).
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By integrating by parts and e¥() > 1,

T, 1
Bz [ (2elaterrn—a)ley [ lalts) -a(0)]ds)-+al (06) w(6)? d.

Hence, noting |a/,(t)| < ~la(t 4+ 1/7) — a(t)|, we see that, if v/e > €2,

T v 'y2 1
I > / (= + 7/ la(T + s/7) — a(7)| ds)(v(t))? dt.
o ¢ € Jo
Then from I > I — |I| it follows that, if v/e > &2,
T: y ,}/2 1 T
12 [T+ L =20 [ att+ s/ - aolds) ) at - [P a,
0 € € 0 0
from which we see that

TE7 T: ,
1> / Y (w(t))? di — / ' (8) 2 dt,

€
when v/e > ¢2 and 72 /e > 2C5¢&%.
We have some positive € not depending on £ or on 7 such that, if 01526’5/2/2 <
7, we have v/e > €2 and 72 /e > 2C&*. Therefore, with such e, we see that

/ o) > / S (o2
0 0

ify>1/T. and v > 01526_5/2/2. Then we have with some positive Cy,

e s 2 N 2
Cy / (Lo()2dt > (v + €2) / (0(t))? dt

if v > 1/T. and v > C1£%e~5/2 /2. Hence we obtain the estimate (1.6)).

We remark that we need a more precise estimate than the estimate above for
the proof of Theorem

In the next section we recall the properties of the Hardy-Littlewood decomposi-
tion and the properties of functions of bounded variation for the preliminaries. We
draw the Carleman estimate in the section 3. Finally we give the proof of Theorem
in the section 4. In this study the author is inspired by the paper of Del Santo
and Pruzzi [2].

We denote the space of square integrable functions on R? by L?(R%). The inner
product in L2(R%) is given by

(u,v) = /R u(w)o(w)de

1/2
and the norm by [Jv(-)|| = (fRd |v(a:)|2dx) .
The space H'(R?) consists of u(z) € L*(R?) whose derivatives d,,u(z) (j
1,2,...,d) belong also to L?(R%). The norm || - ||; of H'(R?) is given by ||u(-)|1 =
d d
\/||u(')||2 + 351 102, u()|I?. We set [[Vul|? = 377, (|0, ull*.

Let C°°(£) be the space of infinitely differentiable functions on €2, W1>°(R%)
the space of bounded and Lipschitz continuous functions on R¢ with the norm

d

lu() e = luC)llze + Y 10a,u()]|ze-

Jj=1
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Here we denote by ||u(-)||z~ the essential supremum of |u(z)| on R
We denote by 9(§) the Fourier transform of v(z) given by

/ ey (x) du,
R

while the inverse Fourier transform of w(&) is defined by
1 -

Ty o de.

e

In the following, we use C or C' with some suffix in order to denote positive constants
that may be different line by line.

2. PRELIMINARIES

2.1. The Littlewood-Payley decomposition. We recall some properties of the
Littlewood-Payley decomposition and the related results referring to [4].

Let ¢o(¢) € C(RY) satisty 0 < @(¢) < 1, do(€) = 1 for |¢| < 11/10 and
¢0(€) =0 for |¢] > 19/10. We define ¢,,(§) with n =1,2,3,... by

6n(6) = dol2) — ol 5r).

For a function ¢(§), we denote the Fourier multiplier with ¢(€) by ¢; that is, ¢v
is the inverse Fourier transform of ¢(£)(§). We remark that

CMull® < Y llgnul® < Clful®. (2.1)
n=0
Lemma 2.1. For a(z) € WH*(RY), we have
Y llgnau — agnullf < C(llallwr< [[ul)). (2.2)
n=0

Proof. We define the paraproduct T,u by Z?io aj—3¢u. Here aq; is the inverse
Fourier transform of ¢o(27'¢)a(€). Tt is well known that we have

law — Tyul|r < Cllallw . |jull.
See for example [, Theorem 5.2.8]. This estimate and (2.1)) imply

> ladpu = Tupnw)|F < C(llafwsoeful)?,

n=0

D llgn(au — Tuw)llf < C(llallwo lul)?.

n=0

Then we have to show only that
S llénTau = Taguu)|13 < C(llallypro Jull)2
n=0

In the following, we assume that [ and n are non-negative integers. Note that
the spectrum of a;_3¢;u, that is, the support of the Fourier transform of a;_z¢;u is
contained in 2/72 < |¢] < 2142 if [ > 1, while the spectrum of a_z@ou is contained
in |§] < 2. Then we see that

Pnai—zpru=0 |l —n|>3.
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We remark also that ¢;(€)¢,(£) =0 if || —n| > 1. Then ¢, T,u — T,dpu is equal to
> bnai_sdiu — a_sdidnu,
L|l—n|<2
which, using the symbol of commutator, is equal to
> b sl
Lll—n|<2

Since a;(z) = [ga a(y)2'"P(2'(z—y)) dy where P(z) is the inverse Fourier transform
of ¢o(§), then we have |a;(x) — ai(y)| < Clla||lwr.<|z — y|. Note that [¢,, a;_s|u is
equal to

20 [ Q=) (@ly) — ala)uty) dy
where Q(z) = P(z) — 27¢P(x/2) if n > 1 and Q(x) = P(x) if n = 0. Then
[ r-slrae)| < Clalur2 2 [ PG = )lu(w)] dy

where Py (z) = |P(x)||x|. Since P;(z) is integrable, we have

[[6n, ar—s]drull < Cllallw.e27" [[u].
If |l — n| < 2, the spectrum of [¢,,, a;_3]¢yu is contained in |¢] < 272 then

[ [bn, ar—slgiulli < (2" + 1) [bn, ar—3)prul.
Hence we obtain

I Y [nasléulh < Y Cllalwrlléul.

L]l—n|<2 L|l—n|<2
Since ¢pTou — Topu = Zl;”,mgg[@bm a;—3]¢ru, we have
[6aTuti~ Tubwul < 3" Cllallwrlldrall
Lll—n|<2

from which we obtain ([2.2)). O

2.2. Bounded variation. Next we recall the properties of functions with bounded
variation. (See, for example, the appendix of [I] for the detail.) Let X be a Banach
space with a norm || - || x and let f(¢) be a X-valued function on [0, 7] with bounded
variation; that is, whose total variation V(f, [0, T]) given by

V(fv [OvT]) sup Z”f tl tl 1)||X
any partition of [0,T]
to=0<t1<---<tp =T

is finite. Then, setting V;(t) = V(f,[0,¢]), we have
1F(t) = f(s)llx < Vi(t) — Vi(s)

for any 0 < s < t < T, which implies that f(¢) has at most countably many
discontinuous points and there exists f(t 4+ 0) = limp~ o f(¢t + h) for any ¢t € [0,T)
and that we have

T—h
/O 1F(t+ R) — F(t)]|x dt < BV(T) (2.3)
forany 0 < h <T.
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We see that (2.3)) implies

T/2
/0 1F(t+R) — F(t)])x dt < BV(T) (2.4)

for any 0 < h < T/2.

Furthermore we have || f(t +0) — f(t)||x = V§(t +0) — V;(¢). Then we see from
that, when f(¢) is right continuous at ¢ = 0, that is f(0+ 0) = f(0), for any
€ > 0 there exists a positive T, such that we have

T
/0 LF(E+R) — F(O)lx dt < he

forany 0 < h <T..

Remark 2.2. It follows from the argument above and assumption that the
right limit limp~ o ajx(x,t + h) converges uniformly on R? for any ¢ € [0,7). Then
we see that and still hold for a (z,t+0) = limy,\ o a;(z, t+h). Further-
more, we have a;i(z,t+0) = a;i(x,t) except for at most countably many ¢. Then,
in Theorem we may assume that a;i(x,t +0) = aji(z,t) on [0,7] uniformly
with respect to z € R%.

3. CARLEMAN ESTIMATE

Noting Remark [2.2] we may assume that for any positive e, there exist T, > 0
such that we have

T:
/ Znajk 4 h) — ajp(-, 1) pee dt < eh (3.1)

7,k=1

for any h € [0,T.]. Here we may assume that T, < e.
We define .,(t) and 1 ,(t) with v > 1/T. by

Tl 1< ! s
t) = -4 - ; 2) —aj ~ ds) d
¥t / (”%,Ek_ﬁ”/o laje(e, 7+ =) = e, 7)1 ds) dr

T
v =7 [ e ar
t

We note that, since

Te
ES
2/ (e, t + )—ajk(x Dl de <

7,k=1

for s € [0,1] and v > 1/T, we have, on [0,T¢],

| W

0 < 9y(t) < (3.2)

In this section we show the following Carleman estimate.
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Proposition 3.1. There exists a positive constant €y so that, for any € € (0,&p)
we have, with a positive 7.,

T T.
€ 1 €
[T O e 2 [ O va o P
€ Jo €Jo (33)

Te
< c/ 0190 | Lu(-, )2 dt
0

for any v > ~. and any u(x,t) € L*(R? x [0,1%]) satisfying Oy, u(z,t) € L*(R* x
0,7.]) (j = 1,2,...,d) and Lu € L*(R? x [0,7%]), u(x,0) = 0 and u(x,T.) = 0.
Here the constant C' is independent of € and of ~y.
We define the operator L., by L, = e¥17() Le=¥14(1); that is,
d
Lou = 0pu+ e Dut+ > 0, (ai(x,)0,u).
Gok=1

Then, by replacing u by ¥+ ®u, ([3:3) is equivalent to

T 1 T Te
i / (- 6)2 dt + / IVu( Dl dt < C / ILyu(t)2dt. (3.4)
€ Jo € Jo 0

We remark that from (2.2)) it follows that

D N bnds, (ax0ku) = Or, (a1 0k dnu)||* < OO, ul®,
n=0

from which we obtain
> lénLyu — Lygpul* < Cllul3.
n=0

Then, by (2.1) we get

D Lanull® < C(|Lyul® + ull}). (3.5)
n=0
Therefore, we consider the estimate of || L~ ¢, ul|. Note that (L.2) implies
d
> (ak(x, )0z, v, 04,v) > Do|| V|, (3.6)
k=1

from which and from (3.2]) we obtain the following: for u(z, t) satisfying u(z,0) = 0
and u(z,Te,) = 0,

Te Te T.
- / (L bty ) > Do / IV ()| dt — 7e*/? / b dt.
0 0 0

When 20221 > ~4¢3/2 and n > 1, we see, noting [|[V(¢,u)|? > 22=D||¢,ul?,
that

T Dy [ 2 a2 [ 2
- [ = [TV [ ol e
0

Hence, by [(Ly¢nu, dpu)| < Sl|Lyul|® + 5= ||lul|* we get

T, T: T 1
o [ dtz Dy [ V@ [ ey Dlsadd 67
0 0 0
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For the case where 2022("=1) < 4¢3/2 with v > 1/T., we have the following lemma.

Lemma 3.2. There exists a positive g such that under the condition that (3.1)
is valid for 0 < € < g9, we have the following estimates. When 0 < € < gp and
%22(”71) < ve*'? with v > 1/T., we have

T, 1 T, ol T
C [ Mabmiltaz 2 [CIVoarar et [Cloulta @s)
0 €Jo €Jo
for any u(x,t) satisfying u(xz,0) =0 and u(z,T.,) =0
Proof. Note that

d
1Ly Gl = 1|0 (@nw)|* + e bru+ > O, (ajx0uy dns)||?
7,k=1
d
+ 2%(8t(¢nu)77ew’y¢n + Z 2% at ¢n (ajk:awk¢nu))-

Let x(s) € C*(R) satisfy x(s) > 0 on R, x(s) = 0 on (—00,0] U [1,00) and
J75 x(s)ds = 1. Set Dy = sup,cg |x(s)| + [X'(s)|. We define the regularization of
ajk, ajy,(z,t), by

o) =7 [ xos = 0)agelo, ) ds.

We see that -
uwt) = [ x(asulat+ /) ds

from which and from [*_x(s)ds =1 we see

o0
(1) — e, t) = / ()@t + 5/7) = agela, 1)) ds,
— 00
while from d,a”(z,t) = —v [T X'(s)ajr(x,t + s/y)ds and [7_X'(s)ds = 0,
follows that
Oy(o.t) = =1 [ X (G)ag(at+5/7) - alet) ds

Then we have

1
lajy (2, t) — aji(z,1)] < D1/O laji(z, t + s/v) — aji(z,t)| ds,

1

0y, )] < Dry [ asuCant + 5/7) = (o] ds.

0
Furthermore we note that
|aji (@, )] < llaje(-, )l
implies
|aji (1) — aji(z, )] < 2l|aji(-, )|z~

Then we have

1 1/2
@e0) = a0 < s Ollem (D17 [ lagnlant+s/n) - antaitlds)
0
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Using the estimates above, we estimate the term (9;(¢nu), Oz, (a;10z, Pnu)). Note
that

(8t(¢nu)7 aévj (a]kaﬂik(bnu»
= (Ot(Pnu), O, (a;’kaxk@lu)) + (O (Pnu), Oz, ((ajr — a}k)awk@lu)).

Note that |(0(¢nu), O, (ajk — ;) Or, onw))| = [(0:0z; (¢nu), ((ajk — ;) Ou, Pnu))|
which is dominated by

(3.9)

1 1/2
2110 (@)l 2ol Oll= (D1 [ lagnCotrs/m=ap( i ds) V6l

Here we used ¢,,(§) = 0 for [{] > 2"*!. Setting K = Z?,k:l supefo, 7, llaje (- 1)l e,
we obtain, from Schwarz’s inequality,

d
Z |(O(Pnu), Oz, ((ajr — a;k)axk Pnu))|

j,k=1
+1 a ! 1/2
<206 |VER (D1 3 [ llanst+ /) = anCot)le=ds) Vol
jk=1"0
Then we get
d
2 3 10(énu). O, ((ajn — a3, 600))

jk=1

d 1
< [0e(@nu)||? + 22T KDy / lajr(-t+s/7) = aji(-, )| L ds||Vhnul®.
jk=1"0
Hence

d
10(Gn) 1242 S R(O:(bnt), 0a, (@ — a1) s, 1))

j,k=1

d 1
> —220HUHEKD, Y / lajk (ot + 5/7) = ajn(, )| Lo ds]| Vel
0

Jok=1
On the other hand, noting that
d
> 2R(0(bnu), Ou, (040, Pntr))
Jk=1
d d
= Z (O, pnu, (8ta;7k)8mkq§nu) — Z at(aqubnu,a;k@mkcﬁnu),
Gk=1 Jk=1

we see that, when u(z,0) = 0 and u(z, T.,) = 0 are satisfied,

T
|| 2000 0 () 0y
0

T. d 1
< / (3 Diy / lagi (ot + 5/7) — agi D)o ds) [ Vbl dt.
0 0

jk=1
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Therefore, we see that, when u(z,0) = 0 and u(x, T.,) = 0 are satisfied,

Te
/0 (106017 + 2RO G0, S 01yt )

7,k=1

Ts
— (22D 4 ) Dy Z/ / laju(-t+ /%) — ajr(- )| Lo ds|Vonul? dt.
J.k=1

Similarly, we have

d
R(Or(pur), v ) = Or(dnu, ve¥ dpu) — 7(%ew”)||¢nu||2.
‘We note that

d
*’Y(df

d 1
1 v
L) = et ) (S 1 Y / lajic(ot+ 5/7) = a0l ds)
jk=1

from which and from e¥*(Y) > 1, we obtain

d Y
dey2Zaay Y [ tasntet+ 920~ Dl ).
7,k=1

Then we see that, when u(x,0) = 0 and u(x,T.) = 0 are satisfied,

Te
/ 2R(0¢(dnu), ye¥ onu) dt
0

Ta
z/o 1+72/ g (ot + 5/7) — agi o )| e ds) | Suul dt

7,k=1

Therefore,
TE TE/V
/ 1Lyt dt > / 2l
0 0

Te
+/ (—||¢nu||2 (22D K D) 4 D) || Vénul?)
0

Z/ laji(t+s/v) —ajk(, )||Loods)dt

J,k=1
Since ||V,ul? < 22+D|¢,u|?, when £022(n=1) < ~e3/2 we have

(22CHDHLE Dy + D1y)|[Vénull? < O dnul|?,
IVenul® < Cyllgnul®.

Choosing ¢y small, we have, for 0 < ¢ < g,

(—HqﬁnuH? (22CHDHE Dy + D1y)|[Vénul?) =

Te Ts7
[zl ar = [ ol ar
0 o ¢

Hence
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Using v[|¢null* > &[|Vénull®, we obtain

T. T. 1
I 2 g0~ e 2 2
| Mgz [0 + g Vol ar
(|

Now we complete the proof of Proposition We choose ¢¢ and v, so that the
assertion of Lemma is valid. Furthermore we choose 7. so large that we have
Ye > 2/e. Then we obtain from ({3.7))

T, 1 T, ol T
c / L2 dt > © / IVl dt + / bl d
0 €Jo € Jo

for n satisfying Do 22("_1) > ~e3/2 with v > ~.. Hence it follows from the estimate

above, and ) that
CZ/ 1Lyt dt > 1/@ |w2dt+”/n Jul? dt
R —€Jo € Jo '

n=0

Noting (3.5)), we have
T 2 2 I 2 v [T 2
c / (1Ll + Juf2) de > - / IVul2dt + / Jul? dt.
0 €Jo € Jo

Then, by choosing € so small, we obtain the desired estimate (3.4). The proof of
Proposition is complete.

4. PROOF OF THEOREM [L.1]

First, we show time local uniqueness under the assumptions of Theorem [I.1}
Then, using the well-known continuity argument, we show that the assertion of
Theorem [l is valid.

Proposition 4.1. Under the assumptions of Theorem there exists tg € (0,7
such that we have u(x,t) = 0 for t € [0, o).

Proof. Set f = Lu. Then we see from the assumptions of Theorem that
f e L2([0,T), L2R%)) and ||f(-,1)]|*> < Co(|[Vu(-,t)||* + |lu(-,t)||?) for almost all
t € [0,T]. Let the non-negative function xo(t) € C*°(R) satisfy

)1 t<3/4
Xo(t)_{o t>7/8.

Set u.(w,t) = xo(t/T:)u(z,t). Here we use the notation of Proposition Then
we see that us(z,0) = 0, us(z,T:) = 0 and that

Xo(t/T2)

Lu, = XO(t/TE)f + T

Then from ([3.3)) we obtain
T
<1
/ Vel + L el e+ at
0 € €

T:
< [ hal/mi? + (O g0 e,
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Since
Ixo(t/To) f1I* < Co([Vue|® + [luc|?),
by choosing ¢ small, we have

T. T, /
<1 € t/ T,
[ Gt s Tty © an < [T O e w
0 3 3 0 Te
for any v > ~.. Since x(t/T:) = 0 for t < 37./4 and 1 ,(t) is decreasing, we note
that the right-hand side of (4.1) can be dominated by

Ce21.(3T:/4).
Since ¢ 1 = WJ;TE e (M dr and e¥(7) > 1 for 7 > 0, we see that for t € [0,7./4],

Vo1 (t) 2 oy 1(Te/4) = Py 1 (3T /4) + T2 /2.
Then, noting that u.(x,t) = u(z,t) on [0,37. /4], we see that

Ta/4
jezw%l(BTs/él)ﬂTs/ [|w||® dt
g 0

is not greater than the left hand side of (4.1). Then we have
T:/4 C
/ ul|2 dt < ST
0 v

As v tends to infinity, the right hand side converges to zero. Then we see that

fOTEM |lu||? dt = 0, which implies u(z,t) = 0 on [0, 7. /4]. O

Using the same argument we have the following proposition.

Proposition 4.2. We assume that the assumptions of Theorem except for
u(z,0) = 0 are satisfied. For any to € [0,T) there exists t1 € (to, T| such that, if
u(z, to) =0, then we have u(z,t) =0 fort € [to, t1].

Now we prove Theorem Let S be the subset of (0,7) that consists of
to € (0,T) satisfying u(xz, ¢) = 0 on [0, to]. From Proposition[4.1]and Propositionp
we see that the set S is not empty and open set. Since u(z,t) € C°([0,T], L*(R?)),
we see that S is closed subset of (0,7"). Then the connectedness of (0,7") implies
S =(0,T). Then we see that u(x,t) = 0 on [0,7). Hence u(z,t) = 0 on [0,T]. The
proof of Theorem is complete.
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