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POSITIVE SOLUTIONS FOR CLASSES OF
POSITONE/SEMIPOSITONE SYSTEMS WITH

MULTIPARAMETERS

RODRIGO DA SILVA RODRIGUES

Abstract. We study the existence and nonexistence of solution for a system

involving p,q-Laplacian and nonlinearity with multiple parameteres. We use

the method of lower and upper solutions for prove the existence of solutions.

1. Introduction

We study the existence of solutions for the positone/semipositone system involv-
ing p, q-Laplacian

−∆pu = λf1(x, u, v) + µg1(x, u, v) in Ω,

−∆qv = λf2(x, u, v) + µg2(x, u, v) in Ω,
u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ Rn, n ≥ 1, is a bounded domain with boundary C2, and fi, gi : Ω ×
(0,+∞) × (0,+∞) → R, i = 1, 2, are Carathéodory functions, gi, i = 1, 2, are
bounded on bounded sets. Moreover, we assume that there exists hi : R → R
continuous and nondecreasing such that hi(0) = 0, 0 ≤ hi(s) ≤ C(1 + |s|r−1), for
all s ∈ R, r = min{p, q}, C > 0, i = 1, 2, and the maps

s 7→ f1(x, s, t) + h1(s), t 7→ f2(x, s, t) + h1(t),

s 7→ g1(x, s, t) + h2(s), t 7→ g2(x, s, t) + h2(t),
(1.2)

are nondecreasing for almost everywhere x ∈ Ω. Also, we will prove the nonexis-
tence of nontrivial solution for system (1.1) in the positone case.

In the scalar case, Castro, Hassanpour, and Shivaji in [4], using the lower and
upper solutions method, focused their attention on a class of problems, so called
semipositione problems, of the form

−∆u = λf(u) in Ω,
u = 0 on ∂Ω,
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where Ω is a smooth bounded domain in RN , λ is a positive parameter, and
f : [0,∞) → R is a monotone and continuous function satisfying the condi-
tions f(0) < 0, lims→∞ f(s) = +∞, and with the sublinear condition at infin-
ity, lims→∞ f(s)/s = 0. In 2008, Perera and Shivaji [11] proved the existence of
solutions for the problem

−∆pu = λf(x, u) + µg(x, u) in Ω,
u = 0 on ∂Ω,

where Ω ⊂ Rn, n ≥ 1, is a bounded domain with boundary C2, and f, g : Ω ×
(0,+∞)× (0,+∞)→ R are Carathéodory functions, g is bounded on bounded sets
and |f(x, t)| ≥ a0 for all t ≥ t0, where a0, t0 are positive constants. Moreover, the
existence of solutions is assured for λ ≥ λ0 and small 0 < |µ| ≤ µ0, for some λ0 > 0
and µ0 = µ(λ0) > 0.

Many authors have studied the existence of positive solutions for elliptic systems,
due to the great number of applications in reaction-diffusion problems, in fluid
mechanics, in newtonian fluids, glaciology, population dynamics, etc; see [3, 8] and
references therein.

Hai and Shivaji [9] applied the lower and upper solutions method for obtaining
the existence of solution for the semipositone system

−∆pu = λf1(v) in Ω,

−∆pv = λf2(u) in Ω,
u = v = 0 on ∂Ω,

(1.3)

where Ω is a smooth bounded domain in RN with smooth boundary, λ is a pos-
itive parameter, and f1, f2 : [0,∞) → R are monotone and continuous functions
satisfying conditions fi(0) < 0, lims→+∞fi(s) = +∞, i = 1, 2, and

lim
s→+∞

f1(M(f2(s))1/(p−1))
sp−1

= 0 for all M > 0. (1.4)

While, Chhetri, Hai, and Shivaji [6] proved an existence result for system (1.3) with
the condition

lim
s→+∞

max {f1(s), f2(s)}
sp−1

= 0, (1.5)

instead of (1.4).
In 2007, Ali and Shivaji [1] obtained a positive solution for the system

−∆pu = λ1f1(v) + µ1g1(u) in Ω,

−∆qv = λ2f2(u) + µ2g2(v) in Ω,
u = v = 0 on ∂Ω,

(1.6)

when Ω is a smooth bounded domain in RN , λi, µi, i = 1, 2, are nonnegative
parameters with λ1 + µ1 and λ2 + µ2 large and

lim
x→+∞

f1(M [f2(x)]1/q−1)
xp−1

= 0,

for all M > 0, limx→+∞
g1(x)
xp−1 = 0, and limx→+∞

g2(x)
xq−1 = 0.

Our first result deal with the existence of solution for (1.1) which has p, q-
Laplacian operators and nonautonomous nonlinearity with multiple parameters.
Note that, we make no suppositions about the signs of g1(x, 0, 0) and g2(x, 0, 0),
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and hence can occur the positone case: λfi(x, 0, 0) + µgi(x, 0, 0) ≥ 0, i = 1, 2; the
semipositone case: λfi(x, 0, 0) + µgi(x, 0, 0) < 0, i = 1, 2; the case λf1(x, 0, 0) +
µg1(x, 0, 0) ≥ 0 and λf2(x, 0, 0) + µg2(x, 0, 0) < 0; or the case λf1(x, 0, 0) +
µg1(x, 0, 0) < 0 and λf2(x, 0, 0) + µg2(x, 0, 0) ≥ 0; for almost everywhere x ∈ Ω.

Theorem 1.1. Consider the system (1.1) assuming (1.2), and that there exist
a0, γ, δ > 0 and α, β ≥ 0 such that 0 ≤ α < p − 1, 0 ≤ β < q − 1, (p − 1 − α)(q −
1− β)− γδ > 0, and

|f1(x, s, t)| ≤ a0|s|α|t|γ , |f2(x, s, t)| ≤ a0|s|δ|t|β , (1.7)

for all s, t ∈ (0,+∞) and x ∈ Ω. In addition, suppose there exist a1 > 0, a2 > 0,
and R > 0 such that

fi(x, s, t) ≥ a1, for i = 1, 2, and all s > R, t > R, (1.8)

and
fi(x, s, t) ≥ −a2, for i = 1, 2, and all s, t ∈ (0,+∞), (1.9)

uniformly in x ∈ Ω. Then, there exists λ0 > 0 such that for each λ > λ0, there exists
µ0 = µ0(λ) > 0 for which system (1.1) has a solution (u, v) ∈ C1,ρ1(Ω)× C1,ρ2(Ω)
for some ρ1, ρ2 > 0, where each component is positive, whenever |µ| ≤ µ0.

Let λp > 0 and λq > 0 be the first eigenvalue of p-Laplacian and q-Laplacian,
respectively, where φp ∈ C1,αp(Ω) and φq ∈ C1,αq (Ω) are the respective positive
eigenfunctions (see [7]).

Chen [5] proved the nonexistence of nontrivial solution for the system

−∆pu = λuαvγ , in Ω,

−∆qv = λuδvβ , in Ω,
u = v = 0 on Ω,

when Ω is a smooth bounded domain in RN , pγ = q(p− 1−α), (p− 1−α)(q− 1−
β)− γδ = 0, and 0 < λ < λ0 where λ0 = min{λp, λq} (see also [10]). We note that
due to Young’s inequality we have

uα+1vγ ≤ 1 + α

p
up +

p− 1− α
p

vq, uδvβ+1 ≤ q − 1− β
q

up +
β + 1
q

vq.

Now, we will enunciated the nonexistence theorem for the system (1.1), improv-
ing the result proved by Chen in [5].

Theorem 1.2. Suppose that there exist ki > 0, i = 1, . . . , 8, such that
|f1(x, s, t)s| ≤ (k1|s|p + k2|t|q) , |f2(x, s, t)t| ≤ (k3|s|p + k4|t|q) ,
|g1(x, s, t)s| ≤ (k5|s|p + k6|t|q) , |g2(x, s, t)t| ≤ (k7|s|p + k8|t|q) ,

(1.10)

for all x ∈ Ω and s, t ∈ (0,+∞). Then (1.1) does not possess nontrivial solutions,
for all λ, µ satisfying

|λ|(k1 + k3) + |µ|(k5 + k7) < λp, |λ|(k2 + k4) + |µ|(k6 + k8) < λq. (1.11)

Remark 1.3. The typical functions considered in Theorem 1.1 are as follows:

f1(x, s, t) = A(x)sαtγ , f2(x, s, t) = B(x)sδtβ ,

where A(x), B(x) are continuous functions on Ω satisfying infx∈ΩA(x) > 0 and
supx∈ΩA(x) < +∞, infx∈ΩB(x) > 0, and supx∈ΩB(x) < +∞ for all x ∈ Ω,
0 ≤ α < p− 1, 0 ≤ β < q − 1, (p− 1− α)(q − 1− β)− γδ > 0, and g1(x, s, t) and
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g2(x, s, t) are any continuous functions on Ω × [0,+∞) × [0,+∞) with g1(x, s, t)
nondecreasing in variable s and g2(x, s, t) nondecreasing in variable t.

Remark 1.4. Theorem 1.2 can be applied for functions of the form

f1(x, s, t) =
m∑
i=1

ais
α1,itγ1,i , f2(x, s, t) =

m∑
i=1

bis
δ1,itβ1,i

g1(x, s, t) =
m∑
i=1

cis
α2,itγ2,i , g2(x, s, t) =

m∑
i=1

dis
δ2,itβ2,i ,

with ai, bi, ci, di ≥ 0, pγj,i = q(p−1−αj,i), and (p−1−αj,i)(q−1−βj,i) = γj,iδj,i,
for j = 1, 2 and i = 1, · · · ,m.

Theorems 1.1 and Theorem 1.2 will be proved in the next sections.

2. Proof of Theorem 1.1

We prove Theorem 1.1 by using a general method of lower and upper-solutions.
This method, in the scalar situation, has been used by many authors, for instance
[2] and [3]. The proof for the system case can be found in [10].

2.1. Upper-solution. First of all, we will prove that (1.1) possesses a upper-
solution. Consider ei ∈ C1,αi(Ω), with αi > 0, i = 1, 2, where (e1, e2) is a solution
of (1.1) with f1(x, u, v) = 1

λ , f2(x, u, v) = 1
λ , and g1(x, u, v) = g2(x, u, v) = 0, and

each component is positive.
Claim. Since δ > 0, γ > 0, 0 ≤ α < p− 1, 0 ≤ β < q − 1, and (p− 1− α)(q − 1−
β)− γδ > 0, there exist s1 and s2 such that

s1 >
1

p− 1
, s2 >

1
q − 1

,
δ

q − 1− β
<
s2

s1
<
p− 1− α

γ
. (2.1)

In fact, since

0 <
δ

q − 1− β
<
p− 1− α

γ
,

there exist k > 0 such that
δ

q − 1− β
< k <

p− 1− α
γ

·

Define ϑ : (0,+∞)→ R by ϑ(ε) = k( 1
p−1 + ε). Evidently, we have

lim
ε→+∞

ϑ(ε) = +∞,

therefore, there exists ε0 > 0 satisfying ϑ(ε) > 1
q−1 for all ε > ε0. Fixed ε > ε0, we

define s1 = 1
p−1 + ε and s2 = ϑ(ε) = ks1. Then, s1 >

1
p−1 , s2 >

1
q−1 , and s1

s2
= k,

which proves the claim.
Then, by using (2.1), we obtain λ0 > 0 such that

aλ := max{a0λ
s1(α−p+1)+s2γ , a0λ

s1δ+s2(β−q+1)} < 1, (2.2)

for all λ > λ0. Moreover, there exist A and B positive constants satisfying

Ap−1 = λAαlαBγLγ and Bq−1 = λAδlδBβLβ , (2.3)

where l = ‖e1‖∞ and L = ‖e2‖∞.
For a fixed λ > λ0, we define

(ū(x), v̄(x)) := (λs1Ae1(x), λs2Be2(x)) .
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Note that ū ∈ C1,α1(Ω) and v̄ ∈ C1,α2(Ω). Let w ∈W 1,p
0 (Ω) with w(x) ≥ 0 for a.e.

(almost everywhere) x ∈ Ω. Then∫
Ω

|∇ū|p−2∇ū∇w dx = λs1(p−1)Ap−1

∫
Ω

w dx (2.4)

and, for z ∈W 1,q
0 (Ω) with z(x) ≥ 0 for a.e. x ∈ Ω,∫

Ω

|∇v̄|q−2∇v̄∇z dx = λs2(q−1)Bq−1

∫
Ω

z dx. (2.5)

On the other hand, by using (1.7), (2.2), and (2.3), we have

λf1(x, ū(x), v̄(x)) ≤ λa0λ
s1αAαlαλs2γBγLγ

= λa0λ
s1(α−p+1)+s2γλs1(p−1)AαlαBγLγ

≤ aλλs1(p−1)Ap−1

(2.6)

and

λf2(x, ū(x), v̄(x)) ≤ aλλs2(q−1)Bq−1. (2.7)

But, as aλ < 1 for λ > λ0, there exists cλ > 0 such that

aλλ
s1(p−1)Ap−1+cλ ≤ λs1(p−1)Ap−1, aλλ

s2(q−1)Bq−1+cλ ≤ λs2(q−1)Bq−1. (2.8)

Also, since that gi, i = 1, 2, are bounded on bounded sets, there exists µ0 = µ0(λ) >
0 such that

|µ||g1(x, ū(x), v̄(x))| ≤ cλ, |µ||g2(x, ū(x), v̄(x))| ≤ cλ (2.9)

for all |µ| < µ0. Then, by (2.6), (2.8), and (2.9) we obtain

λf1(x, ū(x), v̄(x)) + µg1(x, ū(x), v̄(x))

≤ aλλs1(p−1)Ap−1 + |µg1(x, ū(x), v̄(x))|

≤ aλλs1(p−1)Ap−1 + cλ

≤ λs1(p−1)Ap−1 .

(2.10)

From (2.7), (2.8), and (2.9), we obtain

λf2(x, ū(x), v̄(x)) + µg2(x, ū(x), v̄(x)) ≤ λs2(q−1)Bq−1, (2.11)

for all |µ| < µ0. Hence, by (2.4) and (2.10), we conclude that∫
Ω

|∇ū|p−2∇ū∇w dx ≥ λ
∫

Ω

f1(x, ū(x), v̄(x))w dx+ µ

∫
Ω

g1(x, ū(x), v̄(x))w dx.

(2.12)
Analogously, from (2.5) and (2.11), we obtain∫

Ω

|∇v̄|q−2∇v̄∇z dx ≥ λ
∫

Ω

f2(x, ū(x), v̄(x))z dx+ µ

∫
Ω

g2(x, ū(x), v̄(x))z dx. (2.13)

Thus, from (2.12) and (2.13), we see that (ū, v̄) is a upper-solution of (1.1) with
ū ∈ C1,α1(Ω) and v̄ ∈ C1,α2(Ω).



6 R. S. RODRIGUES EJDE-2013/192

2.2. Lower-solution. In this subsetion, we prove that (1.1) possesses a lower-
solution. Let us fix ξ and η such that

1 < ξ <
p

p− 1
, 1 < η <

q

q − 1
· (2.14)

From (1.8) and (1.9) we have a1 > 0, a2 > 0, and R > 0 such that

fi(x, s, t) ≥ a1, for i = 1, 2 an all s > R t > R, (2.15)

fi(x, s, t) ≥ −a2, for i = 1, 2 and all s, t ∈ (0,+∞), (2.16)

uniformly in x ∈ Ω.
Consider λp the eigenvalue associated to positive eigenfunction ϕp of the problem

of eigenvalue of p-Laplacian operator, and λq the eigenvalue associated with positive
eigenfunction ϕq of the problem of eigenvalue of q-Laplacian operator. We take a3

and a4 positive constants satisfying

a3 > 2
λp(a2 + 1)ξp−1

a1
, a4 > 2

λq(a2 + 1)ηq−1

a1
, (2.17)

and define
(u(x), v(x)) := (cλϕξp(x), dλϕηq (x)),

where

cλ =
(
λa2 + 1
a3

) 1
p−1

, dλ =
(
λa2 + 1
a4

) 1
q−1

. (2.18)

Thus, for w ∈ W 1,p
0 (Ω) and z ∈ W 1,q

0 (Ω) with w(x) ≥ 0 and z(x) ≥ 0 for a.e.
x ∈ Ω, we obtain∫

Ω

|∇u|p−2∇u∇w dx

= cp−1
λ ξp−1

∫
Ω

[
λpϕ

ξ(p−1)
p − (ξ − 1)(p− 1)ϕ(ξ−1)(p−1)−1

p |∇ϕp|p
]
w dx

(2.19)

and ∫
Ω

|∇v|q−2∇v∇z dx

= dq−1
λ ηq−1

∫
Ω

[
λqϕ

η(q−1)
q − (η − 1)(q − 1)ϕ(η−1)(q−1)−1

q |∇ϕq|q
]
zdx.

(2.20)

We know that ϕp, ϕq > 0 in Ω and |∇ϕp|, |∇ϕq| ≥ σ on ∂Ω for some σ > 0.
Also, we can suppose that ‖ϕp‖∞ = ‖ϕq‖∞ = 1. Furthermore, by using (2.14), it
is easy to prove that there exists ζ > 0 such that

λpϕ
ξ(p−1)
p − (ξ − 1)(p− 1)ϕ(ξ−1)(p−1)−1

p |∇ϕp|p ≤ −a3, (2.21)

λqϕ
η(q−1)
q − (η − 1)(q − 1)ϕ(η−1)(q−1)−1

q |∇ϕq|q ≤ −a4, (2.22)

in Ωζ := {x ∈ Ω : dist(x, ∂Ω) ≤ ζ}. But, we have by (2.14), (2.16), and (2.18) that

− cp−1
λ ξp−1a3 = −(λa2 + 1)ξp−1 ≤ −(λa2 + 1) ≤ λf1(x, u, v)− 1 (2.23)

and
− dq−1

λ ηq−1a4 ≤ λf2(x, u, v)− 1, (2.24)
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for all x ∈ Ω. Therefore, from (2.21), (2.22), (2.23), and (2.24), we obtain

cp−1
λ ξp−1

[
λpϕ

ξ(p−1)
p − (ξ − 1)(p− 1)ϕ(ξ−1)(p−1)−1

p |∇ϕp|p
]
≤ λf1(x, u, v)− 1

(2.25)
and

dq−1
λ ηq−1

[
λqϕ

η(q−1)
q − (η − 1)(q − 1)ϕ(η−1)(q−1)−1

q |∇ϕq|q
]
≤ λf2(x, u, v)− 1,

(2.26)
in Ωζ := {x ∈ Ω : dist(x, ∂Ω) ≤ ζ}.

On the other hand, there exists a5 > 0 such that ϕp(x), ϕq(x) ≥ a5 for all
x ∈ Ω \Ωζ . Then, if λ0 > 0 is provided of proof of existence of upper-solution, and
by taking λ0 > 0 greater than one, if necessary, we can suppose

λ0 ≥ max{1, 2
a1
,
Rp−1a

−ξ(p−1)
5 a−1

3

a2
,
Rq−1a

−η(q−1)
5 a−1

4

a2
} > 0.

Thus

u(x) = cλϕ
ξ
p(x) ≥ cλaξ5 > R, v(x) = dλϕ

ξ
p(x) ≥ dλaη5 > R,

for all x ∈ Ω \ Ωζ and λ > λ0. Therefore, by (2.15), we have

λf1(x, u(x), v(x))− 1 ≥ λa1 − 1, λf2(x, u(x), v(x))− 1 ≥ λa1 − 1 (2.27)

for all x ∈ Ω \ Ωζ and λ > λ0.

Claim. By (2.17) and λ > λ0 ≥ max{1, 2
a1
,
Rp−1a

−ξ(p−1)
5 a−1

3
a2

,
Rq−1a

−η(q−1)
5 a−1

4
a2

}, we
have

a3 >
λpξ

p−1(λa2 + 1)
λa1 − 1

and a4 >
λqη

q−1(λa2 + 1)
λa1 − 1

· (2.28)

In fact, since that λ > 2
a1

, we obtain

a1 −
1
λ
> a1 −

a1

2
=
a1

2
,

so, as λ > 1 and by (2.17),

λpξ
p−1(λa2 + 1)
λa1 − 1

=
λpξ

p−1(a2 + 1
λ )

a1 − 1
λ

<
λpξ

p−1(a2 + 1)
a1 − 1

λ

<
λpξ

p−1(a2 + 1)
a1
2

=
2λp(a2 + 1)ξp−1

a1
< a3,

and similarly

a4 >
λqη

q−1(λa2 + 1)
λa1 − 1

,

which prove the claim.
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Then, from (2.19), (2.27), and (2.28), we achieve

cp−1
λ ξp−1

[
λpϕ

ξ(p−1)
p − (ξ − 1)(p− 1)ϕ(ξ−1)(p−1)−1

p |∇ϕp|p
]
(x)

≤ cp−1
λ ξp−1λpϕ

ξ(p−1)
p (x)

≤ λpcp−1
λ ξp−1

≤ λp
λa2 + 1
a3

ξp−1

≤ λa1 − 1

≤ λf1(x, u(x), v(x))− 1

(2.29)

and, by (2.20), (2.27), and (2.28),

dq−1
λ ηq−1

[
λqϕ

η(q−1)
q − (η − 1)(q − 1)ϕ(η−1)(q−1)−1

q |∇ϕq|q
]
(x)

≤ λq
λa2 + 1
a4

ηq−1

≤ λf2(x, u(x), v(x))− 1,

(2.30)

for all x ∈ Ω \Ωζ . Thus, by combining (2.25), (2.26), (2.29), and (2.30), we obtain

cp−1
λ ξp−1

[
λpϕ

ξ(p−1)
p − (ξ − 1)(p− 1)ϕ(ξ−1)(p−1)−1

p |∇ϕp|p
]

(x)

≤ λf1(x, u(x), v(x))− 1
(2.31)

and

dq−1
λ ηq−1

[
λqϕ

η(q−1)
q − (η − 1)(q − 1)ϕ(η−1)(q−1)−1

q |∇ϕq|q
]

(x)

≤ λf2(x, u(x), v(x))− 1,
(2.32)

for all λ > λ0 and x ∈ Ω. Moreover, if µ0 = µ0(λ) > 0 is provided of proof of
existence of upper-solution; for each λ > λ0, since that gi, i = 1, 2, are bounded on
bounded sets, replacing µ0 > 0 by another smaller, if necessary, we have

|µ||g1(x, u(x), v(x))| ≤ 1, |µ||g2(x, u(x), v(x))| ≤ 1 (2.33)

for all |µ| < µ0. Therefore, by (2.33) it follows that

λf1(x, u(x), v(x))− 1 ≤ λf1(x, u(x), v(x)) + µg1(x, u(x), v(x)), (2.34)

λf2(x, u(x), v(x))− 1 ≤ λf2(x, u(x), v(x)) + µg2(x, u(x), v(x)), (2.35)

for all |µ| < µ0 and x ∈ Ω.
Hence, substituting (2.34) and (2.35) in (2.31) and (2.32), respectively, and by

using (2.19) and (2.20) , we achieve∫
Ω

|∇u|p−2∇u∇wdx ≤ λ
∫

Ω

f1(x, u(x), v(x))wdx

+ µ

∫
Ω

g1(x, u(x), v(x))wdx
(2.36)

and ∫
Ω

|∇v|q−2∇v∇zdx ≤ λ
∫

Ω

f2(x, u(x), v(x))zdx

+ µ

∫
Ω

g2(x, u(x), v(x))zdx,
(2.37)

so, we conclude that (u, v) is a lower-solution of (1.1) with u, v ∈ C1(Ω).
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2.3. Proof of Theorem 1.1. In subsections 2.1 and 2.2 we proved that there
exists λ0 > 0 such that for each λ > λ0 there exist µ0 = µ0(λ) > 0 and (ū, v̄),
(u, v) that are upper-solution and lower-solution, respectively, of system (1.1), with
ū ∈ C1,α1(Ω), v ∈ C1,α2(Ω), and u, v ∈ C1(Ω), whenever |µ| < µ0.

Let w ∈ W 1,p
0 (Ω) and z ∈ W 1,q

0 (Ω) satisfy w, z ≥ 0 for a.e. in Ω. Then, from
(2.17), (2.25), and (2.29), we have∫

Ω

|∇u|p−2∇u∇wdx ≤ λp
(λa2 + 1)

a3
ξp−1

∫
Ω

wdx

≤ λ
a2 + 1

λ

a2 + 1
a1

2

∫
Ω

wdx

≤ λa1

2

∫
Ω

wdx .

(2.38)

By (2.17), (2.26), and (2.30), we have∫
Ω

|∇v|q−2∇v∇zdx ≤ λa1

2

∫
Ω

zdx. (2.39)

However, since that s1(p − 1) > 1 and s2(q − 1) > 1, changing λ0 > 0 by another
greater than 1, if necessary, we can suppose that

λ
a1

2
≤ min{λs1(p−1)Ap−1, λs2(q−1)Bq−1} (2.40)

for all λ ≥ λ0. Hence, from (2.4), (2.38), and (2.40), we conclude that∫
Ω

|∇u|p−2∇u∇w dx ≤
∫

Ω

|∇ū|p−2∇ū∇w dx (2.41)

and by (2.5), (2.39), and (2.40),∫
Ω

|∇v|q−2∇v∇zdx ≤
∫

Ω

|∇v̄|q−2∇v̄∇zdx, (2.42)

so, by the weak comparison principle (see [3, Lemma 2.2]), we obtain u ≤ ū and
v ≤ v̄ for all x ∈ Ω. Thus, by using (1.2), we obtain by the standard theorem of lower
and upper solution (see [10, Theorem 2.4]) a solution (u, v) ∈ W 1,p

0 (Ω) ×W 1,q
0 (Ω)

of system (1.1) with u ≤ u ≤ ū and v ≤ v ≤ v̄ for almost everywhere in Ω. In
particular, we see that u, v ∈ L∞(Ω) and u(x) > 0, v(x) > 0 for a.e. x ∈ Ω. Then,
by [12, Theorem 1], we obtain u ∈ C1,ρ1(Ω) and v ∈ C1,ρ2(Ω) for some ρ1, ρ2 > 0,
so u(x) > 0, v(x) > 0 for all x ∈ Ω.

3. Proof of Theorem 1.2

Supposing by contradiction that there exists a nontrivial solution (u, v) of (1.1),
for some λ, µ satisfying (1.11), then by variational characterization of λp and λq,
we achieve

λp

∫
Ω

|u|pdx ≤
∫

Ω

|∇u|pdx

≤
∫

Ω

[(|λ|k1 + |µ|k5)|u|p + (|λ|k2 + |µ|k6)|v|q]dx
(3.1)

and similarly

λq

∫
Ω

|v|qdx ≤
∫

Ω

[(|λ|k3 + |µ|k7)|u|p + (|λ|k4 + |µ|k8)|v|q] dx. (3.2)
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From (3.1) and (3.2), we have

0 < {λp − [|λ|(k1 + k3) + |µ|(k5 + k7)]}
∫

Ω

|u|pdx

+ {λq − [|λ|(k2 + k4) + |µ|(k6 + k8)]}
∫

Ω

|v|qdx ≤ 0,

which is a contradiction.
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