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POSITIVE SOLUTIONS FOR CLASSES OF
POSITONE/SEMIPOSITONE SYSTEMS WITH
MULTIPARAMETERS

RODRIGO DA SILVA RODRIGUES

ABSTRACT. We study the existence and nonexistence of solution for a system
involving p,q-Laplacian and nonlinearity with multiple parameteres. We use
the method of lower and upper solutions for prove the existence of solutions.

1. INTRODUCTION

We study the existence of solutions for the positone/semipositone system involv-
ing p, g-Laplacian

7Apu: /\fl(x,u,v)Jrugl(x,u,v) in Q?
—Agv = Ma(z,u,v) + pga(z,u,v) in Q, (1.1)
u=v=0 on J9,

where 2 C R", n > 1, is a bounded domain with boundary C?, and f;,g; : Q x
(0,+00) x (0,400) — R, & = 1,2, are Carathéodory functions, g;, i = 1,2, are
bounded on bounded sets. Moreover, we assume that there exists h; : R — R
continuous and nondecreasing such that h;(0) = 0, 0 < h;(s) < C(1 + |s|"71), for
all s € R, r = min{p,q}, C >0, i = 1,2, and the maps

s fi(x,s,t) + hi(s), t— falz,s,t)+ hi(t),

1.2
s g1z, s,t) + ha(s), tr ga(x,s,t)+ ha(t), (1.2)

are nondecreasing for almost everywhere = € €. Also, we will prove the nonexis-
tence of nontrivial solution for system in the positone case.

In the scalar case, Castro, Hassanpour, and Shivaji in [4], using the lower and
upper solutions method, focused their attention on a class of problems, so called
semipositione problems, of the form

—Au=Af(u) in Q,
u=0 on J9,
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where Q is a smooth bounded domain in R™, X is a positive parameter, and
f :[0,00) — R is a monotone and continuous function satisfying the condi-
tions f(0) < 0, lim,_, f(s) = 400, and with the sublinear condition at infin-
ity, lims_,o f(8)/s = 0. In 2008, Perera and Shivaji [I1I] proved the existence of
solutions for the problem

—Apu = Af(z,u) + pg(z,u) in Q,
u=0 on 09,

where Q C R?, n > 1, is a bounded domain with boundary C?, and f,g : £ x
(0, +00) x (0,400) — R are Carathéodory functions, g is bounded on bounded sets
and | f(z,t)| > ag for all t > ty, where ag, to are positive constants. Moreover, the
existence of solutions is assured for A > Ag and small 0 < || < g, for some Ag > 0
and po = (o) > 0.

Many authors have studied the existence of positive solutions for elliptic systems,
due to the great number of applications in reaction-diffusion problems, in fluid
mechanics, in newtonian fluids, glaciology, population dynamics, etc; see [3] [8] and
references therein.

Hai and Shivaji [9] applied the lower and upper solutions method for obtaining
the existence of solution for the semipositone system

—Apu = Afi(v) in Q,
—Apv = Afa(u) in Q, (1.3)
u=v=0 on 0,
where  is a smooth bounded domain in R" with smooth boundary, A is a pos-

itive parameter, and f1, fo : [0,00) — R are monotone and continuous functions
satisfying conditions f;(0) < 0, lims_ 4 fi(s) = 400, i = 1,2, and

lim Fi(M(fa(s))Y P=1)

s——+00 317_1
While, Chhetri, Hai, and Shivaji [6] proved an existence result for system (1.3)) with

the condition
L AU (), fo()}
s§—+400 sp—1

=0 forall M > 0. (1.4)

=0, (1.5)
instead of (1.4]).
In 2007, Ali and Shivaji [I] obtained a positive solution for the system
—Apu=Xfi(v) + po1(u) in Q,
—Agv = A fo(u) + p2ga2(v) in Q, (1.6)
u=v=0 on J,

when € is a smooth bounded domain in RN, X\;,u;, i = 1,2, are nonnegative
parameters with A\; + p1 and Ag 4 po large and

lim fL(M[f2(z)]V71)

T—+00 xp—1

:07

for all M > 0, lim, oo 22 =0, and lim, 0o 2% = 0.
Our first result deal with the existence of solution for (|1.1)) which has p,¢-
Laplacian operators and nonautonomous nonlinearity with multiple parameters.

Note that, we make no suppositions about the signs of g1(z,0,0) and g2(z,0,0),
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0) + pgi(2,0,0) > 0, i = 1,2; the
i = 1,2; the case Af1(z,0,0) +
< 0; or the case Afi(z,0,0) +
0; for almost everywhere z € €.

and hence can occur the positone case: Af;(z,
semipositone case: \f;(z,0,0) + ug;(z,0,0) <
pg1(x,0,0) > 0 and Afa(x,0,0) + pgz(z,0,0)
ug1(z,0,0) < 0 and Afa(z,0,0) + pge(z, 0,0) >0

Theorem 1.1. Consider the system (L.1) assuming (L.2), and that there exist
ag,v,0 >0 and o, >0 such that 0 < a<p—1,0<08<qg—-1, (p—1—a)(qg—
1—8)—~6>0, and

|fu(@,s,1)] < aols|*t]7, | fala,5,1)] < aols|’|t]”, (1.7)

for all s,t € (0,+00) and x € Q. In addition, suppose there exist a; > 0, ag > 0,
and R > 0 such that

filz,s,t) > a1, fori=1,2, and alls> R, t> R, (1.8)

0,

and

filz,s,t) > —ag, fori=1,2, and all s,t € (0, +00), (1.9)
uniformly in x € Q. Then, there exists \g > 0 such that for each A > Ao, there exists
po = po(A) > 0 for which system (L.1)) has a solution (u,v) € C1:P1(Q) x C12(Q)
for some p1, pa > 0, where each component is positive, whenever |u| < po.

Let A, > 0 and A; > 0 be the first eigenvalue of p-Laplacian and ¢-Laplacian,
respectively, where ¢, € C1#(Q2) and ¢, € C*(§2) are the respective positive
eigenfunctions (see [1]).

Chen [5] proved the nonexistence of nontrivial solution for the system

—Apu= A7, inQ,
—Agv = Mdv?, i Q,
u=v=0 on
when Q is a smooth bounded domain in R, py =g(p—1—a), (p—1—a)(¢g—1—

B) — 76 =0, and 0 < XA < A\g where A\g = min{\,, A\;} (see also [10]). We note that
due to Young’s inequality we have

ety < WXy  PELm 0 sy 42128y B,
p p N q
Now, we will enunciated the nonexistence theorem for the system (1.1)), improv-

ing the result proved by Chen in [5].

Theorem 1.2. Suppose that there exist k; > 0,1 =1,...,8, such that
‘f1($7 37t)3| < (k1|s|p + k2|t|q) ) |f2(x7 S7t)t| < (k3|8|p + k4|t|q) )
lg1(x, 5,)s| < (ks|s|” + kelt|?),  [g2(z, s, 0)t] < (kr|s|]” + Kslt]?)

for all x € Q and s,t € (0,+00). Then (L.1)) does not possess nontrivial solutions,

for all X\, u satisfying
[Al(k1 + k) + [l (ks + k7) < Ap, [Al(k2 + ka) + [pl(ks + ks) < Ag. (1.11)

Remark 1.3. The typical functions considered in Theorem are as follows:

filz,s,t) = A(z)s*t?, fa(z,s,t) = B(av)s(stﬁ7

where A(xz), B(z) are continuous functions on Q satisfying inf,co A(z) > 0 and
SUp,ecq A(xr) < 400, infyeq B(xz) > 0, and sup,cq B(z) < +oo for all z € Q,
0<a<p—-1,0<08<q-1(p—1—-a)(g—1—p)—~6 >0, and g1(z, s, t) and

(1.10)
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g2(z, 5,t) are any continuous functions on © x [0, 4+00) x [0, +00) with g;(z,s,t)
nondecreasing in variable s and ga(x, s, t) nondecreasing in variable t.

Remark 1.4. Theorem [1.2] - can be applied for functions of the form

(x,s,t) Za st fo(x, 8, 1) Zb gOvithi

(z,8,1) Zc s go(x, s, t) Zd s‘shtﬁw

with a;, b, ¢c;, d; > 0, pyj = q(p_l_aj,i)» and (p_l_aj,i)( —1—054) = 75,i05,i
forj=1,2andi=1,---,m.

Theorems [T.1] and Theorem [I.2] will be proved in the next sections.

2. PROOF OF THEOREM [L.1]

We prove Theorem [I.1] by using a general method of lower and upper-solutions.
This method, in the scalar situation, has been used by many authors, for instance
[2] and [3]. The proof for the system case can be found in [I0].

2.1. Upper-solution. First of all, we will prove that possesses a upper-
solution. Consider e; € C1%(Q), with a; > 0, i = 1,2, where (e1, e2) is a solution
of with fi(z,u,v) = %, fa(x,u,v) = %, and ¢1(z,u,v) = g2(z,u,v) = 0, and
each component is positive.

Claim. Since § >0,7v>0,0<a<p-1,0<pf<g—1,and (p—1—a)(g—1—
B) — 4 > 0, there exist s; and so such that

1 ) - S2 - p—1—« .

> > , 2.1
NPT PTYCU g—1-8 . Y @1)
In fact, since
0 —1-
0< <P @
qg—1-p v
there exist £ > 0 such that
p—1—a
—_—<k<—
qg—1-p

Define ¥ : (0,4+00) — R by ¥(e) = k:( -5 +¢). Evidently, we have
lim ¥(e) = o0,

e——+00
therefore, there exists ¢y > 0 satisfying ¥(e) > i for all € > €. Fixed € > €y, We
define s; = p—il + e and s2 = ¥(e) = ksy. Then 51> 577, S2 > and ;—; =k,
which proves the claim.
Then, by using (2.1]), we obtain Ag > 0 such that

ql’

ay 1= max{ao/\sl(afp+1)+sz’y’ ao/\515+52([‘3*q+1)} <1, (22)
for all A > A\g. Moreover, there exist A and B positive constants satisfying
AP™Y = NAY®BYLY and BTt = NA°I°BP LA, (2.3)

where [ = ||e1||oc and L = ||ea]]oo-
For a fixed A > A\g, we define

(a(x),v(x)) := (At Aer(x), A* Bea(x)) -
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Note that @ € C*1(Q) and 7 € C*2(Q). Let w € Wy P (Q) with w(x) > 0 for a.e.
(almost everywhere) x € Q. Then

/ \VaP~2VaVw dz = A1 (P~D gp~1 / w da (2.4)
Q Q
and, for z € Wy9(Q) with z(z) > 0 for a.e. x € €,
/ V0|7~ 2VoVz de = A2~ D pa-t / zd. (2.5)
Q Q

On the other hand, by using (L.7), (2.2)), and (2.3)), we have
Afi(z,a(z),v(x)) < Xag P FAYN2TBYLY
= dagA\*1 (@ Pt D+s2y \s1(p—1) gojo gy (2.6)
< ap S (P gp-1
and
Ao, w(x), () < ay 2@ Rt (2.7)
But, as ay < 1 for A > \g, there exists ¢y > 0 such that
a AP APTL o < Asipml gt g szl gaTly ) < ys2amD gaTl(2)

Also, since that g;, ¢ = 1,2, are bounded on bounded sets, there exists pg = po(A) >
0 such that

lllgr(z, u(z), v(@))| < ex,  |pllg2(z, u(z),v(x))] < e (2.9)
for all |u| < po. Then, by (2.6, (2.8), and (2.9) we obtain
Afi(z, u(z), v(x)) + pgi(z, u(z), v(x))
< A PTYAPTY 4 g (2, u(x), 9(2)|
< a)\)\sl(pil)Apil + ¢
< A\s1(p—1) gp—1
From (2.7), (2.8), and (2.9, we obtain
)‘fQ(Ia 1_1,(.13),1_)(1?)) + ﬂgQ(xva(gj)arD(I)) < )‘SQ(qil)qulv (211)

for all |u| < . Hence, by (2.4)) and (2.10]), we conclude that

(2.10)

/ |Va|P2VaVw dz > )\/ filz,a(z),v(z))wdx + u/ g1 (z, (), v(x))wdz.
Q Q Q

(2.12)
Analogously, from (2.5 and (2.11)), we obtain

/Q|V17|q_2VT)Vz dx > )\/QfQ(w,ﬂ(x),T)(x))z dﬂc—l—u/ﬂgg(xﬂ(ac),ﬁ(x))zdx. (2.13)

Thus, from (2.12)) and (2.13]), we see that (u,v) is a upper-solution of (1.1} with
€ Ch(Q) and v € CLo2(Q).
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2.2. Lower-solution. In this subsetion, we prove that (1.1)) possesses a lower-
solution. Let us fix £ and 7 such that

1<§<p%1, 1<17<q_L1~ (2.14)

From and we have a; > 0, as > 0, and R > 0 such that
fiz,s,t) > a1, fori=1,2analls>Rt> R, (2.15)
fi(x,s,t) > —ag, fori=1,2and all s,¢ € (0,+00), (2.16)

uniformly in x € €.

Consider A, the eigenvalue associated to positive eigenfunction ¢, of the problem
of eigenvalue of p-Laplacian operator, and ), the eigenvalue associated with positive
eigenfunction ¢, of the problem of eigenvalue of ¢g-Laplacian operator. We take az
and a4 positive constants satisfying

A 1)¢p—1 A 1)na-1
as > QM’ ay > 2M7 (2.17)
ai ay
and define
(u(x), v(x)) = (exp§(x), dal(x)),
where
1 1
A 1\7r 1 A 1\ <1
c/\(a2+ ) , dk<a2+ > . (2.18)
as Gy

Thus, for w € WyP(Q) and z € Wy%(Q) with w(z) > 0 and z(x) > 0 for a.e.
x € ), we obtain

/ |VulP2VuVw dx
“ (2.19)
=0 [ [a ) — (= 1) = DS Ty w

and

/|w|q—2vwz dx
. (2.20)
= Gl‘i_ln"‘l/Q [Aqwg’("‘” —(m=1(g— 1)gag"—1><q—1>—1|wq|ﬂ zda.

We know that ¢,, 0 > 0 in Q and |Ve,|,|Veg| > o on 09 for some o > 0.
Also, we can suppose that ||¢pllcc = [|¢gllec = 1. Furthermore, by using (2.14), it
is easy to prove that there exists ¢ > 0 such that

Appp? ) — (€= D(p = D VTV, P < —as, (221)
A7 = (1= Dlg = DTV | < —a, (222)

in Q¢ = {z € Q: dist(z, 0Q) < (}. But, we have by (2.14), (2.16), and (2.18) that
— &7 ey = —(Maz + 1) < —(Nag + 1) < Mu(2,u,v) — 1 (2.23)

and
—d{T ' ey < Aol u,w) — 1, (2.24)
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for all x € Q. Therefore, from (2.21)), (2.22), (2.23)), and (2.24]), we obtain

i [pri(”‘” CE-D(p- 1)<p;f—1><P—1>—1|V<pp|p] <Mz, u,0) — 1
(2.25)
and

a7t g — (= 1)(g — DO D T 1] < Afa, ) — 1,
(2.26)
in Q¢ = {z € Q:dist(z,0Q) < (}.
On the other hand, there exists as > 0 such that ¢,(z),p4(z) > a5 for all
x € Q\ Q¢. Then, if Ay > 0 is provided of proof of existence of upper-solution, and
by taking Ao > 0 greater than one, if necessary, we can suppose

Rpﬂa—&(p—l)a—l Rqﬂa—n(q—l)a—l
Ao > max{l, —, 5 3 5 11>0.
aiq a9 as

Thus
u(z) = exgb(z) > exas > R, w(z) = dapS(z) > dyal > R,
for all z € 2\ Q¢ and A > Ag. Therefore, by (2.15), we have
Milz,u(x),v(x)) —1> a1 — 1, Afo(z,u(x),v(z)) —1> Aag — 1 (2.27)
for all z € Q\ Q¢ and A > Ao.

Rp—lagﬁ(pfl)agl Rq—la;n(q*l)afl

Claim. By (2.17) and A > XAy > max{1, %, - , - 11 we
have
AP (A 1 Agnd (A 1
as > M and ay > M. (2.28)

)\al -1 )\Cl,l -1
In fact, since that \ > a%, we obtain

1 aq aq
“MTNTHT R T

so, as A > 1 and by (2.17)),
MNP Y Nag +1)  Ap&Pl(az + 1)

)\al—l al—%

:—<a3,

and similarly

which prove the claim.
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Then, from (2.19), (2.27)), and (2.28]), we achieve
ST Py — (€= Do = DTV, ] ()
< KT IA Y (2)

e (2.29)

<Az, u(x),v(z)) — 1
and, by @20), [E27), and (@23,
a3 T Agel T — (n = 1) (g — 1)1 D@D v, 9] (2)

)\CLQ + lnq_l (230)
Gy

< Afa(w, u(x), v(@)) — 1,
for all x € 2\ Q¢. Thus, by combining (2.25)), [2.26), (2.29), and 7 we obtain
e s — (€ = D(p — DIV, ()
< M, u(@),v(z) —1

<A

(2.31)

and
a7 A0 = (= 1)(g = DD T, 1] (2)
< Al u(z),v(z)) — 1,

for all A > A\g and = € Q. Moreover, if py = po(A) > 0 is provided of proof of
existence of upper-solution; for each A > \g, since that g;, i = 1, 2, are bounded on
bounded sets, replacing pg > 0 by another smaller, if necessary, we have

(2.32)

ullgs (2, w(@), v(@))| <1, |pllg2(z, u(z), v(z))] <1 (2.33)

for all |u| < po. Therefore, by it follows that
AMi(z, u(z), v(@) — 1 < Mi(z,u(z),v(@)) + por(z, u(z), v(z)), (2.34)
Afa(, u(x), v(x) =1 < Ma(z,u(x), v(x)) + pg2(z, u(z), v()), (2.35)

for all |u| < po and z € Q.

Hence, substituting (2.34) and (2.35) in (2.31)) and (2.32)), respectively, and by
using (2.19) and (2.20]) , we achieve

/ |Vu|P?VuVwdr < )\/ fi(z,u(z), v(z))wde
Q Q

(2.36)
+ i / 01(2,u(z), v(x) wda

/ |Vo|T2VuVzde < )\/ fo(z,u(x),v(z))zdx
@ @ (2.37)

+ [ goleu(e), () i,
Q
so, we conclude that (u,v) is a lower-solution of (I.1)) with u,v € C1(€).
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2.3. Proof of Theorem In subsections 2:1] and 2:2] we proved that there
exists A\g > 0 such that for each A > A there exist po = po(A) > 0 and (@, ),
(u,v) that are upper-solution and lower-solution, respectively, of system , with
ue Ch(Q), v e Che2(Q), and u,v € C1(Q), whenever |u| < .

Let w € Wy () and z € Wy9(Q) satisfy w,z > 0 for a.e. in Q. Then, from

(2.17), @2.25)), and ([2.29)), we have

[ 92 euute < 3,02t Do [ g,
Q as 0

1
\2Exa [ (2.38)
a9 + 12 Q
< )\E/wdx
=A%, :
By (2.17), (2.26]), and (2.30]), we have
/ V|7 2VuVzdr < /\E/zdx. (2.39)
Q 2 Jo

However, since that s;(p — 1) > 1 and s3(¢ — 1) > 1, changing Ay > 0 by another
greater than 1, if necessary, we can suppose that

A%l < min{ AT PV gP=1 | ys2(a-1) ga-1y (2.40)
for all A > A\g. Hence, from , , and , we conclude that

/Q|Vg|”_2Vngdw§/Q|Vﬂ|p_2Vﬂdex (2.41)
and by , , and ,

/Q|Vy|q*2Vszdx < /Q\V17|q’2V1‘)Vzdx, (2.42)

so, by the weak comparison principle (see [3 Lemma 2.2]), we obtain u < @ and
v < vforallxz € Q. Thus, by using , we obtain by the standard theorem of lower
and upper solution (see [10, Theorem 2.4]) a solution (u,v) € Wy P(Q) x Wy*(2)
of system with u < v < @ and v < v < v for almost everywhere in Q. In
particular, we see that u,v € L>(Q) and u(z) > 0, v(z) > 0 for a.e. x € . Then,
by [12} Theorem 1], we obtain u € C1*1(Q) and v € C1*2(Q) for some p1, p2 > 0,
so u(z) > 0, v(z) > 0 for all z € Q.

3. PROOF OF THEOREM

Supposing by contradiction that there exists a nontrivial solution (u,v) of (1.1)),
for some A, p satisfying (1.11)), then by variational characterization of A, and A4,
we achieve

)\p/ |u|pdz§/ |Vu|Pdz
Q Q

(3.1)
S/ [([Alkr =+ [plks) [ul” + (IA|k2 + |plke)|v|*]d
Q

and similarly

A [ lolrde < [ (s + lalkolul? + (Ao + lulblol)dz. (32
Q Q
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From (3.1) and (3.2), we have

0 < { Ay — MGy + ks) + lul(ks + ko)) / P da

T (g — [Nk ) + [ul (ks + ks)]} / o|dz < 0,

which is a contradiction.
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