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ROBUST STABILITY OF PATTERNED LINEAR SYSTEMS

HENRY GONZÁLEZ

Abstract. For a Hurwitz stable matrix A ∈ Rn×n, we calculate the real
structured radius of stability for A with a perturbation P = B∆(t)C, where

A, B, C, ∆(t) form a patterned quadruple of matrices; i.e., they are polynomi-

als of a common matrix of simple structure M ∈ Rn×n.

1. Introduction

In the previous decades there has been a considerable of interest in the determi-
nation of the radius of stability for perturbed systems. In a few words the radius
of stability for a nominal stable system is the norm of the smallest destabilizing
perturbation. The concepts of complex and real stability radius for different classes
of perturbations was introduced and analyzed in [7, 8]. The problem of the de-
termination of the complex stability radii for several classes of perturbations has
been studied in [9], and a formula for the calculation of the real stability radius for
time-invariant structured linear perturbations has been given in [11]. In [10] the
formulation of the problem of stability radius in great generality is established and
fundamental results for the calculation of the different radii are discussed.

The case of the real time-varying perturbations is more difficult and the avail-
able results provide formulae for the stability radii which are not practical due to
computational issues. Some authors have considered particular classes of perturbed
systems for which the computation of the real time-varying stability radius can be
efficiently solved. In [12] and in [2] recent results for positive systems with struc-
tured perturbations proving that for positive systems the complex stability radius
and the positive stability radius coincide. In [1], using a metric similar to Frobe-
nius’s norm for matrices, lower estimates for the real structural stability radius is
proposed.

The aim of this work is the determination of the real time-varying stability radius
for a new class of systems, the patterned linear systems. Patterned systems were
introduced in [4, 5, 6] as a generalization of the well known class of circulant systems.
The importance and possible applications of this class of systems as well as their
observability, controllability and stabilization of patterned systems are studied.

In what follows we define linear patterned systems and adjust the definition of
the real time-invariant and time-varying stability radii of such systems.
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2 H. GONZÁLEZ EJDE-2013/193

Let M ∈ Rn×n be an arbitrary matrix, and let m be the degree of its minimal
polynomial. For arbitrary polynomials the evaluation at the matrix M can be
expressed by the evaluation of a polynomial of degree at most m− 1. So for M we
define the set of matrices:

F(M) :=
{
δ0I + δ1M + · · ·+ δm−1M

m−1 : (δ0, δ1, . . . , δm−1) ∈ Rm
}
. (1.1)

As in [4], we will call a matrix T ∈ F(M) an M -patterned matrix. It is easily
shown that

T,R ∈ F(M), α, β ∈ R⇒ αT + βR ∈ F(M), (1.2)

T,R ∈ F(M)⇒ TR = RT. (1.3)

From (1.2) we have that F(M) is a real linear space composed by matrices de-
termined by the real m-tuples (δ0, δ1, . . . , δm−1) ∈ Rm. Note that two m-tuples
correspond to the same element of F(M) if and only if their difference is a real
multiple of the vector of coefficients of the minimal polynomial of the matrix M .
So if we denote by V the one-dimensional subspace of Rm generated by the m-vector
whose components are, in order, the coefficients of the minimal polynomial of M ,
then denoting by ‖.‖ the 2-norm in the space Rm in the quotient space Rm/V we
have the quotient norm

‖(δ)‖ := inf{‖δ + b‖, b ∈ V},
where (δ) is the equivalence class of δ in the quotient space Rm/V. Thus we define
the measure of the disturbance ∆ ∈ F(M) by the norm

‖∆‖ := ‖(δ)‖,
where δ is the m-vector that determines the matrix ∆ as in (1.1). Furthermore, if
∆(.) ∈ L∞ (R+,F(M)) is a time-varying disturbance, then we measure its size by

‖∆(.)‖∞ := ess supt∈R+
‖∆(t)‖.

Let ẋ = Ax the nominal system, where the matrix A ∈ F(M) is Hurwitz stable:
Reλ < 0 for all λ ∈ σ(A), σ(A) the spectrum of A. Hence the nominal system is
asymptotically stable (a.e.).

Let B,C ∈ F(M), then we say that the perturbed systems:

ẋ = [A+B∆C]x, ∆ ∈ F(M), (1.4)

ẋ = [A+B∆(t)C]x, ∆(·) ∈ L∞(R+,F(M)) (1.5)

are patterned linear systems, the first with time-invariant patterned linear struc-
tured perturbation P = B∆Cx, and the second with time-varying patterned linear
structured perturbation P = B∆(t)Cx.

Definition 1.1. (i) The real time-invariant stability radius of the matrix A ∈ F(M)
for M -patterned linear perturbations of structure (B,C) ∈ F(M)2 is the number

r−R (A,B,C) = inf{‖∆‖ : ∆ ∈ F(M), σ(A+B∆C) ∩ C+ 6= ∅},
where we set inf ∅ =∞, σ(A+B∆C) denotes the spectrum of the perturbed matrix
A+B∆C, and C+ denotes the closed right half plane of the complex plane C.

(ii) The real time-varying stability radius of the matrix A ∈ F(M) for patterned
linear perturbations of structure (B,C) ∈ F(M)2 is the number:

r−R, t(A,B,C) = inf
{
‖∆(·)‖∞ : ∆(·) ∈ L∞(R+,F(M)) and

(1.5) is not asymptotically stable
}
.
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In this work we prove that in the generic case when the matrix M ∈ Rn×n is of
simple structure; i.e., there exists a basis of Cn composed by eigenvectors of M , the
two radii of stability for patterned systems coincide: r−R (A,B,C) = r−R,t(A,B,C)
and we give a formula for its calculation.

2. Canonical form of linear patterned systems

Let M ∈ Rn×n be a matrix of simple structure, and (A,B,C) ∈ F(M)3, where
A is a stable matrix. By (1.3), the system (1.5) can be written as

ẋ = [A+BC∆(t)]x, ∆(·) ∈ L∞(R+,F(M)).

Since M is of simple structure, we can compute a basis of Cn whose vectors are
the eigenvectors of the matrix M . Changing in this basis the vectors z and z
corresponding to a pair of conjugate eigenvectors to 1

2 (z + z) and 1
2i (z − z) and

forming the real matrix U ∈ Rn×n whose columns are the calculated vectors, then as
explained in [3] we have for the matrix M̃ = U−1MU the block diagonal expression:

M̃ =



m1 −n1

n1 m1

. . .
mq −nq
nq mq

m2q+1

. . .
mn


,

where mk + ink,mk − ink, k = 1, . . . , q are the non-real eigenvalues of M (nk 6= 0),
and m2q+1, . . . ,mn are the real eigenvalues of the matrix M . Also for the matrices
Ã = U−1AU , B̃C = U−1BCU we have

Ã =



µ1 −ν1

ν1 µ1

. . .
µq −νq
νq µq

µ2q+1

. . .
µn


,

B̃C =



ε1 −κ1

κ1 ε1
. . .

εq −κq
κq εq

ε2q+1

. . .
εn


,



4 H. GONZÁLEZ EJDE-2013/193

where µk + iνk, µk − iνk, k = 1, . . . , q, µ2q+1, . . . , µn are the eigenvalues of A and
εk + iκk, εk − iκk, k = 1, . . . , q, ε2q+1, . . . , εn are the eigenvalues of the matrix BC.
Furthermore, if ∆(·) ∈ L∞ (R+,F(M)), then there exists a polynomial p(λ) =
δ0(.)λ + δ1(.)λ2 + · · · + δn−1(.)λn−1, such that ∆(.) = p(M) and so for ∆̃(.) =
U−1∆(.)U we have

∆̃(.) =



p

(
m1 −n1

n1 m1

)
. . .

p

(
mq −nq
nq mq

)
p(m2q+1)

. . .
p(mn)


.

Therefore, in the new variables x = Uy the perturbed system (1.5) becomes the
decoupled systems:

ẏk =
([
µk −νk
νk µk

]
+
[
εk −κk
κk εk

]
p

(
mk −nk
nk mk

))
yk, k = 1, . . . , q; (2.1)

ẏk = (µk + εkp(mk))yk, k = 2q + 1, . . . , n . (2.2)

Setting

αjk = <e(mk + ink)j , βjk = =m(mk + ink)j , k = 1, . . . , q; j = 0, 1, . . . ,m− 1,

αk = (α0k, α1k, . . . , αm−1k), βk = (β0k, β1k, . . . , βm−1k),

γk = (1,mk, . . . ,m
m−1
k ), k = 1, . . . , q,

δ(.) = (δ0(.), δ1(.), . . . , δm−1(.)),

then, for k ∈ {1, . . . , q}, Equation (2.1) becomes

ẏk =
([
µk −νk
νk µk

]
+
[
(εkαk − κkβk)δ(t) −(εkβk + κkαk)δ(t)
(εkβk + κkαk)δ(t) (εkαk − κkβk)δ(t)

])
yk, (2.3)

k = 1, . . . , q. Also, for k ∈ {2q + 1, . . . , n}, Equation (2.2) becomes

ẏk = (µk + εkγkδ(t))yk. (2.4)

Writing (2.3) in polar coordinates, yk = (y1
k, y

2
k) = ρk(cos(ϕk), sin(ϕk)), we have

ρ̇k
ρk

= µk + (εkαk − κkβk)δ(t)

ϕ̇ = νk + (εkβk + κkαk)δ(t).
(2.5)

Note that (2.3) is stable when (εk, κk) = (0, 0) as is (2.4) when εk = 0 for all
disturbance δ(t). Finally note that from the expressions of the vectors αk and βk
and the fact that nk 6= 0, k = 1, . . . , q it follows that

(εkαk − κkβk = 0)⇔ (εk = 0 and κk = 0),

(εkγk = 0)⇔ εk = 0.
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3. Main results

Theorem 3.1. Let M ∈ Rn×n be a matrix of simple structure, and (A,B,C) ∈
(F(M))3, where A is a Hurwitz stable matrix and the product BC is not the
null matrix, then for the patterned stability radii of the triple (A,B,C) we have:
r−R (A,B,C) = r−R,t(A,B,C) and for this numbers we have the expression:

r−R = min
{

inf
k=1,...,q; (εk,κk) 6=(0,0)

−µk
‖εkαk − κkβk‖

, inf
k=2q+1,...,n; εk 6=0

−µk
‖εkγk‖

}
. (3.1)

Proof. First we deduce (3.1) for the time-invariant stability radius. Note that from
(2.3), (2.4) it follows that the disturbance δ ∈ Rm corresponding to the minimum
norm destabilizing perturbation of the system is a disturbance of minimum norm
that destabilizes at least one of the subsystems (2.3), (2.4).

For a fixed k ∈ {1, 2, . . . , q} when the disturbance δ(t) ≡ δ ∈ Rm is time-
invariant the real part of the eigenvalues of the matrix of the subsystem (2.3)
is µk + (εkαk − κkβk)δ and so the minimum norm destabilizing time-invariant
disturbance is the solution δ0 ∈ Rm of the optimization problem:

min ‖δ‖, µk + (εkαk − κkβk)δ = 0.

For the solution δ0 of this problem when (εk, κk) 6= (0, 0) we have:

δ0 =
−µk

‖εkαk − κkβk‖2
(εkαk − κkβk) , ‖δ0‖ =

−µk
‖εkαk − κkβk‖

.

Thus a minimum norm destabilizing perturbation of (2.3) is the polynomial in M
with coefficients

δ0 =
−µk

‖εkαk − κkβk‖2
(εkαk − κkβk).

Similarly we see that for k ∈ {2q + 1, . . . , n} the minimum norm time-invariant
destabilizing disturbance δ of the subsystem (2.4) is the solution δ0 ∈ Rm of the
optimization problem:

min ‖δ‖, µk + εkγkδ = 0.

Let δ0 be the solution to this problem when εk 6= 0. Hence,

δ0 =
−µk
‖εkγk‖2

(εkγk) , ‖δ0‖ =
−µk
‖εkγk‖

.

Thus a minimum norm destabilizing perturbation of this subsystem is the polyno-
mial in M with coefficients δ0 = −µk

‖εkγk‖2
(εkγk). Therefore (3.1) holds also for the

time-invariant patterned stability radius.
The inequality r−R (A,B,C) ≥ r−R, t(A,B,C) follows from the definitions of the

stability radii. So for the equality of this radii it is sufficient to show that for the
time-varying perturbations ∆(t) with coefficients satisfying ‖δ(t)‖ < r−R (A,B,C)
the corresponding subsystems (2.4) and (2.5) are all asymptotically stable. To
see this we note that for such disturbance δ(t) and any fixed k ∈ {2q + 1, . . . , n}
there exists ε > 0 such that: µk + εkγkδ(t) < −ε, for all t ∈ [0,∞) and for fixed
k ∈ {1, . . . , q} there exists ε > 0 such that: µk + (εkαk − κkβk)δ(t) < −ε for all
t ∈ [0,∞). �
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4. Example

In this section using Maple we present a numerical example, showing the calcu-
lation of the stability radius r−R, t(A,B,C) for a triple of patterned matrices of sixth
order. Let

M :=


−0.3 0.2 0.2 0 −0.1 −0.4
−0.2 −0.4 0.1 0.3 0.1 0.4

0 −0.3 −0.5 −0.3 0 −0.3
−0.1 −0.1 −0.1 −0.5 −0.1 −0.1
0.1 0.4 0.4 0.9 0.2 0.7
0 −0.3 −0.6 −0.9 −0.6 −0.8



A :=


−0.2604 0.1812 0.1794 −0.0027 −0.0927 −0.3639
−0.1812 −0.3498 0.0936 0.2757 0.0927 0.3639
−0.0009 −0.2739 −0.4443 −0.2748 −0.0018 −0.273
−0.0909 −0.0909 −0.0909 −0.4425 −0.0909 −0.0909
0.0918 0.3648 0.3657 0.819 0.1944 0.6351
0.0009 −0.2739 −0.546 −0.8172 −0.5442 −0.7137



B :=


0.09662 −0.00244 0.00222 −0.00054 −0.00164 −0.00518
−0.00244 0.09564 0.00182 0.00444 0.00164 0.00518
−0.00018 −0.00408 0.09364 −0.00426 −0.00036 −0.0039
−0.00128 −0.00128 −0.00128 0.094 −0.00128 −0.00128
0.00146 0.00536 0.00554 0.0117 0.10308 0.00872
0.00018 −0.00408 −0.0078 −0.01134 −0.00744 0.09046



C :=


−0.20564 −0.01632 −0.02287 −0.02506 −0.01126 −0.01094
0.01632 −0.16676 0.02911 0.0313 0.01126 0.01094
−0.01818 −0.02442 −0.21405 −0.03116 −0.00688 −0.00656
−0.00438 −0.00438 −0.00438 −0.2075 −0.00438 −0.00438
−0.0226 0.0288 0.0175 0.01937 −0.19 0.010632
−0.01818 −0.02442 −0.0128 −0.01249 −0.00625 −0.20719


Easily we can verify that

A = 0.01I + 0.9M − 0.01M2,

B = 0.1I + 0.011M − 0.002M2,

C = −0.2I + 0.003M − 0.002M3 + 0.2M5,

thus the matrices A,B,C are M -patterned matrices. The eigenvalues of the matrix
M are all different: −0.5 + 0.3i,−0.5− 0.3i,−0.2 + 0.3i,−0.2− 0.3i,−0.4,−0.5, so
the matrix M is of simple structure. Using Maple and the procedure explained in
section 2 we calculate the invertible matrix U , which corresponds to the canonical
form of the patterned system

U :=


0 −1 0 −1 −1 2
1 1 0 1 1 −2
−1 0 0 −1 0 1
0 0 0 0 −1 1
1 0 1 1 1 −2
−1 0 −1 0 0 1

 . (4.1)
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Then we have for the matrices Ã = U−1AU and B̃C = U−1BCU :

Ã =


−0.4416 0.273 0 0 0 0
−0.273 −0.4416 0 0 0 0

0 0 −0.1695 0.2712 0 0
0 0 −0.2712 −0.1695 0 0
0 0 0 0 −0.3516 0
0 0 0 0 0 −0.4425

 ,

gBC

=

2666664
−0.0178544936 −0.0001506648 0 0 0 0
0.0001506648 −0.0178544936 0 0 0 0

0 0 −0.01967052992 −0.00074185824 0 0
0 0 0.00074185824 −0.01967052992 0 0
0 0 0 0 −0.0193532736 0
0 0 0 0 0 −0.019505

3777775 .

In this case the parameters needed to apply the formula given by Theorem 3.1 we
have the values:

m1 = −0.5, n1 = −0.3,
m2 = −0.2, n2 = −0.3,
m5 = −0.4, m6 = −0.5
µ1 = −0.4416, ν1 = −0.273,
µ2 = −0.1695, ν2 = −0.2712,
µ5 = −0.3516, µ6 = −0.4425
ε1 = −0.0178544936, κ1 = 0.0001506648,
ε2 = −0.01967052992, κ2 = 0.00074185824,
ε5 = −0.0193532736, ε6 = −0.019505

α1 = (1,−0.5, 0.16, 0.01,−0.0644, 0.061),

β1 = (0,−0.3, 0.3,−0.198, 0.096,−0.02868),

α2 = (1,−0.2,−0.05, 0.046,−0.0119,−0.00122),

β2 = (0,−0.3, 0.12,−0.009,−0.0120, 0.00597),

γ5 = (1,−0.4, 0.16,−0.064, 0.0256,−0.01024),

γ6 = (1,−0.5, 0.25,−0.125, 0.0625,−0.03125),

Simple computations show that

− µ1

‖ε1α1 − κ1β1‖
= 21.8038, − µ2

‖ε2α2 − κ2β2‖
= 8.41345,

− µ5

‖ε5γ5‖
= 16.65090014, − µ6

‖ε6γ6‖
= 19.64947599 .

From this and the formula of Theorem 3.1 we conclude that

r−R,t(A,B,C) = 8.41345 (4.2)

and a minimum norm destabilizing perturbation is the polynomial in M with coef-
ficients

δ =
−µ2

‖ε2α2 − κ2β2‖2
(ε2α2 − κ2β2).
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Finally we have

δ = (−8.21476, 1.7359, 0.37356,−0.37509, 0.101473, 0.00817242)

and the disturbance ∆ corresponding to the minimum norm destabilizing pertur-
bation is

∆ =


−8.72494 0.307791 0.4566 0.232859 0.022962 −0.450774
−0.307791 −9.01559 −0.131673 0.0920681 −0.022962 0.450774
0.0963806 −0.228547 −8.78754 −0.188449 0.136478 −0.337257
−0.113516 −0.113516 −0.113516 −8.93635 −0.113516 −0.113516
0.017135 , 0.342063 0.301965 0.999442 −8.14832 0.92451
0.0963806 −0.228547 −0.662185 −1.13592 −0.810993 −9.41008

 .

Conclusions. We have established that for the class of linear patterned systems
the time-invariant and the time-varying stability radii are equal and we have ob-
tained a simple computable formula for this radius in terms of the nominal matrix
and the matrices that give the structure of the linear patterned perturbation. The
results in this paper give a complete solution to the problem of calculation of the
real stability radii of patterned linear systems.
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Faculty of Light Industry and Environmental Protection Engineering, Obuda Univer-
sity, 1034 Budapest, Bécsi út 96/B, Hungary
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