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CONTROLLABILITY OF IMPULSIVE FUNCTIONAL
DIFFERENTIAL SYSTEMS WITH NONLOCAL CONDITIONS

YANSHENG LIU, DONAL O’REGAN

Abstract. In this article, we study the controllability of impulsive functional
differential equations with nonlocal conditions. We establish sufficient condi-

tions for controllability, via the measure of noncompactness and Mönch fixed

point theorem.

1. Introduction

Consider the impulsive functional differential equation
x′(t) = A(t)x(t) + f(t, x(t), xt) +Bu(t), a.e. t ∈ [0, a];

∆x
∣∣
t=ti

= Ii(x(ti)), i = 1, 2, . . . k;

x(t) = φ(t), t ∈ [−τ, 0);

x(0) +M(x) = x0,

(1.1)

where ∆x|t=ti = x(ti + 0) − x(ti − 0), A(t) is a family of linear operators which
generates an evolution operator

U : ∆ = {(t, s) ∈ J × J : 0 ≤ s ≤ t ≤ a} → L(X),

X is a Banach space, J = [0, a], L(X) is the space of all bounded linear operators
in X, M : PC(J,X) → X, B is a bounded linear operator from a Banach space
V to X and the control function u(·) is given in L2(J, V ), 0 = t0 < t1 < t2 <
· · · < tk < tk+1 = a, Ii : X → X, i = 1, . . . , k are impulsive functions, f :
J × X × L([−τ, 0], X) → X is a given function satisfying some assumptions that
will be specified later, φ ∈ L([−τ, 0], X) and L([−τ, 0], X) is the space of X-valued
Bochner integrable functions on [−τ, 0] with the norm ‖φ‖L[−τ,0] =

∫ 0

−τ ‖φ(t)‖dt.
Abstract differential systems in infinite-dimensional spaces appear in many bran-

ches of science and engineering, such as heat flow in materials with memory, vis-
coelasticity, and other physical phenomena. Systems with short-term perturbations
are often naturally described by impulsive differential equations [18, 25]. Impulsive
interruptions are observed in mechanics, radio engineering, communication security,
control theory, optimal control, biology, medicine, bio-technologies, electronics, neu-
ral networks and economics (see for example [4, 5, 8, 19, 26, 27]). We also refer the
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reader to recent results in impulse theory [6, 7, 24, 28]. The semilinear nonlocal
initial problem was first discussed by Byszewski [2, 3]. It was studied extensively
under various conditions on A (or A(t)) and f by several authors (see [4, 15] and
the references therein). Recently, Ji et al [15] studied the impulsive differential
equation

x′(t) = A(t)x(t) + f(t, x(t)) +Bu(t), a.e. t ∈ [0, a];

∆x
∣∣
t=ti

= Ii(x(ti)), i = 1, 2, . . . k;

x(0) +M(x) = x0.

(1.2)

Time delays are often encountered unavoidably in many practical systems such as
automatic control systems, population models, inferred grinding models, the AIDS
epidemic, and neural networks; see [9, 10, 17, 11, 22] and the references therein.
They describe phenomenon present in real systems where the rate of change of the
state depends on not only the current state of the system but also its state at some
time in history. Therefore, it is natural and necessary to study (1.2) with time
delay, i.e. the (1.1).

To the best of our knowledge there is no paper studying such systems. The
purpose of the present paper is to fill this gap. In this paper some sufficient condi-
tions for controllability are established by using the measure of noncompactness and
Mönch’s fixed point theorem. The main features in the present paper are as follows.
First, the (1.1) considers the effect of time delay. Also we relax the assumptions on
the functions f , M , and Ii in [15].

The organization of this article is as follows. We shall introduce some prelimi-
naries and some lemmas in Section 2. The main results and their proof are given
in Section 3.

2. Preliminaries

For the sake of simplicity, we put J0 = [0, t1] and Ji = (ti, ti+1], i = 1, . . . , k. Let
PC(J,X) = {x : x is a map from J into X such that x(t) is continuous at t 6= ti,
and left continuous at t = ti, and the right limit x(t+i ) exists for i = 1, 2, . . . , k}.
Evidently, PC(J,X) is a Banach space with the norm

‖x‖PC = sup
t∈J
{‖x(t)‖}, ∀x ∈ PC(J,X).

Notice that the interaction of time delay and impulse give rise to discontinuity.
Therefore, we introduce the special complete space L([−τ, 0], X) to overcome the
difficulty arising from time delay. For any function y ∈ PC(J,X) and any t ∈ J ,
we denote a function yt by

yt(θ) =

{
y(t+ θ), t+ θ ≥ 0;
φ(t+ θ), t+ θ < 0

(2.1)

for θ ∈ [−τ, 0], where φ(t) is the same as in (1.1). Then it is easy to see yt ∈
L([−τ, 0], X). Moreover, we have the following Lemma.

Lemma 2.1. Suppose yn, y0 ∈ PC(J,X) with ‖yn−y0‖PC → 0 as n→ +∞. Then
for each t ∈ J , we have

‖ynt − y0t‖L[−τ,0] → 0, as n→ +∞,

where ynt(θ) and y0t(θ) are defined by (2.1).
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Proof. From (2.1), it follows that

‖ynt − y0t‖L[−τ,0] =

{∫ t
0
|yn(s)− y0(s)|ds, t ≤ τ ;∫ t

t−τ |yn(s)− y0(s)|ds, t ≥ τ.

The conclusion follows. �

The basic space to study (1.1) in this paper is PC(J,X). For a bounded subset
Ω of Banach space X, let β(Ω) be the Hausdorff noncompactness measure of Ω,
which is defined by β(Ω) = inf{ε > 0 : Ω has a finite ε-net in X} (see [1, 16]).
In this paper, the Hausdorff measure of noncompactness of a bounded set in X,
PC(J,X), and L([−τ, 0], X) are denoted by β(·), βPC(·), and βτ (·), respectively.
As in [13], we have the following result on the Hausdorff noncompactness measure.

Lemma 2.2. Suppose E is a Banach space. Let H be a countable set of strongly
measurable function x : J → E such that there exists a µ ∈ L[J,R+] with ‖x(t)‖ ≤
µ(t) a.e. t ∈ J for all x ∈ H. Then β(H(t)) ∈ L[J,R+] and

β
({ ∫

J

x(t)dt : x ∈ H
})
≤ 2

∫
J

β(H(t))dt,

where β(·) denotes the Hausdorff noncompactness measure, J = [0, a].

Lemma 2.3 (Mönch fixed point theorem [20]). Suppose E is a Banach space. Let D
be a closed and convex subset of E and u ∈ D. Assume that the continuous operator
A : D → D has the following property: C ⊂ D countable, C ⊂ co({u} ∪ A(C))
implies C is relatively compact. Then A has a fixed point in D.

Definition 2.4. A function x ∈ PC(J ;X) is said to be a mild solution of (1.1) if
x(0) +M(x) = x0 and

x(t) = U(t, 0)x(0) +
∫ t

0

U(t, s)
(
(f(s, x(s), xs) +Bu(s)

)
ds+

∑
0<ti<t

U(t, ti)Ii(x(ti)),

for all t ∈ J , where xs is defined by (2.1).

Definition 2.5. Equation (1.1) is said to be nonlocally controllable on J if, for
every x0, x1 ∈ X, there exists a control u ∈ L2(J, V ) such that the mild solution x
of (1.1) satisfies x(b) +M(x) = x1.

A two parameter family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ a on
X is called an evolution system if the following two conditions are satisfied:

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ t ≤ a;
(ii) (t, s)→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ a.

Since the evolution system U(t, s) is strongly continuous on the compact set J ×J ,
then there exists LU > 0 such that ‖U(t, s)‖ ≤ LU for any (t, s) ∈ J × J . More
details about evolution systems can be found in [23].

3. Main results

We will use the following hypotheses:
(S1) A(t) is a family of linear operators, A(t) : D(A)→ X, D(A) not depending

on t is a dense subset of X, generating an equicontinuous evolution system
{U(t, s) : (t, s) ∈ J × J}, i.e., (t, s) → {U(t, s)x : x ∈ Ω} is equicontinuous
for t > 0 and for all bounded subsets Ω.
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(S2) f : J ×X × L([−τ, 0], X)→ X satisfies:
(i) t→ f(t, x, y) is strongly measurable for each x ∈ X, y ∈ L([−τ, 0], X);

(x, y)→ f(t, x, y) is continuous for almost all t ∈ J ;
(ii) there exist functions a1, b1, µ1 ∈ L(J ;R+) such that

‖f(t, x, y)‖ ≤ a1(t)‖x‖+ b1(t)‖y‖L[−τ,0] + µ1(t),

for all t ∈ J , x ∈ X, y ∈ L([−τ, 0], X);
(iii) there exist l1, l2 ∈ L1(J ;R+) such that for any bounded subsets B1 ⊂

X,B2 ⊂ L([−τ, 0], X),

β(f(t, B1, B2)) ≤ l1(t)β(B1) + l2(t)βτ (B2);

(S3) M : PC(J,X) → X is a continuous operator and there exist nonnegative
numbers a2, b2, l3 such that

‖M(y)‖ ≤ a2‖y‖+ b2, ∀y ∈ PC(J,X);

β(M(B1)) ≤ l3βPC(B1), for any bounded B1 ⊂ PC(J,X);

(S4) the linear operator W : L2(J, V )→ X defined by

Wu =
∫ a

0

U(a, s)Bu(s)ds

is such that:
(i) W has an invertible operatorW−1 which take values in L2(J, V )/kerW

and there exist positive constants LB and LW such that ‖B‖ ≤ LB
and ‖W−1‖ ≤ LW ;

(ii) there is KW ∈ L1(J,R+) such that, for any bounded set Q ⊂ X,

βV ((W−1Q)(t)) ≤ KW (t)β(Q).

(S5) Ii : X → X(i = 1, . . . , k) is a continuous operator and there exist nonneg-
ative numbers ci, di, ki (i = 1, 2, . . . , k) such that:

‖Ii(x)‖ ≤ ci‖x‖+ di, ∀x ∈ X, i = 1, 2, . . . , k;

β(Ii(B1)) ≤ kiβ(B1), for any bounded B1 ⊂ X, i = 1, 2, . . . , k.

Theorem 3.1. Assume that (S1)–(S5) are satisfied. In addition, assume that

c := LU

[
(1 + LBLWa

1/2)
(
a2 +

∫ a

0

(
a1(s) + τb1(s)

)
ds+

k∑
i=1

ci

)
+ LULBLWa2a

1/2
]
< 1,

(3.1)

d := LU

[(
l3 + 2

∫ a

0

(l1(s) + τ l2(s))ds+
k∑
i=1

ki
)(

1 + 2LBLU
∫ a

0

KW (s)ds
)

+ 2l3LB
∫ a

0

KW (s)ds
]
< 1.

(3.2)

Then the impulsive functional differential system (1.1) is nonlocally controllable on
J .
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Proof. From (S4)(i), one can define the control:

ux(t) = W−1[x1 −M(x)− U(a, 0)(x0 −M(x))

−
∫ a

0

U(a, s)f(s, x(s), xs)ds−
k∑
i=1

U(a, ti)Ii(x(ti))](t),
(3.3)

for all x ∈ PC(J,X). Using this control, define the following operator on PC(J,X)
by

(Gx)(t) =U(t, 0)(x0 −M(x)) +
∫ t

0

U(t, s)
(
f(s, x(s), xs) +Bux(s)

)
ds

+
∑

0<ti<t

U(t, ti)Ii(x(ti)), ∀x ∈ PC(J,X).
(3.4)

Obviously, Gx ∈ PC(J,X). We shall show that G has a fixed point, which is then
a solution of (1.1). Clearly, if x is a fixed point of G, then x1 = M(x) + G(x)(a),
which implies that the system (1.1) is controllable.

First we show that G is continuous. To do this, suppose xn, x ∈ PC(J,X) and
xn → x as n→ +∞. Then by (S3) and (S5) we know that

‖Gxn −Gx‖PC

≤ LU
(
‖M(xn)−M(x)‖+

∫ a

0

‖f(s, xn(s), xns)− f(s, x(s), xs)‖ds

+ LB

∫ a

0

‖uxn(s)− ux(s)‖ds+
k∑
i=1

‖Ii(xn(ti))− Ii(x(ti))‖
)

≤ LU
(
‖M(xn)−M(x)‖+

∫ a

0

‖f(s, xn(s), xns)− f(s, x(s), xs)‖ds

+ LBa
1/2‖uxn

− ux‖L2 +
k∑
i=1

‖Ii(xn(ti)− Ii(x(ti))‖
)
.

(3.5)

Notice that

‖xns − xs‖L[−τ,0] ≤ τ‖xn − x‖PC . (3.6)

From (3.3), we have

‖uxn
− ux‖L2

≤ LW ‖M(xn)−M(x)‖+ LWLU

[
‖M(xn)−M(x)‖

+
∫ a

0

‖f(s, xn(s), xns)− f(s, x(s), xs)‖ds+
k∑
i=1

‖Ii(xn(ti)− Ii(x(ti))‖
]
.

(3.7)

Then by (3.5)–(3.7), (S2)–(S5), and the Lebesgue dominated convergence theorem,
we obtain

‖Gxn −Gx‖PC → 0 as n→ +∞,

so G is continuous.



6 Y. LIU, D. O’REGAN EJDE-2013/194

Next, choose a positive number r satisfying

r >
LU

1− c

[
(1 + LULBLWa

1/2)
(
‖x0‖+ b2 +

∫ a

0

b1(s)ds · ‖φ‖L[−τ,0]

+
∫ a

0

µ1(s)ds+
k∑
i=1

di

)
+ LBLWa

1/2(‖x1‖+ b2)
]
.

(3.8)

We now show that
G : B(0, r)→ B(0, r), (3.9)

where B(0, r) = {x ∈ PC(J,X) : ‖x‖PC ≤ r}. In fact, for each x ∈ PC(J,X), by
(3.3), we have

‖ux‖L2 =
(∫ a

0

‖ux(s)‖2ds
)1/2

≤ LW (‖x1‖+ a2‖x‖PC + b2) + LWLU

[
‖x0‖+ a2‖x‖PC + b2

+
∫ a

0

(
a1(s)‖x(s)‖+ b1(s)‖xs‖L[−τ,0] + µ1(s)

)
ds+

k∑
i=1

(ci‖x(ti)‖+ di)
]

≤ LW (‖x1‖+ a2‖x‖PC + b2) + LWLU

[
‖x0‖+ a2‖x‖PC + b2

+
∫ a

0

(
a1(s)‖x‖PC + b1(s)(τ‖x‖PC + ‖φ‖L[−τ,0]) + µ1(s)

)
ds

+
k∑
i=1

(ci‖x‖PC + di)
]
.

This together with (3.4) guarantees that

‖Gx‖PC

≤ LU
[
‖x0‖+ ‖M(x)‖+

∫ a

0

‖f(s, x(s), xs) +Bux(s)‖ds+
k∑
i=1

‖Ii(x(ti))‖
]

≤ LU
[
‖x0‖+ a2‖x‖PC + b2 +

∫ a

0

(
a1(s)‖x(s)‖+ b1(s)‖xs‖L[−τ,0] + µ1(s)

)
ds

+ LB

∫ a

0

‖ux(s)‖ds+
k∑
i=1

(ci‖x(ti)‖+ di)
]

≤ LU
[
‖x0‖+ a2‖x‖PC + b2 +

∫ a

0

(
a1(s)‖x‖PC + b1(s)(τ‖x‖PC + ‖φ‖L[−τ,0])

+ µ1(s)
)
ds+ LBa

1/2‖ux‖L2 +
k∑
i=1

(ci‖x‖PC + di)
]

≤ c‖x‖PC + LU

[
(1 + LULBLWa

1/2)
(
‖x0‖+ b2 +

∫ a

0

b1(s)ds · ‖φ‖L[−τ,0]

+
∫ a

0

µ1(s)ds+
k∑
i=1

di

)
+ LBLWa

1/2(‖x1‖+ b2)
]
.

From (3.8) we have ‖Gx‖PC ≤ r if ‖x‖PC ≤ r; that is, (3.9) holds.
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Next we prove that if D ⊂ B(0, r) is countable and

D ⊂ co({u0} ∪G(D)), (3.10)

where u0 ∈ B(0, r), then D is relatively compact. Without loss of generality,
suppose that D = {xn}∞n=1. First we show {Gxn}∞n=1 is equicontinuous on each Ji,
i = 0, . . . , k. If this is true then co({u0} ∪G(D)) is also equicontinuous on each Ji.
To this end, notice that for each x ∈ D, t′, t′′ ∈ Ji, we have

‖(Gx)(t′′)− (Gx)(t′)‖

= ‖[U(t′′, 0)− U(t′, 0)](x0 −M(x))‖+ ‖
i∑

j=1

(
U(t′′, tj)− U(t′, tj)

)
Ij(x(tj))‖

+ ‖
∫ t′′

0

U(t′′, s)
(
f(s, x(s), xs) +Bux(s)

)
ds

−
∫ t′

0

U(t′, s)
(
f(s, x(s), xs) +Bux(s)

)
ds‖

≤ ‖[U(t′′, 0)− U(t′, 0)](x0 −M(x))‖+
i∑

j=1

‖
(
U(t′′, tj)− U(t′, tj)

)
Ij(x(tj))‖

+
∫ t′

0

‖U(t′′, s)− U(t′, s)
(
f(s, x(s), xs) +Bux(s)

)
‖ds

+
∫ t′′

t′
‖U(t′′, s)‖ · ‖f(s, x(s), xs) +Bux(s)‖ds

(3.11)
From the equicontinuity property of U(·, s) and the absolute continuity of the

Lebesgue integral, we see that the right-hand side of the inequality (3.11) tends
to zero independent of x ∈ D as |t′′ − t′| → 0, t′′, t′ ∈ Ji. Therefore, G(D) is
equicontinuous on every Ji.

Next notice that

‖xns − xms‖L[−τ,0] ≤ τ‖xn − xm‖PC , ‖xn(s)− xm(s)‖ ≤ ‖xn − xm‖PC , s ∈ J,

which implies

βτ ({xns}∞n=1) ≤ τβPC({xn}∞n=1), β({xn(s)}∞n=1) ≤ βPC({xn}∞n=1), s ∈ J.

Then from (S2), (S3), (S4) and (S5), for each t ∈ J , we have

βV ({uxn
(t)}∞n=1)

≤ KW (t)β
(
{M(xn) + U(a, 0)(x0 −M(xn)) +

∫ a

0

U(a, s)f(s, xn(s), xns)ds

+
k∑
i=1

U(a, ti)Ii(xn(ti))}∞n=1

)
≤ KW (t)

(
l3(1 + LU )βPC({xn}∞n=1) + 2LU

∫ a

0

[
l1(s)β({xn(s)}∞n=1)

+ l2(s)βτ ({xns}∞n=1)
]
ds+ LU

k∑
i=1

kiβ({xn(ti)}∞n=1)
)
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≤ KW (t)
(
l3(1 + LU ) + 2LU

∫ a

0

[
l1(s) + τ l2(s)

]
ds+ LU

k∑
i=1

ki

)
βPC({xn}∞n=1),

and

β({(Gxn)(t)}∞n=1)

≤ β
(
{U(t, 0)(x0 −M(xn))}∞n=1

)
+ β

(
{
∫ t

0

U(t, s)
(
f(s, xn(s), xns) +Buxn(s)

)
ds}∞n=1

)
+ β

(
{
∑

0<ti<t

U(t, ti)Ii(xn(ti))}∞n=1

)
≤ LU l3βPC({xn}∞n=1) + 2LU

∫ a

0

[
l1(s)β({xn(s)}∞n=1) + l2(s)βτ ({xns}∞n=1)

]
ds

+ 2LULB
∫ a

0

βV ({uxn(s)}∞n=1)ds+ LU

k∑
i=1

kiβ({xn(ti)}∞n=1)

≤ LU
[
l3 + 2

∫ a

0

[
l1(s) + τ l2(s)

]
ds+ 2LB

(
l3(1 + LU ) + 2LU

∫ a

0

[
l1(s) + τ l2(s)

]
ds

+ LU

k∑
i=1

ki

)∫ a

0

KW (s)ds+
k∑
i=1

ki

]
βPC({xn}∞n=1)

≤ LU
[(
l3 + 2

∫ a

0

(l1(s) + τ l2(s))ds+
k∑
i=1

ki
)(

1 + 2LBLU
∫ a

0

KW (s)ds
)

+ 2l3LB
∫ a

0

KW (s)ds
]
βPC({xn}∞n=1)

= d · βPC({xn}∞n=1).
(3.12)

Note since {Gxn}∞n=1 is equicontinuous on each Ji, i = 0, . . . , k we have (from a
well known result on measures of noncompactness)

βPC({Gxn}∞n=1) = sup
0≤i≤k

sup
t∈Ji

β({(Gxn)(t)}∞n=1).

This together with (3.2), (3.10) and (3.12) guarantees that

βPC({xn}∞n=1) ≤ βPC({Gxn}∞n=1) ≤ d · βPC({xn}∞n=1),

which implies that D = {xn}∞n=1 is relatively compact.
From Mönch’s fixed point theorem, G has a fixed point in B(0, r) and immedi-

ately the system (1.1) is nonlocally controllable on J . �

Remark 3.2. Note that (1.1) with no effect of time delay was considered in [15].
The assumptions on f , M , and Ii in [15] are relaxed in this paper. For example
M is not necessarily compact here, and the the assumptions (S2), (S3), and (S5)
in our paper are weaker than assumptions (H2), (H3), and (H5) in [15].
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