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SUBHARMONIC SOLUTIONS FOR FIRST-ORDER
HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

Abstract. In this article, we study the existence of periodic and subharmonic
solutions for a class of non-autonomous first-order Hamiltonian systems such

that the nonlinearity has a growth at infinity faster than |x|α, 0 ≤ α < 1.
We also study the minimality of periods for such solutions. Our results are

illustrated by specific examples. The proofs are based on the least action

principle and a generalized saddle point theorem.

1. Introduction and statement of main results

Consider the non-autonomous first-order Hamiltonian system

ẋ(t) = JH ′(t, x(t)) (1.1)

where J is the standard symplectic (2N × 2N)-matrix

J =
(

0 −I
I 0

)
H : R × R2N → R, (t, x) → H(t, x) is a continuous function T -periodic (T > 0)
in t and differentiable with respect to the second variable such that the derivative
H ′(t, x) = ∂H

∂x (t, x) is continuous on R×R2N . In this article, we are interested first
in the existence of periodic solutions and then the existence of subharmonics for the
system (1.1). Assuming that T > 0 is the minimal period of the time dependence
of H(t, x), by subharmonic solution of (1.1) we mean a kT -periodic solution, where
k is any integer; when moreover the periodic solution is not T -periodic we call it a
true subharmonic.

Using variational methods, there have been various types of results concerning
the existence of subharmonic solutions for Hamiltonian systems of first and second
order. Most of these works treats the case of second order. Few results have been
obtained for the case of the first order, include for example [1, 2, 3, 5, 8, 10, 13, 15].
Many solvability conditions are given, such as the convexity condition (see [2, 5, 13,
15]), the super-quadratic condition (see [3, 6, 8]), the sub-quadratic condition (see
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[10]), the bounded nonlinearity condition (see [12]) and the sub-linear condition
(see [1]). In particular, under the assumptions that H satisfies

|H ′(t, x)| ≤ f(t), ∀x ∈ R2N , a.e. t ∈ [0, T ], (1.2)

H(t, x)→ +∞ as |x| → ∞, uniformly in t ∈ [0, T ], (1.3)

where f ∈ L1(0, T ; R+). It was shown in [12] that (1.1) has subharmonic solutions.
In 2007, Daouas and Timoumi [1] generalized these results with a condition of sub-
linear growth. Precisely, it was assumed that the nonlinearity satisfies the following
assumptions: There exist α ∈ [0, 1[, f ∈ L

2
1−α (0, T ; R+) and g ∈ L2(0, T ; R+) such

that
|H ′(t, x)| ≤ f(t)|x|α + g(t), ∀x ∈ R2N , a.e. t ∈ [0, T ]; (1.4)

lim
|x|→∞

1
|x|2α

∫ T

0

H(t, x) = +∞; (1.5)

There exist a subset C of [0, T ] with meas(C) > 0 and h ∈ L1(0, T ; R) such that

lim
|x|→∞

H(t, x) = +∞, a.e. t ∈ C,

H(t, x) ≥ h(t), ∀x ∈ R2N , a.e. t ∈ [0, T ].
(1.6)

Under these conditions, subharmonic solutions of (1.1) have been obtained.
In all the results discussed above [1, 12], the nonlinearity is required to grow at

infinity at most like |x|α. Consider the Hamiltonian

H(t, x) = γ(t)
|x|2

ln(2 + |x|2)
, t ∈ [0, T ], x ∈ R2N (1.7)

where

γ(t) =

{
sin(2πt/T ), t ∈ [0, T/2]
0, t ∈ [T/2, T ],

It is easy to verify that H does not satisfy (1.2), (1.3) nor (1.4), (1.5), (1.6).
In 2012, Timoumi [14] established the existence of subharmonic solutions for the
second-order Hamiltonian system

ü(t) + V ′(t, u(t)) = 0

under some conditions which cover a case analogous to (1.7). The goal of the
present article is to obtain the existence of periodic and subharmonic solutions for
first-order Hamiltonian system (1.1) under conditions covering the case of (1.7) and
such that the nonlinearity has a growth at infinity faster than |x|α, 0 ≤ α < 1. Our
main results are the following theorems.

Theorem 1.1. Let ω ∈ C(R+,R+) be a non-increasing function with the following
properties:

(a) lim infs→∞
ω(s)
ω(
√
s)
> 0,

(b) ω(s)→ 0, ω(s)s→∞ as s→∞.
Assume that H satisfies

(H1) There exist a positive constant a and a function g ∈ L2(0, T ; R) such that

|H ′(t, x)| ≤ aω(|x|)|x|+ g(t), ∀x ∈ R2N , a.e. t ∈ [0, T ];
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(H2)
1

[ω(|x|)|x|]2

∫ T

0

H(t, x)dt→ +∞ as |x| → ∞.

Then system (1.1) possesses at least one T -periodic solution.

Example 1.2. Consider the Hamiltonian

H(t, x) = (
1
2

+ cos(
2π
T
t))

|x|2

ln(2 + |x|2)
, t ∈ [0, T ], x ∈ R2N ,

and let ω : R+ → R+ defined by

ω(s) =
1

ln(2 + s2)
, s ≥ 0.

A simple computation shows that ω is a continuous non-increasing function satisfy-
ing the conditions (a), (b) and the Hamiltonian H satisfies assumptions (H1), (H2)
of Theorem 1.1 and does not satisfy the conditions (1.2), (1.3) nor (1.4), (1.5).

Theorem 1.3. Assume that H satisfies (H1), (H2) and
(H3) There exist a subset C of [0, T ] with meas(C) > 0 and a T -periodic function

h ∈ L1(0, T ; R) such that
(i) lim|x|→∞H(t, x) = +∞, a.e. t ∈ C,
(ii) H(t, x) ≥ h(t), for all x ∈ R2N , a.e. t ∈ [0, T ].

Then, for all integer k ≥ 1, Equation (1.1) possesses a kT -periodic solution xk such
that

lim
k→∞

‖xk‖∞ = +∞, (1.8)

where ‖x‖∞ = supt∈R |x(t)|.

Corollary 1.4. Assume that H satisfies (H1) and
(H4) There exist a subset C of [0, T ] with meas(C) > 0 and a T -periodic function

h ∈ L1(0, T ; R) such that
(i) lim|x|→∞

H(t,x)
[ω(|x|)|x|]2 = +∞, a.e. t ∈ C ,

(ii) H(t, x) ≥ h(t) for all x ∈ R2N , a.e. t ∈ [0, T ].
Then the conclusion of Theorem 1.3 holds.

Example 1.5. Let ω : R+ → R+ be defined as in example 1.2. It is easy to see
that the Hamiltonian H defined in (1.7) satisfies assumptions (H1), (H2) and (H3)
of Theorem 1.3 with C =]0, T/4[ and does not satisfy the conditions (1.2), (1.3)
nor (1.4), (1.5), (1.6).

Concerning the minimality of periods, we have the following result.

Theorem 1.6. Assume that H satisfies (H1) and

(H5) H′(t,x).x
[ω(|x|)|x|]2 → +∞ as |x| → ∞ uniformly in t ∈ [0, T ].

Then, for all integer k ≥ 1, (1.1) possesses a kT -periodic solution xk such that
limk→∞ ‖xk‖∞ = +∞.

Moreover, if the following assumption holds
(H1’) If u(t) is a periodic function with minimal period rT , r rational, and

H ′(t, u(t)) is a periodic function with minimal period rT , then r is nec-
essarily an integer,
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then, for any sufficiently large prime number k, kT is the minimal period of xk.
Here, x.y denotes the usual inner product of x, y ∈ R2N .

Example 1.7. The Hamiltonian

H(t, x) = (
3
2

+ cos(
2π
T
t))

|x|2

ln(2 + |x|2)
,

satisfies (H1), (H5) and (H1’) with ω(s) = 1
ln(2+s2) .

Remark 1.8. Let x(t) be a periodic solution of (1.1). By replacing t by −t in
(1.1), we obtain

Jẋ(−t) +H ′(−t, x(−t)) = 0.
So, it is clear that the function y(t) = x(−t) is a periodic solution of the system

Jẏ(t)−H ′(−t, y(t)) = 0.

Moreover, −H(−t, x) satisfies (H2), (H3), (H4), (H5) whenever H(t, x) satisfies
respectively the following assumptions:

(H2’)
1

[ω(|x|)|x|]2

∫ T

0

H(t, x)dt→ −∞ as |x| → ∞;

(H3’) There exist a subset C of [0, T ] with meas(C) > 0 and a T -periodic function
h ∈ L1(0, T ; R) such that
(i) lim|x|→∞H(t, x) = −∞, a.e. t ∈ C,
(ii) H(t, x) ≤ h(t) for all x ∈ R2N , a.e. t ∈ [0, T ];

(H4’) There exist a subset C of [0, T ] with meas(C) > 0 and a T -periodic function
h ∈ L1(0, T ; R) such that
(i) lim|x|→∞

H(t,x)
[ω(|x|)|x|]2 = −∞, a.e. t ∈ C,

(ii) H(t, x) ≤ h(t) for all x ∈ R2N , a.e. t ∈ [0, T ];
(H5’) H′(t,x).x

[ω(|x|)|x|]2 → −∞ as |x| → ∞, uniformly in t ∈ [0, T ].

Consequently, we can replace (H2)–(H5) in the above results by (H2’)–(H5’) and
obtain the same results.

2. Preliminaries

Let L2(S1,R2N ) denote the set of 2N -tuples of T -periodic functions which are
square integrable on S1 = R/TZ. If x ∈ L2(S1,R2N ), then x has a Fourier expan-
sion

x(t) '
∑
m∈Z

exp
(
2πmtJ/T

)
x̂m

where x̂m ∈ R2N and
∑
m∈Z |x̂m|2 <∞. Consider the Sobolev space

E = H
1/2
T = {x ∈ L2(S1,R2N ) : ‖x‖

H
1/2
T

<∞}

where
‖x‖

H
1/2
T

= [
∑
m∈Z

(1 + |m|)|x̂m|2]1/2.

It is well known that the space (E, ‖ · ‖
H

1/2
T

) is a Hilbert space. For x ∈ E, let

Q(x) =
1
2

∫ T

0

Jẋ(t) · x(t)dt.
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Note that Q is a quadratic form and by an easy calculation we obtain

Q(x) = −π
∑
m∈Z

m|x̂m|2, ∀x ∈ E. (2.1)

Therefore, Q is a continuous quadratic form on E.
Consider the subspaces of E:

E0 = R2N ,

E− = {x ∈ E : x(t) '
∑
m≥1

exp
(
2πmtJ/T

)
x̂m, a.e. t ∈ [0, T ]},

E+ = {x ∈ E : x(t) '
∑
m≤−1

exp
(
2πmtJ/T

)
x̂m, a.e. t ∈ [0, T ]},

here E0 denotes the space of constant functions. Then E = E0 ⊕ E+ ⊕ E−. In
fact it is not difficult to verify that E+, E−, E0 are respectively the subspaces of E
on which Q is positive definite, negative definite and null; and these subspaces are
orthogonal with respect to the bilinear form

B(x, y) =
1
2

∫ T

0

Jẋ(t) · y(t)dt, x, y ∈ E,

associated with Q. If x ∈ E+ and y ∈ E−, then B(x, y) = 0 and Q(x + y) =
Q(x) +Q(y). It is also easy to check that E+, E− and E0 are mutually orthogonal
in L2(S1,R2N ). It follows that if x = x+ + x− + x0 ∈ E, then the expression

‖x‖ = [Q(x+)−Q(x−) + |x0|2]1/2 (2.2)

is an equivalent norm in E. So in the following, we will use the norm defined in
(2.2) as the norm for E. The subspaces E+, E−, E0 are mutually orthogonal with
respect to the associated inner product.

To prove our main results, the following auxiliary result will be needed.

Proposition 2.1 ([8]). For all s ∈ [1,∞[, the space E is compactly embedded in
Ls(S1,R2N ). In particular there is a constant αs > 0 such that for all x ∈ E,

‖x‖Ls ≤ αs‖x‖.

The following result is a version of the saddle point theorem.

Theorem 2.2 ([10]). Let E = E1 ⊕ E2 be a real Hilbert space with E2 = (E1)⊥.
Suppose that f ∈ C1(E,R) satisfies

(a) f(u) = 1
2 (Lu, u) + d(u) and Lu = L1P1u + L2P2u, with Li : Ei → Ei

bounded and self-adjoint, i = 1, 2;
(b) d′(u) is compact;
(c) There exists β ∈ R such that f(u) ≤ β, for all u ∈ E1;
(d) There exists γ ∈ R such that f(u) ≥ γ for all u ∈ E2.

Furthermore, if f satisfies the Palais-Smale condition (PS)c for all c ≥ γ, then f
possesses a critical value c ∈ [γ, β].

Remark 2.3. In (c) we may replace E2 by ϕ1 + E2, ϕ1 ∈ E1. Likewise in (b) we
may have ϕ2 + E1, ϕ2 ∈ E2, in place of E1.
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3. Proofs of theorems

By making the change of variables t→ t/k, transforms system (1.1) into

Ju̇(t) + kH ′(kt, u(t)) = 0. (3.1)

Hence, to find kT -periodic solutions of (1.1), it suffices to find T -periodic solu-
tions of (Hk). Consider the family of functionals (Φk)k∈B defined on the space E
introduced above by

Φk(u) =
∫ T

0

[
1
2
Ju̇(t) · u(t) + kH(kt, u(t))]dt.

Since ω is bounded, we have by (H1)

|H ′(t, x)| ≤ a sup
s≥0

ω(s)|x|+ g(t). (3.2)

So, by [8, Proposition B.37], Φk ∈ C1(E,R) and critical points of Φk on E corre-
spond to the T -periodic solutions of (Hk), moreover one has

Φ′k(u)v =
∫ T

0

[Ju̇(t) + kH ′(kt, u(t))] · v(t)dt, ∀u, v ∈ E. (3.3)

The following lemma will be needed for the study of the geometry of the functionals
Φk.

Lemma 3.1. Assume that (H1), (H2) hold, then there exist a non-increasing func-
tion θ ∈ C(]0,∞[,R+) and a positive constant c0 satisfying the following conditions

(i) θ(s)→ 0, θ(s)s→ +∞ as s→∞,
(ii) ‖H ′(t, u)‖L2 ≤ c0[θ(‖u‖)‖u‖+ 1] for all u ∈ E,
(iii)

1
[θ(|u0|)|u0|]2

∫ T

0

H(t, u0)dt→ +∞ as |u0| → +∞.

The proof of the above lemma is similar to that of [14, Lemma 2.1], and it is
ommitted here. Now, we show that, for every positive integer k, one can find a
critical point uk of Φk. To this aim, we will apply the saddle point theorem to each
of the Φk’s. Let us fix k and consider the subspaces E1 = E−, E2 = E0 ⊕ E+ of
E. First, we prove the Palais-Smale.

Lemma 3.2. Assume that (H1) and (H2) hold. Then for every integer k ≥ 1, the
functional Φk satisfies the Palais-Smale condition.

Proof. Let (un) be a sequence of E such that (Φk(un)) is bounded and Φ′k(un)→ 0
as n→∞. Let us denote ũn = u+

n + u−n . We have

Φ′k(un)(u+
n − u−n ) = 2‖ũn‖2 + k

∫ T

0

H ′(kt, un) · (u+
n − u−n )dt. (3.4)

Since θ is non-increasing and ‖u‖ ≥ max(|u0|, ‖ũ‖), we obtain

θ(‖u‖) ≤ min(θ(|u0|), θ(‖ũ‖)). (3.5)
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So by Hölder’s inequality, Proposition 2.1, Lemma 3.1 (ii) and property (3.5), we
obtain a positive constant c2 such that∣∣k ∫ T

0

H ′(kt, un).(u+
n − u−n )dt

∣∣ ≤ k‖u+
n − u−n ‖L2 [

∫ T

0

|H ′(kt, un)|2dt]1/2

≤ c2‖ũn‖[θ(‖un‖)‖un‖+ 1]

≤ c2‖ũn‖
[
θ(‖ũn‖)‖ũn‖+ θ(|u0

n|)|u0
n|+ 1

]
.

(3.6)

Thus, for n large enough

‖ũn‖ ≥ Φ′k(un)(u+
n − u−n )

≥ 2‖ũn‖2 − c2
[
‖ũn‖[θ(‖ũn‖)‖ũn‖+ θ(|u0

n|)|u0
n|+ 1

]
and then

c2θ(|u0
n|)|u0

n| ≥ ‖ũn‖[2− c2θ(‖ũn‖)]− c2 − 1. (3.7)

Assume that (‖ũn‖) is unbounded, then by going to a subsequence, if necessary, we
can assume that ‖ũn‖ → ∞ as n→∞. Since θ(s)→ 0 as s→∞, we deduce from
(3.7) that there exists a positive constant c3 such that

‖ũn‖ ≤ c3[θ(|u0
n|)|u0

n|+ 1] (3.8)

for n large enough. Since ω is bounded, then |u0
n| → ∞ as n → ∞. Now, by the

mean value theorem, Hölder’s inequality and Lemma 3.1 (ii), we obtain

|
∫ T

0

(H(kt, un)−H(kt, u0
n))dt|

= |
∫ T

0

∫ 1

0

H ′(kt, u0
n + sũn).ũn ds dt|

≤ ‖ũn‖L2

∫ 1

0

(∫ T

0

|H ′(kt, u0
n + sũn)|2dt

)1/2

ds

≤ c0‖ũn‖L2

∫ 1

0

[θ(‖u0
n + sũn‖)‖u0

n + sũn‖+ 1]ds.

(3.9)

Since θ is non-increasing and ‖u0
n + sũn‖ ≥ |u0

n| for all s ∈ [0, 1], we deduce from
Proposition 2.1, (3.8) and (3.9) that there exists a constant c4 > 0 such that for n
large enough

k|
∫ T

0

(H(kt, un)−H(kt, u0
n))dt| ≤ c0‖ũn‖L2

[
θ(|u0

n|)|u0
n|+ θ(|u0

n|)‖ũn‖+ 1
]

≤ c4[θ(|u0
n|)|u0

n|]2,
(3.10)

so there exists a positive constant c5 such that for n large enough,

Φk(un) = ‖u+
n ‖2 − ‖u−n ‖2 + k

∫ T

0

(H(kt, un)−H(kt, u0
n))dt+ k

∫ T

0

H(kt, u0
n)dt

≥ −‖ũn‖2 − c4[θ(|u0
n|)|u0

n|]2 + k

∫ T

0

H(kt, u0
n)dt

≥ [θ(|u0
n|)|u0

n|]2
[
− c5 +

k

[θ(|u0
n|)|u0

n|]2

∫ T

0

H(kt, u0
n)dt

]
.
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By Lemma 3.1, this implies Φk(un)→ +∞ as n→∞ and contradicts the bound-
edness of (Φk(un)). So (‖ũn‖) is bounded.

Assume that (|u0
n|) is unbounded. Up to a subsequence, if necessary, we can

assume that |u0
n| → ∞, as n→∞. As above, we obtain for n large enough

|k
∫ T

0

(H(kt, un)−H(kt, u0
n))dt| ≤ c0‖ũn‖L2

[
θ(|u0

n|)|u0
n|+ θ(|u0

n|)‖ũn‖+ 1
]

≤ c6θ(|u0
n|)|u0

n|

where c6 is a positive constant. So there exists a constant c7 > 0 such that for n
large enough

Φk(un) ≥ −c7θ(|u0
n|)|u0

n|+ k

∫ T

0

H(kt, u0
n)dt

≥ [θ(|u0
n|)|u0

n|]2
(
− c7
θ(|u0

n|)|u0
n|

+
k

[θ(|u0
n|)|u0

n|]2

∫ T

0

H(kt, u0
n)dt

) (3.11)

so Φk(un)→ +∞ as n→∞, which also contradicts the boundedness of (Φk(un)).
Then (|u0

n|) is also bounded and therefore (‖un‖) is bounded. By a standard ar-
gument, we conclude that (un) possesses a convergent subsequence. The proof is
complete. �

Now, let u = u0 + u+ ∈ E2 = E0 ⊕ E+ with u0 6= 0, then as in (3.15) there
exists a positive constant c8 such that

k|
∫ T

0

(H(kt, u)−H(kt, u0))dt| ≤ c8‖u+‖
[
θ(|u0|)|u0|+ θ(|u0|)‖u+‖+ 1

]
. (3.12)

So

Φk(u) ≥ ‖u+‖2−c8‖u+‖
[
θ(|u0|)|u0|+θ(|u0|)‖u+‖+1

]
+k

∫ T

0

H(kt, u0)dt. (3.13)

Let 0 < ε < 1, Then we have

c8θ(|u0|)|u0|‖u+‖ ≤ 1
ε2
c28[θ(|u0|)|u0|]2 + ε2‖u+‖2. (3.14)

Combining (3.13) and (3.14), we obtain

Φk(u) ≥
[
1− ε2 − c8θ(|u0|)

]
‖u+‖2 − c8‖u+‖+ [θ(|u0|)|u0|]2

×
[
− c28
ε2

+
k

[θ(|u0|)|u0|]2

∫ t

0

H(kt, u0)dt
]

so

Φk(u)→ +∞ as ‖u‖ → ∞, u ∈ E2. (3.15)
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On the other hand, let ξ ∈ R2N , |ξ| > 0. By the mean value theorem, for u ∈ E1 =
E−, we have

|
∫ T

0

(H(kt, u)−H(kt, ξ))dt|

= |
∫ T

0

∫ 1

0

H ′(kt, ξ + s(u− ξ)).(u− ξ) ds dt|

≤ ‖u− ξ‖L2

∫ 1

0

[ ∫ T

0

|H ′(kt, ξ + s(u− ξ))|2dt
]1/2

ds

≤ ‖u− ξ‖L2

∫ 1

0

[ ∫ T

0

(
aω(|ξ + s(u− ξ)|)|ξ + s(u− ξ)|+ g(kt)

)2

dt
]1/2

ds

≤ ‖u− ξ‖L2

[
a

∫ 1

0

(∫ T

0

[ω(|ξ + s(u− ξ)|)|ξ + s(u− ξ)|]2dt
)1/2

ds+ ‖g‖L2

]
.

(3.16)
For s ∈ [0, 1],

A(s) = {t ∈ [0, 1] : |ξ + s(u(t)− ξ)| ≥ |ξ|}.
By a classical calculation as in the proof of Lemma 3.1, we obtain some positive
constants c9 and c(ξ) such that

k|
∫ T

0

(H(kt, u)−H(kt, ξ))dt| ≤ c9ω(|ξ|)‖u‖2 + c(ξ)(‖u‖+ 1). (3.17)

This implies

Φk(u) ≤ −‖u‖2 + c9ω(|ξ|)‖u‖2 + c(ξ)(‖u‖+ 1) + k

∫ T

0

H(t, ξ)dt. (3.18)

Since ω(s)→ 0 as s→∞, there exists |ξ| > 0 such that c9ω(|ξ|) ≤ 1
2 and then we

have for a constant c10 > 0,

Φk(u) ≤ −1
2
‖u‖2 + c10(‖u‖+ 1) + k

∫ T

0

H(t, ξ)dt;

therefore
Φk(u)→ −∞ as ‖u‖ → ∞, u ∈ E1. (3.19)

Property (3.2) and [7, Proposition B.37] imply that the derivative of the functional
gk(u) = k

∫ T
0
H(kt, u)dt is compact. Thus Lemma 3.2 and properties (3.15), (3.19)

imply that for all integer k ≥ 1, Φk satisfies all the assumptions of the saddle point
theorem and then by Remark 2.3, Φk possesses a critical point uk ∈ E satisfying

Ck = Φk(uk) ≥ inf
u∈E1

Φk(
√
kϕ+ u) (3.20)

where ϕ(t) = 1√
π

exp( 2π
T tJ)e1 and e1 design the first element in the standard basis

of R2N . Therefore, for all integer k ≥ 1, xk(t) = uk( tk ) is a kT -periodic solution
for (1.1). Theorem 1.1 and the first part of Theorem 1.3 are proved.

Proof of Theorem 1.3. It remains to prove (1.8). For this, we will prove that the
sequence (uk) obtained above satisfies

lim
k→∞

1
k

Φk(uk) = +∞. (3.21)
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This will be done by using estimates on the levels Ck of Φk. For this aim the
following two lemmas will be needed.

Lemma 3.3 ([11]). If (H3) holds, then for every δ > 0, there exists a measurable
subset Cδ of C with meas(C − Cδ) < δ such that

H(t, x)→ +∞ as |x| → ∞, uniformly in t ∈ Cδ.

Lemma 3.4. Assume that H satisfies (H3), then

lim
k→∞

inf
u∈E2

Φk(
√
kϕ+ u)
k

= +∞. (3.22)

Proof. Arguing by contradiction, assume that there exist sequences kn → ∞,
(un) ⊂ E2 and a constant c11 such that

Φkn(
√
knϕ+ un) ≤ knc11, ∀n ∈ N. (3.23)

Taking un =
√
kn(u+

n + u0
n), we obtain by an easy calculation

Φkn(
√
knϕ+ un) = kn[‖u+

n ‖2 − 1 +
∫ T

0

H(knt,
√
kn(ϕ+ u+

n + u0
n))dt]. (3.24)

On the other hand, by (H3) (ii), we have∫ T

0

H(knt,
√
kn(ϕ+ u+

n + u0
n))dt ≥

∫ T

0

h(knt)dt =
∫ T

0

h(t)dt (3.25)

so there exists a positive constant c12 such that

Φkn(
√
knϕ+ un) ≥ kn(‖u+

n ‖2 − c12). (3.26)

Inequalities (3.23) and (3.26) imply that (u+
n ) is a bounded sequence in E. Up to

a subsequence, if necessary, we can find u+ ∈ E+ such that

u+
n (t)→ u+(t) as n→∞, a.e. t ∈ [0, T ]. (3.27)

We claim that (u0
n) is also bounded in E. Indeed, if we assume otherwise, then by

using a subsequence, if necessary, (3.27) implies that

|
√
kn(ϕ(t) + u+

n (t) + u0
n)| → ∞ as n→∞, a.e. t ∈ [0, T ]. (3.28)

Let δ = 1
2 meas(C) and Cδ be as defined in Lemma 3.3. For all positive integer n,

let us define the subset Cnδ of [0, T ] by

Cnδ =
1
kn
∪kn−1
p=0 (Cδ + pT ).

It is easy to verify that meas(Cnδ ) = meas(Cδ) and

H(knt, x)→ +∞ as |x| → ∞, uniformly in t ∈ [0, T ].] (3.29)

By (H3) (ii), we have∫ T

0

H(knt,
√
kn(ϕ+ u+

n + u0
n))dt

≥
∫
Cnδ

H(knt,
√
kn(ϕ+ u+

n + u0
n))dt+

∫
[0,T ]−Cnδ

h(knt)dt

≥
∫
Cnδ

H(knt,
√
kn(ϕ+ u+

n + u0
n))dt−

∫ T

o

|h(t)|dt.
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Therefore, by (3.28) and (3.29), we obtain∫ T

0

H(knt,
√
kn(ϕ+ u+

n + u0
n))dt→ +∞ as n→∞. (3.30)

We deduce from (3.24) and (3.30) that

Φkn(
√
knϕ+ un)
kn

→ +∞ as n→∞ (3.31)

which contradicts (3.23) and proves our claim. Hence, by taking a subsequence, if
necessary, we can assume that there exists u0 ∈ E0 such that

ϕ(t) + u+
n (t) + u0

n → u(t) = ϕ(t) + u+(t) + u0 as n→∞, a.e. t ∈ [0, T ]. (3.32)

By Fourier analysis, we have u(t) 6= 0 for almost every t ∈ [0, T ]. Therefore,

|
√
kn(ϕ(t) + u+

n (t) + u0
n)| → ∞ as n→∞, a.e. t ∈ [0, T ] (3.33)

and by using (3.24), (3.29) and (3.33), we obtain (3.31) as above, which contradicts
(3.23). This concludes the proof of Lemma 3.4. �

By (3.20) and Lemma 3.4, we have

Ck
k
→∞ as k →∞. (3.34)

We claim that ‖uk‖∞ → ∞ as k → ∞. Indeed, if we suppose otherwise, (uk)
possesses a bounded subsequence (ukp). Since

Φkp(ukp)
kp

= −1
2

∫ T

0

H ′(kpt, ukp) · ukpdt+
∫ T

0

H(kpt, ukp)dt (3.35)

the sequence (Ckp/kp) is bounded, which contradicts (3.34). Consequently, we
have ‖uk‖∞ → ∞ as k → ∞. For k ≥ 1, define xk(t) = uk(t/k). Then xk is a
kT -periodic solution of the system (1.1) satisfying:

‖xk‖∞ = ‖uk‖∞ →∞ as k →∞ (3.36)

which completes the proof of Theorem 1.3. �

For the proof of Theorem 1.6, we need the following lemma.

Lemma 3.5. Let (H1) and (H5) hold. Then for all ρ > 0, there exists a constant
cρ ≥ 0 such that for all x ∈ R2N , |x| > 1 and for a.e. t ∈ [0, T ],

H(t, x) ≥ H(t, 0) +
ρ

2
[ω(|x|)|x|]2(1− 1

|x|2
)− cρ ln(|x|)− 1

2
a sup
r≥0

ω(r)− g(t). (3.37)

The proof of the above lemma is similar to that of [14, Lemma 2.5], it is omitted
here.

Proof of Theorem 1.3. Since a0 = lim infs→∞
ω(s)

ω(s1/2)
> 0, then for s large enough,

we have
1

ω(s)
≤ 1
a0ω(

√
s)
. (3.38)

this implies that for |x| large enough

ln(|x|)
[ω(|x|)|x|]2

≤ ln(|x|)
|x|

1
a2
0[ω(|x|1/2)|x|1/2]2

→ 0 as |x| → ∞. (3.39)
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Combining (3.36), (3.39) we obtain (H4). By applying Corollary 1.4, we obtain a
sequence (xk) of kT -periodic solutions of (1.1) such that limk→∞ ‖xk‖∞ = +∞.

It remains to prove that, for every sufficiently large prime integer k, xk has kT
as minimal period. Let Ψk be the functional defined on the space H1/2

kT by

Ψk(x) =
1
2

∫ kT

0

Jẋ(t) · x(t)dt+
∫ kT

o

H(t, x(t))dt.

It is easy to see that u ∈ E = H
1/2
T is a critical point of Φk if and only if x(t) = u( tk )

belongs to H1/2
kT and is a critical point of Ψk. Let xk ∈ H1/2

kT be the critical point
of Ψk associated to the critical point uk of Φk obtained above, the property (3.34)
is written as

lim
k→∞

1
k

Ψk(xk) = +∞. (3.40)

On the other hand, let us denote by ST the set of T -periodic solutions of (1.1).
We claim that ST is bounded in H1/2

T . Indeed, assume by contradiction that there
exists a sequence (xn) ⊂ ST such that ‖xn‖ → ∞ as n→∞. Let xn = x+

n +x−n +x0
n.

Multiplying both sides of the identity

Jẋn +H ′(t, xn(t)) = 0 (3.41)

by x+
n and integrating, we obtain

2‖x+
n ‖2 +

∫ T

0

H ′(t, xn(t)) · x+
n dt = 0. (3.42)

Using Lemma 3.1 (ii), we can find a positive constant c13 such that

‖x+
n ‖ ≤ c13(θ(‖xn‖)‖xn‖+ 1). (3.43)

By Lemma 3.1 (i) and (3.43), we obtain

‖x+
n ‖

‖xn‖
→ 0 as n→∞. (3.44)

Similarly, we have
‖x−n ‖
‖xn‖

→ 0 as n→∞. (3.45)

Taking yn = xn
‖xn‖ and using (3.44) and (3.45), we may assume without loss of

generality that yn → y0 ∈ E0, with |y0| = 1. Since the embedding E → L2,
u 7−→ u is compact, we can assume, by taking a subsequence if necessary that

yn(t)→ y0 as n→∞, a.e. t ∈ [0, T ], (3.46)

and consequently

|xn(t)| → +∞ as n→∞, a.e. t ∈ [0, T ]. (3.47)

Fatou’s lemma, property (a) of ω and (3.47) imply∫ T

0

[ω(|xn(t)|)|xn(t)|]2dt→∞ as n→∞. (3.48)

On the other hand, by (H5), for all ρ > 0, there exists a constant cρ ≥ 0 such that

H ′(t, x).x ≥ ρ[ω(|x|)|x|]2 − cρ (3.49)
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so we obtain

ρ

∫ T

0

[ω(|xn(t)|)|xn(t)|]2dt ≤
∫ T

0

H ′(t, xn(t)) · xn(t)dt+ cρT. (3.50)

Furthermore, by [4, Proposition 3.2], we have∫ T

0

H ′(t, xn(t)) · xn(t)dt ≤ T

2π

∫ T

0

|H ′(t, xn(t))|2dt (3.51)

Combining (3.50) with (3.51), and using assumption (H1), we obtain

ρ

∫ T

0

[ω(|xn(t)|)|xn(t)|]2dt ≤ T

2π

∫ T

0

[aω(|xn(t)|)|xn(t)|+ g(t)]2dt+ cρT

≤ T

π
(a2

∫ T

0

[ω(|xn(t)|)|xn(t)|]2dt+ ‖g‖2L2) + cρT.

(3.52)
Since ρ > 0 is arbitrary chosen, (3.52) implies that (

∫ T
0

[ω(|xn(t)|)|xn(t)|]2dt) is
bounded, which contradicts (3.48). Hence ST is bounded and as a consequence
Ψ1(ST ) is bounded. Since for any x ∈ ST one has Ψk(x) = kΨ1(x), then there
exists a positive constant c14 such that

|Ψk(x)|
k

≤ c14 ∀x ∈ ST , ∀k ≥ 1 . (3.53)

Consequently, by (3.40) and (3.53), we deduce that, for k sufficiently large, xk /∈ ST .
By assumption (H1’), if k is chosen to be prime, the minimal period of xk has to
be kT . This completes the proof of Theorem 1.6. �
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