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BLOW-UP SOLUTIONS FOR A NONLINEAR WAVE EQUATION
WITH POROUS ACOUSTIC BOUNDARY CONDITIONS

SHUN-TANG WU

Abstract. We study a nonlinear wave equation with porous acoustic bound-

ary conditions in a bounded domain. We prove a finite time blow-up for certain
solutions with positive initial energy.

1. Introduction

We consider the following system of nonlinear wave equations with porous acous-
tic boundary conditions:

utt −∆u+ α(x)u+ φ(ut) = j1(u) in Ω× [0, T ), (1.1)

u(x, t) = 0 on Γ0 × (0, T ), (1.2)

ut(x, t) + f(x)zt + g(x)z = 0 on Γ1 × (0, T ), (1.3)
∂u

∂ν
− h(x)zt + ρ(ut) = j2(u) on Γ1 × (0, T ), (1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.5)

z(x, 0) = z0(x), x ∈ Γ1, (1.6)

where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary Γ = Γ0 ∪Γ1.
Here, Γ0 and Γ1 are closed and disjoint. Let ν be the unit normal vector pointing
to the exterior of Ω and α : Ω → R, f, g, h : Γ1 → R and j1, j2 : R → R are given
functions.

The system (1.1)–(1.6) is a model of nonlinear wave equations with acoustic
boundary conditions which are described by (1.3) and (1.4). These boundary condi-
tions were introduced by Morse and Ingard [12] and developed by Beale and Rosen-
crans [2, 3, 4]. In recent years, questions related to wave equations with acoustic
boundary conditions have been treated by many authors [5, 10, 11, 13, 14, 15, 16].
For example, Frota and Larkin [11] studied (1.1)–(1.6) with φ = ρ = j1 = j2 = 0
and they established the exponential decay result for suitably defined solutions. Re-
cently, as j1 = j2 = 0, Graber [6, 7] showed that the systems (1.1)-(1.6) generates a
well-posed dynamical system by using semigroup theory. When one considers the
presence of the double interaction between source and damping terms, both in the
interior of Ω and on the boundary Γ1, the analysis becomes more difficult. Very
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recently, Graber and Said-Houari [8] studied this challenging problem and obtained
several results in local existence, global existence, the decay rate and blow-up re-
sults. Particularly, in the absence of boundary source, that is j2 = 0, for certain
initial data, the authors proved that the solution is unbounded and grows as an
exponential function. However, the possibility of the solution that blows up in fi-
nite time is not addressed in that paper. Therefore, the intention of this paper is
to investigate the blow-up phenomena of solutions for system (1.1)-(1.6) without
imposing the boundary source. In this way, we can extend this unbounded result
of [8] to a blow-up result with positive initial energy.

The content of this paper is organized as follows. In section 2, we state the local
existence result and the energy identity which is crucial in establishing the blow-up
result in finite time. In section 3, we study the blow-up problem for the initial
energy being positive.

2. Preliminaries

In this section, we present some material which will be used throughout this
work. First, we introduce the set

H1
Γ0

= {u ∈ H1(Ω) : u|Γ0 = 0},

and endow H1
Γ0

with the Hilbert structure induced by H1(Ω), we have that H1
Γ0

is
a Hilbert space. For simplicity, we denote ‖ · ‖p = ‖ · ‖Lp(Ω), ‖ · ‖p,Γ = ‖ · ‖Lp(Γ),
1 ≤ p ≤ ∞, ‖u‖2α = ‖∇u‖22 +

∫
Ω
α(x)u2(x)dx and ‖u‖2gh =

∫
Γ1
g(x)h(x)u2(x)dΓ.

The following assumptions for problem (1.1)-(1.6) were used in [8].
(A1) The functions j1(s) = |s|p−1s and j2(s) = 0, where p ≥ 1 is such that

H1
Γ0

(Ω) ↪→ Lp+1(Ω).
(A2) φ, ρ : R→ R are continuous and increasing functions with φ(0) = ρ(0) = 0.

In addition, there exist positive constants ai and bi i = r, q such that

ar|s|r+1 ≤ φ(s)s ≤ br|s|r+1, r ≥ 1, (2.1)

aq|s|q+1 ≤ ρ(s)s ≤ bq|s|q+1, q ≥ 1. (2.2)

(A3) The functions α, f, g, h are essentially bounded such that f > 0, g > 0,
h > 0 and α ≥ 0. (If α = 0, Γ0 is assumed to have a non-empty interior
such that the Poincarè inequality is applicable.)

Next, the energy function associated with problem (1.1)–(1.6), with j2 = 0, is
defined as

E(t) =
1
2
‖ut‖22 +

1
2

(
‖u‖2α + ‖z‖2gh

)
− 1
p+ 1

‖u‖p+1
p+1. (2.3)

Then, we are ready to state the following local existence result and energy identity.

Lemma 2.1 ([8]). Suppose that (A1)–(A3) hold, and that u0 ∈ H1
Γ0

(Ω), u1 ∈ L2(Ω)
and z0 ∈ L2(Γ1). Then the system (1.1)–(1.6) with j2 = 0 admits a unique solution
(u, z) such that, for T > 0,

u ∈ C([0, T );H1
Γ0

(Ω)) ∩ C1([0, T );L2(Ω)), z ∈ C([0, T );L2(Γ1)).

Moreover, the energy satisfies

E(0) = E(T ) +
∫ T

0

∫
Ω

φ(ut)utdxdt+
∫ T

0

∫
Γ1

(ρ(ut)ut + fhz2
t )dΓdt. (2.4)
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Note that (2.4) shows that the energy is a non-increasing function along trajec-
tories.

3. Blow-up of Solutions

In this section, we state and prove our main result. First, we define a functional
G which helps in establishing desired results. Let

G(x) =
1
2
x2 − Bp+1

1

p+ 1
xp+1, x > 0,

where B−1
1 = inf{‖∇u‖2 : u ∈ H1

Γ0
(Ω), ‖u‖p+1 = 1}. Then, G has a maximum at

λ1 = B
− p+1
p−1

1 with the maximum value

E1 ≡ G(λ1) = (
1
2
− 1
p+ 1

)λ2
1.

The next Lemma will play an important role in proving our result.

Lemma 3.1 ([8]). Suppose that (A1)–(A3) hold, and that u0 ∈ H1
Γ0

(Ω), u1 ∈ L2(Ω)
and z0 ∈ L2(Γ1). Let (u, z) be a solution of (1.1)–(1.6) with j2 = 0. Assume that
E(0) < E1 and ‖∇u0‖2 > λ1. Then there exists λ2 > λ1 such that, for all t ≥ 0,

(‖u‖2α + ‖z‖2gh)1/2 ≥ λ2, (3.1)

‖u‖p+1 ≥ B1λ2. (3.2)

Now, we are ready to state and prove our main result. Our proof technique
follows the arguments of [8] and some estimates obtained in [9].

Theorem 3.2. Suppose that (A1)–(A3) hold, and that u0 ∈ H1
Γ0

(Ω), u1 ∈ L2(Ω)
z0 ∈ L2(Γ1). Assume further that p > max(r, 2q − 1). Then any solution of (1.1)-
(1.6) with j2 = 0and satisfying E(0) < E1 and ‖∇u0‖2 > λ1 blows up at a finite
time.

Proof. We suppose that the solution exists for all time and we reach to a contra-
diction. To achieve this, we set

H(t) = E1 − E(t), t ≥ 0. (3.3)

Then, by (2.4), we see that H ′(t) ≥ 0. From (3.1), the definition of E(t) and
E1 = ( 1

2 −
1
p+1 )λ2

1, we deduce that, for all t ≥ 0,

0 < H(0) ≤ H(t) ≤ E1 −
1
2
λ2

2 +
1

p+ 1
‖u‖p+1

p+1 ≤
1

p+ 1
‖u‖p+1

p+1. (3.4)

Let

A(t) = H1−σ(t) + ε

∫
Ω

uutdx−
ε

2

∫
Γ1

fhz2dΓ− ε
∫

Γ1

huzdΓ, (3.5)

where ε is a positive constant to be specified later and

0 < σ < min{ p− r
r(p+ 1)

,
p− 1

2(p+ 1)
}. (3.6)
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Then
A′(t) = (1− σ)H(t)−σH ′(t) + ε‖ut‖22 − ε‖u‖2α + ε‖u‖p+1

p+1

+ ε

∫
Γ1

hg|z(x, t)|2dΓ− ε
∫

Ω

uφ(ut)dx

− ε
∫

Γ1

uρ(ut)dΓ + 2εH(t)− 2εH(t)

= (1− σ)H(t)−σH ′(t) + 2ε‖ut‖22 +
ε(p− 1)
p+ 1

‖u‖p+1
p+1 + 2ε‖z‖2gh

− ε
∫

Ω

uφ(ut)dx− ε
∫

Γ1

uρ(ut)dΓ− 2εE1 + 2εH(t).

(3.7)

We observe from (3.2) that

E1 = E1(Bp+1
1 λp+1

2 )(Bp+1
1 λp+1

2 )−1 ≤ E1‖u‖p+1
p+1(Bp+1

1 λp+1
2 )−1. (3.8)

Inserting (3.8) into (3.7), we have

A′(t) ≥ (1− σ)H(t)−σH ′(t) + 2ε‖ut‖22 + εc1‖u‖p+1
p+1 + 2ε‖z‖2gh

− ε
∫

Ω

uφ(ut)dx− ε
∫

Γ1

uρ(ut)dΓ + 2εH(t),
(3.9)

where

c1 =
p− 1
p+ 1

− 2E1(Bp+1
1 λp+1

2 )−1 >
p− 1
p+ 1

− 2E1(Bp+1
1 λp+1

1 )−1 = 0.

By (2.1), Hölder inequality and Young’s inequality, we see that, for δ1 > 0,∣∣ ∫
Ω

uφ(ut)dx
∣∣ ≤ brδ

r+1
1

r + 1
‖u‖r+1

r+1 +
brrδ

− r+1
r

1

r + 1
‖ut‖r+1

r+1, (3.10)

A substitution of (3.10) into (3.9) leads to

A′(t) ≥ (1− σ)H(t)−σH ′(t) + 2ε‖ut‖22 + εc1‖u‖p+1
p+1

+ 2ε‖z‖2gh − ε
∫

Γ1

uρ(ut)dΓ

− ε
(brδr+1

1

r + 1
‖u‖r+1

r+1 +
brrδ

− r+1
r

1

r + 1
‖ut‖r+1

r+1

)
+ 2εH(t),

(3.11)

At this point, for a large positive constant M1 to be chosen later, picking δ1 such
that δ−

r+1
r

1 = M1H(t)−σ and using the fact

H ′(t) ≥ ar‖ut‖r+1
r+1 + aq‖ut‖q+1

q+1,Γ +
∫

Γ1

fhz2
t dΓ (3.12)

by (2.4) and (A1) we have

A′(t) ≥ (1− σ − εrbrM1

ar(r + 1)
)H(t)−σH ′(t) + 2ε‖ut‖22 + εc1‖u‖p+1

p+1

+ 2ε‖z‖2gh − ε
∫

Γ1

uρ(ut)dΓ− εbrM
−r
1

r + 1
H(t)σr‖u‖r+1

r+1 + 2εH(t).
(3.13)

In addition, using (3.4) and the inequality

χγ ≤ χ+ 1 ≤ (1 +
1
ω

)(χ+ ω), ∀χ ≥ 0, 0 < γ ≤ 1, ω > 0,
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with χ = 1
p+1‖u‖

p+1
p+1 and ω = H(0) and noting that p > r, and 0 < σr + r+1

p+1 ≤ 1
by (3.6), we have

H(t)σr‖u‖r+1
r+1 ≤ c2H(t)σr

(
‖u‖p+1

p+1

) r+1
p+1

≤ c3
( 1
p+ 1

‖u‖p+1
p+1

)σr+ r+1
p+1

≤ c3d
( 1
p+ 1

‖u‖p+1
p+1 +H(t)

)
,

(3.14)

where c2 = vol(Ω)
p−r
p+1 and c3 = (p+ 1)

r+1
p+1 · c2 and d = 1 + 1

H(0) . Combining (3.14)
with (3.13), we obtain

A′(t) ≥ (1− σ − εrbrM1

ar(r + 1)
)H(t)−σH ′(t) + 2ε‖ut‖22 + ε(c1 − c4)‖u‖p+1

p+1

+ 2ε‖z‖2gh + ε(2− (p+ 1)c4)H(t)− ε
∫

Γ1

uρ(ut)dΓ.
(3.15)

with c4 = brc3dM
−r
1

(p+1)(r+1) . Next, we will follow the arguments as in [9] to estimate
the last term on the right hand side of (3.15). For this purpose, let us recall the
following trace and interpolation theorems [1, 17]

‖u‖q+1,Γ ≤ C‖u‖W s,q+1 , (3.16)

which holds for some positive constant C, q ≥ 0, 0 < s < 1 and s > 1
q+1 .

W 1−θ,τ (Ω) = [H1(Ω), Lp+1(Ω)]θ, (3.17)

where 1
τ = 1−θ

2 + θ
p+1 , θ ∈ [0, 1] and [·, ·]θ denotes the interpolation bracket. We

note from q ≥ 1 and p > 2q−1 that 1
q+1 ≤

p−1
2(p−q) < 1. Then, we choose β satisfying

p− 1
2(p− q)

≤ β < 1 (3.18)

and select θ such that

1− θ =
1

β(q + 1)
, τ =

2(p+ 1)
(1− θ)(p+ 1) + 2θ

,

which imply that 1 − θ > 1
q+1 and τ ≥ q + 1. From (3.16), (3.17) and Young’s

inequality, we have

‖u‖q+1,Γ ≤ C‖u‖W 1−θ,q+1(Ω) ≤ C‖u‖W 1−θ,τ (Ω) ≤ C‖u‖1−θα ‖u‖θp+1

= C‖u‖
1

β(q+1)
α ‖u‖

1− 1
β(q+1)

p+1

≤ C
(
‖u‖

2β
q+1
α + ‖u‖

2β2(q+1)−2β
(2β2−1)(q+1)
p+1

)
,

where C is a generic positive constant. Further, as in [9], there exists β satisfying
(3.18) such that 2β2(q+1)−2β

(2β2−1)(q+1) = (p+1)β
q+1 . Thus,

‖u‖q+1,Γ ≤ C
(
‖u‖

2β
q+1
α + ‖u‖

(p+1)β
q+1

p+1

)
. (3.19)
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Besides, we observe from the definition of E(t) by (2.3) and E(0) < E1 that
1
2‖u‖

2
α ≤ E1 + 1

p+1‖u‖
p+1
p+1. Hence, by (2.2) and (3.19), we have

|
∫

Γ1

uρ(ut)dΓ| ≤ bq‖u‖q+1,Γ‖ut‖qq+1,Γ ≤ c5(‖u‖
2β
q+1
α + ‖u‖

(p+1)β
q+1

p+1 )‖ut‖qq+1,Γ

≤ c6(E1 +
1

p+ 1
‖u‖p+1

p+1)
β
q+1 ‖ut‖qq+1,Γ,

with c5 = bqC and c6 = c5(2
β
q+1 + (p + 1)

β
q+1 ). Thus, using Young’s inequality,

further requiring σ such that 0 < σ < 1−β
q+1 , and exploiting (3.4) and (3.12), we

obtain, for δ > 0,

|
∫

Γ1

uρ(ut)dΓ|

≤ c6
(
E1 +

1
p+ 1

‖u‖p+1
p+1

) β−1
q+1
(
E1 +

1
p+ 1

‖u‖p+1
p+1

) 1
q+1 ‖ut‖qq+1,Γ

≤ c6
(
E1 +

1
p+ 1

‖u‖p+1
p+1

) β−1
q+1
[
δ
(
E1 +

1
p+ 1

‖u‖p+1
p+1

)
+ cδ‖ut‖q+1

q+1,Γ

]
≤ c6δH(0)

β−1
q+1

(
E1 +

1
p+ 1

‖u‖p+1
p+1

)
+ cδc6a

−1
q H(0)

β−1
q+1 +σH(t)−σH ′(t).

Thus, (3.15) becomes

A′(t) ≥ (1− σ − εc7)H(t)−σH ′(t) + 2ε‖ut‖22

+ ε
(
c1 − c4 −

c6δH(0)
β−1
q+1

p+ 1

)
‖u‖p+1

p+1

+ 2ε‖z‖2gh + ε(2− (p+ 1)c4)H(t)− c6δεH(0)
β−1
q+1E1,

where c7 = rbrM1
ar(r+1) + cδc6a

−1
q H(0)

β−1
q+1 +σ. Employing the estimate (3.8) again, we

arrive at

A′(t) ≥ (1− σ − εc7)H(t)−σH ′(t) + 2ε‖ut‖22 + ε(c1 − c4 − δc8)‖u‖p+1
p+1

+ 2ε‖z‖2gh + ε(2− (p+ 1)c4)H(t),

where

c8 = c6H(0)
β−1
q+1 (

1
p+ 1

+ E1(Bp+1
1 λp+1

2 )−1).

Now, we choose M1 large enough such that 2 − (p + 1)c4 > 0 and c1 − c4 > c1
2 .

Once M1 is fixed, we select δ small enough such that c1
2 − δc8 > 0. Then, pick ε

small enough such that 1 − σ − εc7 ≥ 0 and A(0) > 0. Thus, there exists K > 0
such that

A′(t) ≥ εK(‖ut‖22 + ‖u‖p+1
p+1 +H(t) + ‖z‖2gh),

A(t) ≥ A(0) > 0, for t ≥ 0.
(3.20)

On the other hand, from the result of Graber et al [8, Lemma 6.5], we have

A(t)
1

1−σ ≤ c9
(
‖ut‖22 + ‖u‖p+1

p+1 +H(t) + ‖z‖2gh
)
, t ≥ 0. (3.21)

Combining (3.21) with (3.20), we obtain

A′(t) ≥ c10A(t)
1

1−σ , t ≥ 0, (3.22)
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where ci, i = 9, 10, are positive constants. Thus, inequality (3.22) leads to a blow-up
result in a finite time T with

0 < T ≤ 1− σ
c10σA(0)

σ
1−σ

.

The proof is complete. �
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