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GLOBAL SOLUTIONS OF A MODEL OF PHASE TRANSITIONS
FOR DISSIPATIVE THERMOVISCOELASTIC MATERIALS

WELINGTON VIEIRA ASSUNÇÃO, JOSÉ LUIZ BOLDRINI

Abstract. We analyze a highly nonlinear system of partial differential equa-
tions that may be seen as a model for solidification or melting of certain vis-

coelastic materials subject to thermal effects; under the assumption that solid

parts of the material may support damped vibrations. Phase change is con-
trolled by a phase field equation with a potential including barriers at the pure

solid and pure liquid states.

The present system is closely related to a model analyzed by Rocca and
Rossi [23]. They proved the existence of local in time solutions (global in the

one dimensional case) assuming values just in the mushy zone, and thus such

local solutions do not allow regions of pure solid or pure liquid states, except
in the special one-dimensional case where pure liquid state is also allowed.

By including a suitable dissipation in the previous model and assuming

constant latent heat, in this work we are able to prove global in time existence
even for solutions that may touch the potential barriers; that is, they allow

regions with pure solid or pure liquid.

1. Introduction

In this article we consider a class of systems including as a particular case the
following nonlinear system of partial differential equations:

θt + lχt −∆θ = g in Ω× (0, T ), (1.1)

χt −∆χ+W ′(χ) 3 h(θ − θc) +
|η(u)|2

2
in Ω× (0, T ), (1.2)

utt − div
(
(1− χ)η(u) + χη(ut)

)
+ ν(−∆)2ut = f in Ω× (0, T ), (1.3)

subjected to the boundary conditions

u = ∆u = 0 on ∂Ω× (0, T ), (1.4)

∂nχ = 0 on ∂Ω× (0, T ), (1.5)

∂nθ = 0 on ∂Ω× (0, T ), (1.6)

and initial conditions

θ(0) = θ0 in Ω, (1.7)
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χ(0) = χ0 in Ω, (1.8)

u(0) = u0, ut(0) = v0 in Ω, (1.9)

which is a variant of the system treated in the work by Rocca and Rossi [21]; the
differences are that in (1.1) we have the simpler term lχt instead of θχt as in Rocca
and Rossi [21] and in (1.3) we have the extra term ν(−∆)2ut.

We remark that the previous system may be taught as a model for phase tran-
sition processes occurring in a viscoelastic material occupying a bounded domain
Ω ⊆ Rn, n = 1, 2, 3, subject to thermal effects during a time interval [0, T ]. In the
last section, we will consider modeling aspects of the problem and, following the
arguments in [21] and [13], show how these equations are be obtained.

The state variables are the absolute temperature θ, (θc being a given constant
equilibrium temperature), an order parameter χ, which is the phase field that in the
present model stands for the local proportion of the liquid phase in the material,
and u, which is the vector of the small displacements.

In the previous system, equation (1.1) is the internal energy balance equation; g
is a known heat source and l > 0 is the latent heat, which is assumed to be a given
positive constant.

Equation (1.3), ruling the evolution of the displacement u, is the balance equation
for macroscopic movements (also known as stress-strain relation). The expression
η(u) denotes the linearized symmetric strain tensor, which in the (spatially) three-
dimensional case is given by ηij(u) := (ui,xj + uj,xi)/2, i, j = 1, 2, 3 (with the
commas we denote space derivatives); the symbol div stands both for the scalar
and for the vectorial divergence operator. Further, the term (−∆)2 denotes the
biharmonic operator, and f on the right-hand side may be interpreted as an exterior
volume force applied to the body.

Observe that in the pure solid phase, corresponding to χ = 0, equations (1.3)
simplify to a system for elasticity with dissipation; in the pure liquid phase, corre-
sponding to χ = 1,equations (1.3) simplifies to a parabolic system with dissipation
for the velocity ut; in this last case, there is no incompressibility requirement and
thus no pressure term. We remark that we are presently also analyzing models that
require such incompressibility conditions.

Following Frémond’s perspective, see [13], (1.1) and (1.3) are coupled with equa-
tion (1.2) for the microscopic movements for the phase variable χ. In (1.2), |η(u)|2
is a short-hand for the colon product η(u) : η(u); h(·) is a given suitable function,
and we assume that the potential W is given by the sum of a smooth nonconvex
function γ̂ and of a convex function β̂, with domain contained in [0, 1] and dif-
ferentiable in (0, 1). Typical examples of functionals which we can include in our
analysis are the logarithmic potential

W (r) := r ln(r) + (1− r) ln(1− r)− c1r2 − c2r − c3 ∀r ∈ (0, 1), (1.10)

where c1 and c2 are positive constants, as well as the double obstacle potential,
given by the sum of the indicator function I[0,1] with a nonconvex γ̂. Note that in
this way the values outside [0, 1] (which indeed are not physically meaningful for
the present order parameter χ, which is the liquid phase proportion) are excluded.
The real valued function h(·) is a given; in several models h(z) ≡ z.

Before describing our results, let us briefly recall and comment some earlier works
closely related to ours.
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Material models taking into account microscopic movements as proposed by
Frémond have been studied in several articles; for instance, for materials with
viscoelastic properties, but not subject to phase change, we can mention the articles
by Bonetti and Bonfanti [3, 4], which considered a linear viscoelasticity equation
for the displacement u and a internal energy balance equation for the temperature
θ. By using similar modeling ideas, the articles [5, 6, 7, 16] consider models for
damaging phenomena by using a variable similar to as our χ and related to local
proportion of damaged material; in Kuttler [16], a evolution model of quasiestatic
reversible damage in visco-plastic materials is considered, while in Bonetti and
Bonfanti [5] and Bonetti and Schimperna [6, 7] irreversible damage process were
considered.

Models including phase change and also following Frémond point of view were
analyzed in an article by Bonfanti el al [8] and in Stefanelli [25] (see also the
references therein). We also mention the article by Rocca-Rossi [22], where they
analyzed the one-dimensional case of a model including the full equation for the
internal energy, that is, θt+θχt−∆θ = |χt|2+χ|η(ut)|2+g, and the other equations
as in the present article, but with the parameter ν = 0.

We stress that in the more nonlinear setting of [21], Rocca and Rossi were able
to prove local in time existence of solutions (global in time for dimension one), but
with restrictive conditions on the initial data for the phase parameter. In fact,
the initial value χ0 of the phase parameter is required to be separated from the
potential barriers, i.e.,

0 < min
x∈Ω

χ0(x) ≤ max
x∈Ω

χ0(x) < 1,

and for the obtained local solutions the same property holds; thus, all the pro-
cess occur in the mushy zone and strict phase transitions do not happen, which
means that (1.2) hold as an equality. Global results were obtained just in the one
dimensional case.

In this work, we are interested in proving the existence of global in time solutions
for (1.1) - (1.6) with initial data χ0 such that

0 ≤ min
x∈Ω

χ0(x) ≤ max
x∈Ω

χ0(x) ≤ 1,

and the same for the obtained solutions, allowing in this way the possibility of
touching the potential barriers and thus pure solid and pure liquid regions.

To prove such result, we will introduce approximate problems corresponding to
regularized versions of the original problem and depending on two strictly positive
parameters; then we will prove the existence of solutions for such approximate
problems by using Leray-Schauder fixed point theorem. After that, by deriving
estimates that are uniform with respect of such parameters and taking the limits
in a suitable order, we will obtain solutions for the original model as limits of the
approximate solutions.

The main difficulty in applying Leray-Schauder fixed point theorem will be the
handling of the term |η(u)|2/2 in (1.2) and also the nonlinearities related to χ and u
in (1.3). To overcome these difficulties, the approximate problems are constructed
by using truncation operators

This work is organized as follow. Section 2 is dedicated to introduce some nota-
tion, to rewrite the initial boundary value problem related to equations (1.1)-(1.3)
in a suitable formulation and to state the main result of this paper. In Section
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3, we introduce a suitable approximate problem and in Section 4 and 5, we prove
the existence of approximate solutions. In Section 6 we prove our main result. Fi-
nally, in Section 7, where we present some considerations on modeling aspects of
the problem.

2. Preliminaries and statement of main results

In this section, we fix the notation, recall certain facts, and present a suitable
operational formulation of Problem (1.1)-(1.9).

2.1. Notation. We suppose that Ω ⊂ Rn is a bounded connected domain, with
C4-boundary ∂Ω, and consider the following Sobolev spaces

H1
0 (Ω) := {v ∈ H1(Ω); v = 0 on ∂Ω}, H2

0 (Ω) := {v ∈ H2(Ω); v = 0 on ∂Ω},
H2
N (Ω) := {v ∈ H2(Ω); ∂nv = 0 on ∂Ω},

endowed with the norms of H1(Ω) and H2(Ω), respectively. Furthermore, we iden-
tify L2(Ω) with its dual space L2(Ω)′, so that H1(Ω) ↪→ L2(Ω) ↪→ H1(Ω)′ with
dense and continuous embeddings.

We will also use the following continuous Sobolev embeddings:

Hα(Ω) ⊂W β,p(Ω) for α− n

2
≥ β − n

p
, α, β ∈ R, p ≥ 1; (2.1)

this inclusion is compact when the inequality is strict. In particular,

Hα(Ω) ⊂ Hα−ε(Ω), compactly for ε > 0 and α ∈ R. (2.2)

The following interpolation result will be important for the derivation of certain
estimates; it can be found for example in Brézis-Mironescu [10] in a more general
formulation:

‖v‖H2(Ω) ≤ C‖v‖
1/α
H2α(Ω)‖v‖

1−1/α
L2(Ω) , for all α > 1.

We denote by A := −∆ : D(A) = (H1
0 (Ω) ∩ H2(Ω))n ⊂ (L2(Ω))n → (L2(Ω))n

the Laplacian operator, acting on each coordinate, with homogeneous boundary
conditions.

For α ≥ 0, we consider the following Banach spaces given by the domain of the
fractional powers of A: D(Aα/2) endowed with norm

‖u‖Hα(Rn) = ‖u‖L2(Rn) + ‖Aα/2u‖L2(Rn).

It is known that D(Aα/2) is closed in Hα(Ω) with the norm of Hα(Ω), and that
D(Aα/2) ⊂ Hα(Ω) with continuous injection.

Further, we introduce the operator AN : H1(Ω)→ H1(Ω)′ realizing the Laplace
operator −∆ with homogeneous Neumann boundary conditions, defined by

〈ANu, v〉 := (∇u,∇v) ∀u, v ∈ H1(Ω),

We denote by J the duality operator AN + I : H1(Ω) → H1(Ω)′ (I being the
identity operator); in the sequel, we will make use of the relations

〈Ju, u〉 = ‖u‖2H1(Ω) ∀u ∈ H1(Ω), 〈J−1v, v〉 = ‖v‖2H1(Ω)′ ∀v ∈ H
1(Ω)′.

We also require the operator A2 : H2(Ω) → H2(Ω)′ realizing the biharmonic op-
erator (−∆)2 with the Navier boundary conditions (i. e. u = ∆u = 0), defined
by

〈A2u, v〉 := (∆u,∆v) ∀u, v ∈ H2(Ω).
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2.2. A family of viscoelastic problems, an operational formulation and
an existence result. Exactly as in Rocca and Rossi [21], we will state an oper-
ational formulation associated to a family of viscoelastic problems including as a
particular case problem (1.1)-(1.6). For this, we need to introduce some notation
and properties.

To generalize the elastic part of the problem, let φ : Ω → [0, 1] be a bounded
measurable function and let us consider the following continuous bilinear symmetric
forms aφ, bφ : H1

0 (Ω)×H1
0 (Ω)→ R defined by

aφ(u, v) := α1

∫
Ω

φdiv(u) div(v) + 2α2

3∑
i,j=1

∫
Ω

φηij(u)ηij(v) ∀u, v ∈ H1
0 (Ω),

bφ(u, v) :=
3∑

i,j=1

∫
Ω

φbijηij(u)ηij(v) ∀u, v ∈ H1
0 (Ω).

(2.3)
Here, the positive Lamé constants α1, α2 are related to the elastic properties of
the material. Matrix (bij) is positive definite and called viscosity matrix; it is also
related to the properties of the material being considered, cf. Rocca and Rossi [21].
We remark that for the problem stated in the Introduction, we have α1 = 0, α2 = 1
, bii = 1 and bij = 0 for i 6= j i, j = 1, 2, 3.

For a bounded φ, there exists some positive constant Ka such that

|aφ(u, v)| ≤ Ka‖u‖H1(Ω)‖v‖H1(Ω) ∀u, v ∈ H1
0 (Ω). (2.4)

Furthermore, by Korn’s inequality (see e.g. Ciarlet [11, Theorem 6.3-3]), when
infx∈Ω(φ(x)) > 0 the forms aφ(·, ·) and bφ(·, ·) are H1

0 (Ω)-elliptic; i.e., there exist
Ca, Cb > 0 such that for all u ∈ H1

0 (Ω) there hold

aφ(u, u) ≥ inf
x∈Ω

(φ(x))Ca‖u‖2H1(Ω), (2.5)

bφ(u, u) ≥ inf
x∈Ω

(φ(x))Cb‖u‖2H1(Ω). (2.6)

We will also need the following elliptic regularity result (see e.g. Nečas [20] p. 260):
there exist constants Cγ , Cδ > 0 such that

Cγ‖v‖H2(Ω) ≤ ‖div(η(v))‖L2(Ω) ≤ Cδ‖v‖H2(Ω) ∀v ∈ H2
0 (Ω). (2.7)

We denote by H(η ·) : H1
0 (Ω) → H−1(Ω) and K(η ·) : H1

0 (Ω) → H−1(Ω) the
operators associated with aη and bη, respectively, namely

〈H(ηv), w〉 = aη(v, w), 〈K(ηv), w〉 = bη(v, w) ∀v, w ∈ H1
0 (Ω).

It can be checked via an approximation argument that the following regularity
result holds:

if η ∈ H2(Ω) and v ∈ H2
0 (Ω), then H(ηv),K(ηv) ∈ L2(Ω). (2.8)

As for the potential W in (1.2), we assume that it is given by

W = β̂ + γ̂, (2.9)

where γ̂ is a regular function:
γ̂ ∈ C2([0, 1]), (2.10)

and β̂ satisfies

β̂ : [0, 1]→ [0,+∞] is proper, l.s.c., convex, (2.11)
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β̂|(0,1) ∈ C1,1
loc (0, 1). (2.12)

Remark 2.1. As it is well known, condition (2.11) implies the existence of a
positive constant M ≤ +∞ such that −M ≤ β̂(x) for any x ∈ [0, 1]

We recall that both the logarithmic function β̂(r) = r ln(r) + (1 − r) ln(1 − r),
for r ∈ (0, 1) (cf. (1.10)), and the indicator function β̂ = I[0,1] of the interval [0, 1]
fulfil (2.11)-(2.12).

Hereafter, for the sake of simplicity of notation, we will denote the following
subdifferentials as

∂W = W ′, ∂β̂ = β, γ̂′ = γ,

so that (2.9) yields W ′ = β + γ.
By composition, the graph β induces a maximal monotone operator βext :

dom(βext) ⊂ L2(Ω) → L2(Ω), which is defined by the following: for each g ∈
L2(Ω), βext(g) = {z ∈ L2(Ω) : z(x) ∈ β(g(x)) for a.e. x ∈ Ω}, with the do-
main dom(βext) = {g ∈ L2(Ω) : βext(g) 6= ∅}. Analogously, again by composi-
tion, the graph β also induces a maximal monotone operator βext1 : dom(βext1) ⊂
L2(0, T ;L2(Ω))→ L2(0, T ;L2(Ω)), with similar definition and domain.

Consider for example the case of the logarithmic potential W described in (1.10);
then γ̂ ≡ 0 and W = β̂; then we have dom(β) = [0, 1] and more explicitly:

β(r) = ∂β̂(r) =



∅ for r < 0,
(−∞, 0] for r = 0,
β̂′(r) for r ∈ (0, 1),
[0,+∞) for r = 1,
∅ for r > 1.

This means that the first requirement in order to a function χ0 ∈ L2(Ω) belong
to dom(βext) is that 0 ≤ χ0 ≤ 1 a.e. in Ω. If this is the case, by considering the
subsets of Ω defined by Ω[χ0=0], Ω[0<χ0<1] and Ω[χ0=1], which are defined up to zero
measure subsets, for χ0 ∈ dom(βext) we also must require βext(χ0) 6= ∅. But with
the previous notations, we have

βext(χ0) =
{
z ∈ L2(Ω) : z ≤ 0 in Ω[χ0=0], z = β̂′(χ0) in Ω[0<χ0<1],

z ≥ 0 in Ω[χ0=1]

}
.

Since Ω[χ0=0] and Ω[χ0=1] have finite measures, and thus we can take constant
values with the proper sign for z in those subsets, the only requirement left for
βext(g) 6= ∅ is that

∫
Ω[0<χ)<1]

|β̂′(χ0)|2 < ∞, which imposes growth conditions on

χ0 as we approach the boundary of Ω[0<χ0<1]. In other words, χ0 ∈ dom(βext) can
assume values 0 and 1 in nontrivial regions, which correspond respectively to pure
solid or pure liquid regions. Analougous considerations can be done for βext1.

Important notation. For the rest of this article, as it is standard in the monotone
operators theory, we will suppress the subscripts in the symbols of those induced
operators and write simply β instead of βext or βext1; the context will distinguish
their usage.

In addition to the previous hypotheses, we assume that function h satisfies the
following conditions

h ∈ C1, h(0) = 0 and h′is bounded. (2.13)
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When h(θ) = θ, equation (1.2) is exactly the same as the one considered by Rocca
and Rossi [21].

By using the previous notation, system (1.1)-(1.3) can be written in abstract
form as

θt + lχt +ANθ = g,

χt +ANχ+ ξ + γ(χ) = h(θ) +
|η(u)|2

2
,

utt +H((1− χ)u) +K(χut) + νA2ut = f,

for some ξ ∈ β(χ), and in the special case where the Lamé constants are α1 = 0,
α2 = 1 and the elasticity matrix given by bii = 1 and bij = 0 for i 6= j and
i, j = 1, 2, 3.

This formulation tell us that system (1.1)-(1.3) can be considered as a special case
of a even more general context. In fact, not only the elastic part can be generalized,
by taking different elastic matrix and Lamé constants, but also the operators A and
AN could be any uniformly elliptic second order linear operators with sufficiently
smooth coefficients independent of time; moreover, in the dissipation term in the
third equation, one could consider other fractional powers of A instead of A2.

However, some of these generalizations will not substantially change the mathe-
matical arguments and, for simplicity of exposition, we will consider only the case
where A has fractional powers in the abstract formulation corresponding to the
problem described in the introduction.

In the sequel, we shall assume the following regularity assumptions on the prob-
lem data:

g ∈ H1(0, T ;L2(Ω)), (2.14)

f ∈ L2(0, T ;L2(Ω)), (2.15)

θ0 ∈ H2
N (Ω), (2.16)

χ0 ∈ H2
N (Ω), (2.17)

u0 ∈ D(Aα), v0 ∈ D(Aα/2), (2.18)

Differently from Rocca and Rossi [21], we assume that the initial datum χ0 may
touch the potential barriers; i.e.,

χ0 ∈ dom(β),

0 ≤ min
x∈Ω

χ0(x) ≤ max
x∈Ω

χ0(x) ≤ 1. (2.19)

In this way, we are interested in solving the following problem:

Problem 2.2. Find functions θ, χ, ξ : Ω × [0, T ] → R and u : Ω × [0, T ] → R3

satisfying the initial conditions (1.7)-(1.9), χ ∈ dom(β), ξ ∈ β(χ), and the equations

θt + lχt +ANθ = g (2.20)

χt +ANχ+ ξ + γ(χ) = h(θ) +
|η(u)|2

2
(2.21)

utt +H((1− χ)u) +K(χut) + νAαut = f. (2.22)

For this problem, we can prove the following theorem, which is our main result.
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Theorem 2.3. Assume (2.14)-(2.19) hold. Then there exist a unique solution
(θ, χ, ξ, u) for Problem 2.2 with the following regularity:

θ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

χ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

ξ ∈ L2(0, T ;L2(Ω)), ξ ∈ β(χ),

u ∈W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;D(Aα/2)).

where α > 7/4 if n = 3, α > 3/2 if n = 2, and α ≥ 1 if n = 1.

3. Approximate problems and ideas for the proof the main theorem

In this section we will explain the two approximate problems that will have
to be considered prior to the proof of our main theorem. A first approximate
problem depend on two parameters, while the second one depends just one of these
parameters. We will start by proving the existence of solution for the first problem,
and then, by letting such parameters go to zero in a proper order, we will get the
existence of subsequences of such solutions converging to the solution of the second
and then to a solution of the original problem.

The first approximate problem is obtained as a regularized and truncated version
of equations (2.20)-(2.22), depending on two parameters. For this, we first define
two truncation operators. Given ε > 0, we introduce T1/ε defined as

T1/ε(s) =

{
s if s ∈ [− 1

ε ,
1
ε ]

1
ε sign(s) otherwise.

We will also need the truncation operator

τ(s) =


0 if s < 0
s if s ∈ [0, 1]
1 if s > 1.

Also, given µ > 0, we consider the corresponding Yosida approximation of the
maximal monotone operator β, which we denote βµ.

Then, we consider the following regularized and truncated version of Problem
2.2:

Problem 3.1. Fix a small ε > 0 and consider any µ > 0. Find functions θµ, χµ, ξµ :
Ω× [0, T ]→ R and uµ : Ω× [0, T ]→ R3 satisfying

θµt + lχµt +ANθ
µ = g

χµt +ANχ
µ + βµ(χµ) + γ(χµ) = h(θµ) + T1/ε(

|η(uµ)|2

2
)

uµtt −H(τ(1− χµ)uµ) +K(τ(χµ)uµt ) + νAαuµt = f

(3.1)

subjected to the same boundary and initial conditions as in Problem 2.2.

For this problem, by using Leray-Schauder fixed point arguments, we will prove
the following result.
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Proposition 3.2. Fix any small ε > 0 and assume the conditions in Theorem 2.3.
Then, for each µ > 0, there exists (θµ, χµ, uµ) solving Problem 2.2 and with the
following regularity:

θµ ∈ H2(0, T ;H1(Ω)′) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)),

χµ ∈ H2(0, T ;H1(Ω)′) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)),

uµ ∈ H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)).

Next, by using estimates for (θµ, χµ, uµ) that are independent of µ, we will pass
to the limit as µ → 0+, to find functions θε, χε, ξε and uε, depending on ε, that
satisfy χε ∈ dom(β) and ξε ∈ β(χε). This last fact implies in particular that
0 ≤ χε(x, t) ≤ 1 and thus τ(χε) = χε and τ(1 − χε) = 1 − χε; that is, we can
disregard the truncation operator τ when working with these limit functions.

By using these results, we will easily prove that θε, χε, ξε and uε is in fact a
solution of the following problem, which now has only one truncation operator, that
is, T1/ε:

Problem 3.3. For any small ε > 0, find functions θε, χε, ξε : Ω × [0, T ] → R and
uε : Ω× [0, T ]→ R3 satisfying

θεt + lχεt +ANθ
ε = g (3.2)

χεt +ANχ
ε + ξε + γ(χε) = h(θε) + T1/ε(

|η(uε)|2

2
) (3.3)

ξε ∈ β(χε)

uεtt −H((1− χε)uε) +K(χεuεt) + νAαuεt = f (3.4)

subjected to the same boundary and initial conditions as in Problem 2.2.

As a next step, we will obtain suitable estimates independent of ε. With the
help of such estimates, as ε→ 0+ we will then extract a subsequence θε, χε and uε

converging to a solution of Problem 2.2.

4. Existence of solutions of Problem 3.1

We will apply Leray-Schauder’s fixed point theorem (see Ladyzhenskaya [20, p.
293]). For this, we construct an operator Tλ, 0 ≤ λ ≤ 1, on the Banach space

B := H1(0, T ;L2(Ω))×H1(0, T ;W 1,4(Ω)),

that will be a composition of two others operators, defined as follows.

Construction of the family of operators. Let T 1
λ : B → X, 0 ≤ λ ≤ 1, be the

operator solution of the problem

χµt +ANχ
µ + βµ(χµ) + γ(χµ) = λ(h(θ

µ
) + T1/ε(

|η(uµ)|2

2
))

χµ(0) = χ0

(4.1)

where

X := W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)).

We will prove that this operator is well defined. To ease the notation, we define
ωµ := h(θ

µ
) + T1/ε(|η(uµ)|2/2). Note that for every (θ

µ
, uµ) ∈ B, we have

ωµ ∈ H1(0, T ;L2(Ω)). (4.2)
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In particular, ωµ ∈ L2(0, T ;L2(Ω)), and therefore, thanks to Colli and Laurençot
[12, Lemma 3.3], problem (4.1) has a unique solution

χµ ∈ H1(0, T ;L2(Ω)) ∩ C0([0, T ];H1(Ω)) ∩ L2(0, T ;H2
N (Ω)). (4.3)

Further, in view of (2.10), (4.3) entails that

γ(χµ) ∈ H1(0, T ;L2(Ω)). (4.4)

By proceeding as in the proof of Rocca and Rossi [21, Lemma 4.2], we test the
equation in (4.1) by (ANχµ + βµ(χµ))t and integrate in time. We obtain∫ t

0

‖∇χµt ‖2L2(Ω) +
1
2
‖ANχµ(t) + βµ(χµ(t))‖2L2(Ω) +

∫ t

0

∫
Ω

β′µ(χµ)|χµt |2

≤ ‖χ0‖2H2(Ω) + ‖βµ(χ0)‖2L2(Ω) + I0,

(4.5)

where we estimate I0 as follows

I0 =
∣∣∣∣∫ t

0

∫
Ω

(λωµ − γ(χµ))(ANχµ + βµ(χµ))t

∣∣∣∣
≤
∫ t

0

∫
Ω

|(λωµt − γ′(χµ)χµt )(ANχµ + βµ(χµ))|

+
∫

Ω

|(λωµ(t)− γ(χµ(t)))(ANχµ(t) + βµ(χµ(t)))|

+
∫

Ω

|(λωµ(0)− γ(χ0))(ANχ0 + βµ(χ0))|

≤ 1
4

(‖χ0‖2H2(Ω) + ‖βµ(χ0)‖2L2(Ω) + ‖ANχµ(t) + βµ(χµ(t))‖2L2(Ω))

+ 2‖ωµ + γ(χµ)‖2C0(0,T ;L2(Ω))

+
1
2

(∫ t

0

‖ANχµ + βµ(χµ)‖2L2(Ω) + ‖ωµ + γ(χµ)‖2H1(0,T ;L2(Ω))

)
,

(4.6)

where the last inequality follows from (4.2) and (4.4). By using the fact that
βµ(χ0) ∈ L∞(Ω) and (4.5)-(4.6), we can apply Gronwall’s lemma and easily deduce
that

‖ANχµ + βµ(χµ)‖L∞(0,T ;L2(Ω)) + ‖χµt ‖L2(0,T ;H1(Ω)) ≤ C. (4.7)

Next, by using the monotonicity of βµ we infer that

‖ANχµ + βµ(χµ)‖2L∞(0,T ;L2(Ω)) ≥ ‖ANχ
µ‖2L∞(0,T ;L2(Ω)) + ‖βµ(χµ)‖2L∞(0,T ;L2(Ω)),

(4.8)
and therefore, from (4.7) and well-known elliptic regularity results, we have a es-
timate for χµ in L∞(0, T ;H2

N (Ω)). Moreover, from (4.5), we have a bound for
‖χµt ‖L2(0,T ;H1(Ω)).

By writing

χµt = −ANχµ − βµ(χµ)− γ(χµ) + λ(h(θ
µ
) + T1/ε(

|η(uµ)|2

2
)),

we can use the above estimates to also get the bound

‖χµt ‖L∞(0,T ;L2(Ω)) ≤ C.

Therefore, for any λ ∈ [0, 1], the operator T 1
λ is well defined.
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Remark 4.1. When χµ is bounded in H1(0, T ;L2(Ω)) with respect to µ, we have
the same for γ(χµ). Moreover, when θµ is also bounded in H1(0, T ;L2(Ω)) with
respect to µ, using that T1/ε(|η(uµ)|2/2) is bounded with respect to µ, we have the
estimates (4.5)-(4.8) independent of µ. We shall see later that χµ and θµ satisfy
these properties.

Next, let T 2
λ : T 1

λ(B) ⊆ X → B be the solution operator of the problem

θµt + lχµt +ANθ
µ = λg

uµtt +H(τ(1− χµ)uµ) +K(τ(χµ)uµt ) + νAαuµt = λf

θµ(0) = θ0

uµ(0) = u0

uµt (0) = v0

(4.9)

We also must prove that T 2
λ is well defined. For this, we start consider the first

equation in (4.9) which does not depend of uµ.
Note that we have λg − lχµt ∈ L2(0, T ;L2(Ω)); thus, from the Lp-theory of

parabolic equations (see Ladyzhenskaya [18, P. 180, Remark 6.3]), there exists a
unique solution θµ of the first equation of (4.9) with the following regularity:

θµ ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)). (4.10)

We now analyze the second equation. The existence and uniqueness for this
equation follow from Galerkin method. In fact, let {wi}i≥1 be a ”special” base for
(Hα(Ω))n; i.e., eigenfunctions associate to the problem

(Aαwi, v) = λαi (wi, v), ∀v, wi ∈ (Hα(Ω))n,

|wi| = 1, λαi ↗ +∞.

Let V m be the space spanned by w1, . . . , wm. For each m ≥ 1, we are interested
in seeking an approximate solution um of the second equation of (4.9) with your
respective initial condition, in the following sense:

um(t) =
m∑
i=1

gi,m(t)wi

satisfies the following equations for all vm ∈ V m:

(umtt , v
m) + aτ(1−χ)(um, vm) + bτ(χ)(umt , v

m) + (Aαumt , v
m) = (f, vm), (4.11)

um(0) = u0m, (4.12)

umt (0) = v0m, (4.13)

where u0m and v0m are orthogonal projections in (Hα(Ω))n of u0 and v0 respec-
tively, on the space V m.

In this way, we obtain a system of linear ordinary differential equations, which
has a unique solution for the well-known theory of ordinary differential equations.

We now must obtain a priori estimates for (4.11) independent of m. We take
umt as test function in (4.11) and integrate in time; after using (2.4)-(2.6) and the
definition of τ , we obtain

1
2
‖umt (t)‖2L2(Ω) + C

∫ t

0

‖umt ‖2Hα(Ω)
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≤ 1
2
‖v0m‖2L2(Ω) + ε

∫ t

0

‖umt ‖2H1(Ω) + Cε

∫ t

0

‖um‖2H1(Ω) + Cε

∫ t

0

‖f‖2L2(Ω)

Now, we note that, if H is any Hilbert space, by taken C = 2T we have the
inequality ∫ t

0

‖z(s)‖2Hds ≤ C
(
‖z(0)‖2H +

∫ t

0

(∫ s

0

‖zt(t1)‖2Hdt1
)
ds
)
, (4.14)

Thus, by recalling that α ≥ 1 and taking ε sufficiently small, and then using (4.14)
with z = um and H = H1(Ω) and Gronwall’s lemma considering as its variable
the expression

∫ s
0
‖umt (t1)‖2H1(Ω)dt1, we obtain a bound for it. With this bound, we

then conclude that

umt is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;D(Aα/2));

therefore, again by (4.14), we obtain

um is bounded in W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;D(Aα/2)).

Now, we consider in (4.11) Aαumt as test function and integrate in time to obtain∫ t

0

(umtt , A
αumt ) =

1
2
‖Aα/2umt (t)‖2L2(Ω) −

1
2
‖Aα/2v0m‖2L2(Ω), (4.15)∫ t

0

∫
Ω

H(τ(1− χ)) ·Aαumt = I1 + I2, (4.16)

where

|I1| =
∣∣ ∫ t

0

∫
Ω

τ(1− χ) div(η(um)) ·Aαumt
∣∣

≤ C
∫ t

0

‖umt ‖H2α(Ω)‖um‖H2(Ω)

≤ ε
∫ t

0

‖umt ‖2H2α(Ω) + Cε

∫ t

0

‖um‖2H2(Ω)

(4.17)

thanks to (2.7). Also,

|I2| =
∣∣ ∫ t

0

∫
Ω

∇τ(1− χ)η(um) ·Aαumt
∣∣

≤ C
∫ t

0

‖umt ‖H2α(Ω)‖χ‖H2(Ω)‖um‖H2(Ω)

≤ ε
∫ t

0

‖umt ‖2H2α(Ω) + Cε

∫ t

0

‖um‖2H2(Ω),

(4.18)

where we used that χµ ∈ X and the continuous embedding (2.1).
Furthermore, by recalling the definition of operator K, we have∫ t

0

∫
Ω

K(τ(χ)umt ) ·Aαumt = I3 + I4, (4.19)
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where

|I3| =
∣∣ ∫ t

0

∫
Ω

τ(χ) div(η(um)) ·Aαumt
∣∣

≤ C
∫ t

0

‖umt ‖H2(Ω)‖Aαumt ‖L2(Ω)

≤ C
∫ t

0

‖Aαumt ‖L2(Ω)‖umt ‖
1/α
H2α(Ω)‖u

m
t ‖

(α−1)/α
L2(Ω)

≤ ε
∫ t

0

‖umt ‖2H2α(Ω) + Cε

∫ t

0

‖umt ‖2L2(Ω),

(4.20)

|I4| =
∣∣ ∫ t

0

∫
Ω

Aαumt · η(umt )∇(τ(χ))
∣∣

≤ C
∫ t

0

‖Aαumt ‖L2(Ω)‖umt ‖H2(Ω)‖χ‖H2(Ω)

≤ C
∫ t

0

‖Aαumt ‖L2(Ω)‖umt ‖
1/α
H2α(Ω)‖u

m
t ‖

(α−1)/α
L2(Ω)

≤ ε
∫ t

0

‖umt ‖2H2α(Ω) + Cε

∫ t

0

‖umt ‖2L2(Ω),

(4.21)

and ∫ t

0

∫
Ω

Aαumt ·Aαumt =
∫ t

0

‖Aαumt ‖2L2(Ω) ≥ C
∫ t

0

‖umt ‖H2α(Ω). (4.22)

Finally, ∫ t

0

∫
Ω

f ·Aαumt ≤ ε
∫ t

0

‖Aαumt ‖2L2(Ω) + Cε

∫ t

0

‖f‖2L2(Ω). (4.23)

Thus, we add (4.15)-(4.23) and apply the Gronwall’ s lemma to conclude that

umis bounded in W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)). (4.24)

Next, by taking vm = umtt in (4.11), we easily obtain ‖umtt ‖L2(Ω) ≤ ‖ − H(τ(1 −
χm)um)−K(τ(χm)umt )−νAαumt +λf‖L2(Ω). Thus, by using our previous estimates
and (2.8), we obtain

umtt is bounded in L2(0, T ;L2(Ω)). (4.25)

Therefore, by using Simon [24, Theorem 5, Corollary 4], we obtain

um ⇀∗ uµ in H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)), (4.26)

um → uµ in C1(0, T ;H1(Ω)) ∩H1(0, T ;H2(Ω)). (4.27)

Thus, using (2.1) and (4.14), we conclude that uµ ∈ H1(0, T ;W 1,4(Ω)).
To prove uniqueness, consider two solutions uµ1 , u

µ
2 of the second equation of

(4.9) and define uµ := uµ1 − u
µ
2 ; we have uµ satisfying the equation

uµtt +H(τ(1− χµ)uµ) +K(τ(χµ)uµt ) + νA2uµt = 0. (4.28)

By testing this equation by uµt , integrating and using (2.4) and (2.6), we obtain

1
2
‖uµt (t)‖2L2(Ω) + C

∫ t

0

‖uµt ‖2H2(Ω) ≤ ε
∫ t

0

‖uµt ‖2H2(Ω) + Cε

∫ t

0

‖uµ‖2H2(Ω). (4.29)
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Next, we choose ε > 0 small enough and use (4.14) and Gronwall’s lemma to get

1
2
‖uµt (t)‖2L2(Ω) + C

∫ t

0

‖uµt ‖2H2(Ω) ≤ 0;

i.e., uµt = 0 a. e. in Ω × [0, T ] and therefore, by (4.14), uµ = 0 which allows us to
conclude that the second equation of (4.9) has unique solution.

We conclude that (θµ, uµ) ∈ B and, therefore, that the operator T 2
λ is well

defined for all λ ∈ [0, 1].
Thus, from our previous results, it is well defined the family of operators as

Tλ : B → B, λ ∈ [0, 1], as the composition

Tλ := T 2
λ ◦ T 1

λ .

Continuity of the operator with respect to λ. In the following, we will prove
that Tλ in λ is continuous with respect to λ, uniformly in bounded sets of B. To
this end, consider 0 ≤ λ1, λ2 ≤ 1, χµi = T 1

λi
(θ
µ
, uµ), (θµi , u

µ
i ) = T 2

λi
(χµi ), and define

(θµ, χµ, uµ) := (θµ1 − θ
µ
2 , χ

µ
1 − χ

µ
2 , u

µ
1 − u

µ
2 ). We have the triple (θµ, χµ, uµ) fulfils

a.e. in Ω× (0, T )

θµt + lχµt +ANθ
µ = (λ1 − λ2)g (4.30)

χµt +ANχ
µ + βµ(χµ1 )− βµ(χµ2 ) + γ(χµ1 )− γ(χµ2 ) = (λ1 − λ2)ω (4.31)

uµtt +H(τ(1− χµ1 )uµ) +H((τ(1− χµ1 )− τ(1− χµ2 ))uµ2 )

+K(τ(χµ1 )uµt ) +K((τ(χµ1 )− τ(χµ2 ))∂tu
µ
2 ) + νAαuµt

= (λ1 − λ2)f
(4.32)

By multiplying (4.31) by χµt and integrating in time, it is not difficult to infer that∫ t

0

‖χµt ‖2L2(Ω) +
1
2
‖∇χµ(t)‖2L2(Ω) ≤ C

∫ t

0

∫
Ω

|χµt ‖χµ|+ (λ1 − λ2)
∫ t

0

∫
Ω

|ω‖χµt |.

(4.33)
Now, we test (4.31) by χµ and integrate in time to obtain∫

Ω

(χµ(t))2 +
∫ t

0

∫
Ω

|∇χµ|2 ≤ C
∫ t

0

∫
Ω

(χµ)2 + (λ1 − λ2)
∫ t

0

∫
Ω

ω2;

by using Gronwall’s lemma, we then get∫
Ω

(χµ(t))2 +
∫ t

0

∫
Ω

|∇χµ|2 ≤ C|λ1 − λ2|. (4.34)

From (4.33) and (4.34), we conclude that

‖χµ‖L2(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) ≤ C|λ1 − λ2|. (4.35)

We test now (4.31) by ANχµ and integrate in time; after some computations we
obtain

1
2

∫
Ω

|∇χµ(t)|2 +
∫ t

0

∫
Ω

|ANχµ|2

≤ C
∫ t

0

∫
Ω

|χµ‖ANχµ|+ |λ1 − λ2|
∫ t

0

∫
Ω

|ω‖ANχµ|

≤ ε
∫ t

0

∫
Ω

|ANχµ|2 + Cε

∫ t

0

∫
Ω

|χµ|2 + Cε|λ1 − λ2|
∫ t

0

∫
Ω

|ω|2,

(4.36)
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and by taking ε small enough, we obtain

‖χµ‖L2(0,T ;H2(Ω)) ≤ C|λ1 − λ2|. (4.37)

Next, we test (4.31) by (ANχµ + βµ(χµ1 )− β(χµ2 ))t and integrate in time:∫ t

0

‖∇χµt ‖2L2(Ω) +
∫ t

0

∫
Ω

χµt (β′µ(χµ1 )∂tχ
µ
1 − β′µ(χµ2 )∂tχ

µ
2 )

+
1
2
‖ANχµ(t) + βµ(χµ1 (t))− βµ(χµ2 (t))‖2L2(Ω)

=
∫ t

0

∫
Ω

[(λ1 − λ2)ω − (γ(χµ1 )− γ(χµ2 ))](ANχµ + βµ(χµ1 )− βµ(χµ2 ))t.

Integrating by parts, we have∫ t

0

∫
Ω

[(λ1 − λ2)ωt − (γ′(χµ1 )∂tχ
µ
1 − γ′(χ

µ
2 )∂tχ

µ
2 )](ANχµ + βµ(χµ1 )− βµ(χµ2 ))

+
∫

Ω

[(λ1 − λ2)ω(t)− (γ(χµ1 (t))− γ(χµ2 (t)))](ANχµ(t) + βµ(χµ1 (t))− βµ(χµ2 (t)))

≤ |λ1 − λ2|
∫ t

0

‖ωt‖L2(Ω)‖ANχµ + βµ(χµ1 )− βµ(χµ2 )‖L2(Ω)

+ C

∫ t

0

‖∂tχµ‖L2(Ω)‖ANχµ + βµ(χµ1 )− βµ(χµ2 )‖L2(Ω)

+ C

∫ t

0

‖χµ‖H2(Ω)‖ANχµ + βµ(χµ1 )− βµ(χµ2 )‖L2(Ω)

+ ‖(λ1 − λ2)ω(t)− (γ(χµ1 (t))− γ(χµ2 (t)))‖2L2(Ω)

+
1
4
‖ANχµ(t) + βµ(χµ1 (t))− βµ(χµ2 (t))‖2L2(Ω).

In view of (4.35) and (4.37), using that β′µ is bounded and Gronwall’s lemma, is
not difficult to conclude that

‖χµ‖L∞(0,T ;H2(Ω))∩H1(0,T ;H1(Ω)) ≤ C|λ1 − λ2|. (4.38)

Next, we test (4.30) by θµ and integrate in time:∫
Ω

|θµ(t)|2+
∫ t

0

∫
Ω

|∇θµ|2 ≤ |λ1−λ2|2
∫ t

0

∫
Ω

g2+
∫ t

0

∫
Ω

(χµt )2+
∫ t

0

∫
Ω

(θµ)2; (4.39)

using Gronwall’s lemma and (4.38), we then obtain

‖θµ‖L2(0,T ;H1(Ω)) ≤ C|λ1 − λ2|. (4.40)

Next, we test (4.30) by θµt and integrate in time to get∫ t

0

∫
Ω

|θµt |2 +
∫

Ω

|∇θµ(t)|2 ≤ Cε(λ1−λ2)2

∫ t

0

∫
Ω

g2 +Cε
∫ t

0

∫
Ω

(χµt )2 +ε
∫ t

0

∫
Ω

|θµt |2.

(4.41)
By collecting (4.38)-(4.41), we conclude that

‖θµ‖L∞(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) ≤ C|λ1 − λ2|. (4.42)
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Finally, we test (4.32) by A2uµt and integrate in time. Each of the terms in the
resulting identity can be estimated as follows.∫ t

0

∫
Ω

uµtt ·Aαu
µ
t =

1
2
‖Aα/2uµt (t))‖2L2(Ω) −

1
2
‖Aα/2v0‖2L2(Ω), (4.43)∫ t

0

∫
Ω

H(τ(1− χµ1 )uµ) ·Aαuµt = G1 +G2, (4.44)

where

|G1| =
∣∣ ∫ t

0

∫
Ω

τ(1− χµ1 ) div(η(uµ)) ·Aαuµt
∣∣

≤ ε
∫ t

0

‖Aαuµt ‖2L2(Ω) + Cε

∫ t

0

‖1− χµ1‖2L∞(Ω)‖u
µ‖2H2(Ω)

(4.45)

and

|G2| =
∣∣ ∫ t

0

∫
Ω

Aαuµt · η(uµ)∇(τ(1− χµ1 ))
∣∣

≤ ε
∫ t

0

‖Aαuµt ‖2L2(Ω) + Cε‖χµ1‖2L∞(0,T ;H2(Ω))

∫ t

0

‖uµ‖2H2(Ω).

(4.46)

We also have∫ t

0

∫
Ω

H((τ(1− χµ1 )− τ(1− χµ2 ))uµ2 ) ·Aαuµt = G3 +G4, (4.47)

where, similarly as previously done, we can estimate

|G3| ≤ C
∫ t

0

‖χµ‖L∞(Ω)‖Aαuµt ‖L2(Ω)‖uµ2‖H2(Ω)

≤ ε
∫ t

0

‖Aαuµt ‖2L2(Ω) + Cε‖uµ2‖L∞(0,T ;H2(Ω))

∫ t

0

‖χµ‖2H2(Ω)

(4.48)

and

|G4| ≤ C
∫ t

0

‖uµ2‖H2(Ω)‖χµ‖H2(Ω)‖Aαuµt ‖L2(Ω)

≤ ε
∫ t

0

‖Aαuµt ‖2L2(Ω) + Cε‖uµ2‖L∞(0,T ;H2(Ω))

∫ t

0

‖χµ‖2H2(Ω).

(4.49)

Furthermore, we have ∫ t

0

∫
Ω

K(τ(χµ1 )uµt ) ·Aαuµt = G5 +G6, (4.50)

where

|G5| =
∣∣ ∫ t

0

∫
Ω

τ(χµ1 ) div(η(uµt )) ·Aαuµt
∣∣

≤ C
∫ t

0

‖uµt ‖H2(Ω)‖Aαuµt ‖L2(Ω)

≤
∫ t

0

‖Aαuµt ‖L2(Ω)‖uµt ‖
1/α
H2α(Ω)‖u

µ
t ‖

(α−1)/α
L2(Ω)

≤ ε
∫ t

0

‖uµt ‖2H2α(Ω) + Cε

∫ t

0

‖uµt ‖2L2(Ω)

(4.51)
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and

|G6| =
∣∣ ∫ t

0

∫
Ω

Aαuµt · η(uµt )∇(τ(χµ1 ))
∣∣

≤ C
∫ t

0

‖uµt ‖H2(Ω)‖Aαuµt ‖L2(Ω)

≤
∫ t

0

‖Aαuµt ‖L2(Ω)‖uµt ‖
1/α
H2α(Ω)‖u

µ
t ‖

(α−1)/α
L2(Ω)

≤ ε
∫ t

0

‖uµt ‖2H2α(Ω) + Cε

∫ t

0

‖uµt ‖2L2(Ω).

(4.52)

Also we have ∫ t

0

∫
Ω

K((τ(χµ1 )− τ(χµ2 ))∂tu
µ
2 ) ·A2uµt = G7 +G8, (4.53)

where

|G7| =
∣∣ ∫ t

0

∫
Ω

(τ(χµ1 )− τ(χµ2 )) div(η(∂tu
µ
2 )) ·Aαuµt

∣∣
≤ C

∫ t

0

∫
Ω

|χµ‖ div(η(∂tu
µ
2 ))‖Aαuµt |

≤ C
∫ t

0

‖χµ‖H2(Ω)‖∂tuµ2‖H2(Ω)‖Aαuµt ‖L2(Ω)

≤ ε
∫ t

0

‖Aαuµt ‖2L2(Ω) + Cε‖χµ‖L∞(0,T ;H2(Ω))

∫ t

0

‖∂tuµ2‖2H2(Ω)

(4.54)

and

|G8| =
∣∣ ∫ t

0

∫
Ω

Aαuµt · η(∂tu
µ
2 )∇(τ(χµ1 )− τ(χµ2 ))

∣∣
≤ C

∫ t

0

∫
Ω

|Aαuµt ||η(∂tu
µ
2 )||∇χµ|

≤ ε
∫ t

0

‖Aαuµt ‖2L2(Ω) + Cε‖χµ‖L∞(0,T ;H2(Ω))

∫ t

0

‖∂tuµ2‖2H2(Ω).

(4.55)

Next,

ν

∫ t

0

∫
Ω

Aαuµt ·Aαu
µ
t = ν

∫ t

0

‖Aαuµt ‖2L2(Ω), (4.56)

and finally,

(λ1−λ2)
∫ t

0

∫
Ω

f ·Aαuµt ≤ Cε|λ1−λ2|‖f‖2L2(0,T ;L2(Ω)) + ε

∫ t

0

‖Aαuµt ‖2L2(Ω). (4.57)

Thus, to obtain the estimates that come from testing (4.32) by Aαuµt and inte-
grating in time, we add (4.43)-(4.57), then estimate the integral terms containing
‖uµ‖2H2(Ω) by using (4.14) and applying Gronwall’s lemma to conclude that

‖uµ‖H1(0,T ;D(Aα)) ≤ C|λ1 − λ2|.

Therefore, from (2.1), we have

‖uµ‖H1(0,T ;W 1,4(Ω)) ≤ C|λ1 − λ2|. (4.58)
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From (4.42) and (4.58), we conclude that Tλ is continuous in λ, uniformly in
bounded sets of B.

Estimates of all possible fixed points. We now estimate the set of all fixed
points of Tλ in B. Each fixed point (θµ, uµ) ∈ B satisfies the following problem:

θµt + lχµt +ANθ
µ = λg in Ω× (0, T ), (4.59)

χµt +ANχ
µ + βµ(χµ) + γ(χµ) = λ(h(θµ) + T1/ε(

|η(uµ)|2

2
)) in Ω× (0, T ), (4.60)

uµtt −H(τ(1− χµ)uµ) +K(τ(χµ)uµt ) + νAαuµt = λf in Ω× (0, T ), (4.61)

subjected to the conditions

θµ(0) = θ0 in Ω,

χµ(0) = χ0 in Ω,

uµ(0) = u0, uµt (0) = v0 in Ω.

We start by testing (4.60) by χµ and integrate in time to get

1
2

∫
Ω

|χµ(t)|2 +
∫ t

0

∫
Ω

|∇χµ|2

≤ C1 + C

∫ t

0

∫
Ω

(χµ)2 +
∫ t

0

∫
Ω

h(θµ)χµ +
1
2
‖χ0‖L2(Ω).

(4.62)

Next, we test (4.59) by θµ + lχµ and integrate in time to obtain

1
2

∫
Ω

|θµ(t) + lχµ(t)|2 +
∫ t

0

∫
Ω

|∇θµ|2 + l

∫ t

0

∫
Ω

∇θµ∇χµ

=
1
2
‖θ0 + lχ0‖2L2(Ω) +

∫ t

0

∫
Ω

g(θµ + lχµ).
(4.63)

By multiplying (4.62) by 1 + 1
2 l

2, adding it to (4.63) and using that |h(θ)| ≤ C|θ|
we reach∫

Ω

(1
6

(θµ(t))2 +
1
2

(χµ(t))2
)

+
1
2

∫ t

0

∫
Ω

(|∇θµ|2 + |∇χµ|2)

≤ C(‖θ0‖2L2(Ω) + ‖χ0‖2L2(Ω)) +
∫

Ω

‖g‖2L2(Ω) + C

∫ t

0

∫
Ω

(|θµ|2 + |χµ|2).
(4.64)

By using Gronwall’s lemma, we then conclude that

χµ, θµ is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (4.65)

with a bound in (4.65) that is independent of µ.
We now test (4.59) by χµt and integrate in time∫ t

0

∫
Ω

|χµt |2 +
1
2

∫
Ω

|∇χµ(t)|2 +
∫

Ω

β̂µ(χµ)

≤ C + ε

∫ t

0

∫
Ω

|χµt |2 + Cε

(∫ t

0

∫
Ω

|χµ|2 +
∫ t

0

∫
Ω

|θµ|2
)
.

(4.66)

By using (4.65), Remark 2.1, which implies that −
∫

Ω
β̂µ(χµ) ≤ M |Ω| < +∞, and

Gronwall’s lemma again, we have

χµt is bounded in L2(0, T ;L2(Ω)); (4.67)
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moreover, the bound (4.67) is independent of µ.
Next, we test (4.59) by θµt and integrate in time to get∫ t

0

∫
Ω

|θµt |2 +
1
2

∫
Ω

|∇θµ(t)|2

≤ ‖∇θ0‖2L2(Ω) +
1
2

∫ t

0

∫
Ω

|θµt |2 + l

∫ t

0

∫
Ω

|χµt |2 +
∫ t

0

∫
Ω

g2.

(4.68)

From (4.67), we have θµt ∈ L2(0, T ;L2(Ω)), and therefore

θµ is bounded in H1(0, T ;L2(Ω)), (4.69)

with a bound (4.69) which is independent of µ.
We have one more estimate for χµ. From the fact that θµ, χµ ∈ H1(0, T ;L2(Ω))

and T1/ε(|η(uµ)|/2) is bounded, similarly as was done to get (4.38), we obtain

χµ is bounded in L∞(0, T ;H2
N (Ω)). (4.70)

Finally, by proceeding similarly as was done in (4.43)-(4.57) and using (4.70),
we have uµ ∈ H1(0, T ;D(Aα)), and

uµ is bounded in H1(0, T ;W 1,4(Ω)). (4.71)

Therefore, we can conclude from (4.69)-(4.71) that there exist M > 0 such that

‖(θµ, uµ)‖B ≤M .

Remark 4.2. As seen above in the estimate of all possible fixed points, the bound-
edness of (4.65), (4.67) and (4.69) are independent of µ. Follow from these fact
that the boundedness of Remark 4.1 are satisfies.

Furthermore, if we have T1/ε(|η(uε)|2/2) bounded in L2(0, T ;L2(Ω)) with respect
to ε, then the boundedness (4.62)-(4.64), (4.66) and (4.68) are independent of ε,
and therefore the boundedness (4.65), (4.67) and (4.69) are independent of ε.

Continuity and compactness. It remains to prove that for each λ ∈ [0, 1] Tλ
is continuous and compact on B. Before proving these properties, we need some
estimates. We start by differentiating (4.1) in time, testing it by J−1(χµtt), and
integrating the result in time:∫ t

0

‖χµtt‖2H1(Ω)′ ≤ G9 +G10 +G11 +G12, (4.72)

where

G9 =
∣∣ ∫ t

0

∫
Ω

∇χµt∇J−1(χµtt)
∣∣ ≤ ∫ t

0

‖χµt ‖2H1(Ω) +
1
4

∫ t

0

‖χµtt‖2H1(Ω)′ , (4.73)

G10 =
∣∣ ∫ t

0

∫
Ω

(β′µ(χµ) + γ′(χµ))χµt J
−1(χµtt)

∣∣
≤ ‖β′µ(χµ) + γ′(χµ)‖L∞(Ω×(0,T ))

∫ t

0

‖J−1(χµtt)‖L2(Ω)‖χµt ‖L2(Ω)

≤ 1
4

∫ t

0

‖χµtt‖2H1(Ω)′ + C

∫ t

0

‖χµt ‖2L2(Ω),

(4.74)

G11 =
∣∣ ∫ t

0

∫
Ω

h′(θµ)θµt J
−1(χµtt)

∣∣ ≤ 1
8

∫ t

0

‖χµtt‖2H1(Ω)′ + C

∫ t

0

‖θµt ‖2L2(Ω), (4.75)
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and

G12 =
∣∣ ∫ t

0

∫
Ω

T ′1/ε
( |η(uµ)|2

2
)
η(uµt )Reη(uµ)J−1(χµtt)

∣∣
≤ C‖η(uµ)‖L∞(0,T ;L4(Ω))

∫ t

0

‖η(uµt )‖L4(Ω)‖χµtt‖H1(Ω)′

≤ 1
8

∫ t

0

‖χµtt‖2H1(Ω)′ + C‖uµ‖2H1(0,T ;H2(Ω))

∫ t

0

‖uµt ‖2H2(Ω).

(4.76)

We remark that to estimate G10 we used the fact that β′µ and γ′ are Lipschitz
functions, and that χµ ∈ L∞(0, T ;H2

N (Ω)); in G11 we used that h′ is limited.
Collecting (4.72)-(4.76), we conclude that

χµ is bounded in H2(0, T ;H1(Ω)′). (4.77)

We differentiate the first equation in (4.9), multiply by J−1(θµtt), integrate in
time and using (4.77), similarly as we did in in the (4.72)-(4.76), we obtain that

θµ is bounded in H2(0, T ;H1(Ω)′). (4.78)

We test the first equation in (4.9) by θµt and integrate in time to obtain∫ t

0

∫
Ω

(θµt )2 +
1
2

∫
Ω

|∇θµ(t)|2 ≤ 1
2
‖∇θµ(0)‖2L2(Ω) + C

∫ t

0

∫
Ω

g2 +
1
4

∫ t

0

∫
Ω

(θµt )2

+ C

∫ t

0

∫
Ω

(χµt )2 +
1
4

∫ t

0

∫
Ω

(θµt )2.

(4.79)
By recalling (4.7) and applying Gronwall’s lemma, we infer that

θµ is bounded in L∞(0, T ;H1(Ω)). (4.80)

Next, we test the first equation in (4.9) by ANθ
µ
t and integrate by parts, to

obtain∫ t

0

∫
Ω

|∇θµt |2 +
1
2

∫
Ω

|ANθµ(t)|2

≤ 1
2
‖ANθµ(0)‖2L2(Ω) +

∣∣ ∫ t

0

∫
Ω

gANθ
µ
t

∣∣+
∣∣l ∫ t

0

∫
Ω

χµt ANθ
µ
t

∣∣
≤ ‖θ0‖2H2(Ω) + C‖g‖2H1(0,T ;L2(Ω)) +

1
2

∫ t

0

∫
Ω

|ANθµ|2 +
1
4

∫
Ω

|ANθµ(t)|2

+ C

∫ t

0

∫
Ω

|∇χµt |2 +
1
2

∫ t

0

∫
Ω

|∇θµt |2.

(4.81)

By recalling (4.7), using (4.10), (4.80) and using again Gronwall’s lemma, we obtain

θµ is bounded in H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)). (4.82)

Now, by writing θµt = −lχµt −ANθµ +λg and using the above estimates, we obtain

θµt is bounded in L∞(0, T ;L2(Ω)). (4.83)

Finally, arguing in the same way as to obtain (4.26)-(4.27), we obtain

uµ is bounded in H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)).
(4.84)
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Now we can prove the compactness and continuity of the operator. The com-
pactness of Tλ on B easily follow from (4.78)-(4.84) and Simon [24, Theorem 5,
Corollary 4.].

To show that Tλ is continuous in B, we fix a sequence such that

{(θµn, uµn)} → (θ, u) strongly in H1(0, T ;L2(Ω))×H1(0, T ;W 1,4(Ω)), (4.85)

and we let χµn := T 1
λ(θ

µ

n, u
µ
n) for all n ∈ N.

From (4.3), (4.7)-(4.8) and (4.77), we have

χµn ∈ H2(0, T ;H1(Ω)′) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω))

∩ L∞(0, T ;H2
N (Ω)).

It follows from Simon [24, Theorem 5, Corollary 4], that there exist a subsequence,
which for simplicity of notations we do not relabel, and a function χµ such that the
following convergences hold for any 1 ≤ p <∞ and any ρ > 0:

χµn → χµ in C1(0, T ;H1(Ω)′) ∩ C0(0, T ;H2−ρ(Ω)),

χµn → χµ in W 1,p(0, T ;L2(Ω)) ∩H1(0, T ;H1−ρ(Ω)) ∩ Lp(0, T ;H2
N (Ω)),

χµn ⇀
∗ χµ in H2(0, T ;H1(Ω)′) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω))

∩ L∞(0, T ;H2
N (Ω)).

(4.86)

Hence, χµ satisifes the initial condition (1.8).
By using (4.85)-(4.86), it is easy to pass to the limit in (4.1) and conclude that

χµ = T 1
λ(θ

µ
, uµ).

Therefore, we infer that convergences in (4.86) hold along the whole sequence {χµn}.
We now consider the sequence (θµn, u

µ
n) := T 2

λ(χµn) = Tλ(θ
µ

n, u
µ
n). Collecting

(4.78)-(4.83), we obtain a uniform bound for

θµn ∈ H2(0, T ;H1(Ω)′) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω))

∩ L∞(0, T ;H2
N (Ω)).

In view of (4.84) and Simon [24, Theorem 5, Corollary 4] , we deduce that there
exist suitable subsequences (which we do not relabel) of {θµn} and {uµn} and two
limit functions θµ and uµ such that for all 1 ≤ p <∞ and for all ρ > 0

uµn → uµ in H1(0, T ;H2−ρ(Ω)) ∩W 1,p(0, T ;H1(Ω)) ∩ C1(0, T ;H1−ρ(Ω)),

uµn ⇀
∗ uµ in H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)),

(4.87)
while for {θµn} and θµ the same convergences as in (4.86) hold true. In particular,
uµn → uµ in H1(0, T ;W 1,4(Ω)), whence

(θµn, u
µ
n)→ (θµ, uµ) in H1(0, T ;L2(Ω))×H1(0, T ;W 1,4(Ω)). (4.88)

It follows from (4.87) that uµ complies with the initial condition (1.9). By
combining (4.86) and (4.87) and arguing in the same way as in the corresponding
proof in Rocca and Rossi [21], we infer that the pair (uµ, χµ) satisfies the second
equation in (4.9) on Ω× (0, T ). In the same way, convergences (4.86) for {χµn} and
{θµn} allow us to conclude that (θµ, χµ) fulfils the first equation in (4.9) on Ω×(0, T )
and that θµ complies with the initial condition (1.7). Finally, we deduce that

(θµ, uµ) = T 2
λ(χµ) = Tλ(θ

µ
, uµ),
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and that (4.88) holds along the whole sequence {(θµn, uµn)}. Hence, the operator Tλ
is continuous and compact with respect to B.

Remark 4.3. At this point is important to observe that from Remarks 4.1 and
4.2, χµ is bounded in H1(0, T ;H1(Ω)) independently of µ. Thus, the estimates
(4.79)-(4.81) are independent of µ, and therefore the bounds in (4.82) and (4.83)
are also independent of µ.

Conclusion. Since when λ = 0, it is trivial that we have unique solution for
each equation in (4.1) and (4.9), from the previous proved results all the required
conditions to use Leray-Schauder fixed point theorem are met. Thus, operator Tλ
has a fixed point (θµ, uµ) in λ = 1, i. e., there exist a triple (θµ, χµ, uµ) that satisfies
(3.1) with the following regularity

θµ ∈ H2(0, T ;H1(Ω)′) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)),

χµ ∈ H2(0, T ;H1(Ω)′) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)),

uµ ∈ H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)),

and Propositon 3.2 is proved.

5. Existence of solutions of Problem 3.3

Now, it is necessary to obtain suitable estimates uniform in µ for the solutions
of Problem 3.1. This will allow us to pass to the limit as µ ↘ 0. From Remarks
4.1, 4.2 and 4.3, we have

χµ, θµ is bounded in W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)),

and in particular
βµ(χµ) is bounded in L∞(0, T ;L2(Ω)).

By proceeding similarly as in (4.15)-(4.25), we obtain

uµis bounded in H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)).

Hence, in view of Simon [24, Theorem 5, Corollary 4], and maximal monotone
operator properties, we have the following convergences (along subsequences)

θµ ⇀∗ θε in W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)), (5.1)

θµ → θε in C(0, T ;H1(Ω)), (5.2)

χµ ⇀∗ χε in W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)), (5.3)

χµ → χε in C(0, T ;H1(Ω)), (5.4)

βµ(χµ) ⇀ ξε in L2(0, T ;L2(Ω)), (5.5)

uµ ⇀∗ uε in H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)), (5.6)

uµ → uε in C1(0, T ;H1(Ω)) ∩H1(0, T ;D(Aα/2)). (5.7)

Next, we observe that due to the monotonicity of βµ, we have

(βµ(χ)− βµ(χµ) , χ− χµ) ≥ 0 ∀χ ∈ dom(β).

By using (5.4) and (5.5) and taking µ→ 0+ in this last inequality we obtain

(β0(χ)− ξε , χ− χε) ≥ 0 ∀χ ∈ dom(β),
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where β0(χ) denotes the element of β(χ) with minimal norm and we have used the
fact that βµ is the Yosida approximation of β and Brezis [9, Prop. 2.6 (iii), p. 28].

But β0 is a principal section of β, according to Brezis [9, Prop. 2.7. p. 29,
Definition 2.3]), and thus the bove inequality implies

χε ∈ dom(β) and ξε ∈ β(χε). (5.8)

By using arguments similar to the ones used to prove that the operator Tλ was
continuous and compact, we can pass the limit as µ → 0+ in the equations of
Problem 3.1 and get that (θε, χε, uε) satisfies

θε ∈W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)), (5.9)

χε ∈W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2
N (Ω)), (5.10)

ξε ∈ L2(0, T ;L2(Ω)), ξε ∈ β(χε), (5.11)

uε ∈ H2(0, T ;L2(Ω)) ∩W 1,∞(0, T ;D(Aα/2)) ∩H1(0, T ;D(Aα)), (5.12)

and moreover it solves Problem 3 (see (3.2)-(3.4)) since (5.11) implies that τ(χε) =
χε and τ(1− χε) = 1− χε, and with the obtained convergences it is easy to verify
that the initial conditions are met.

6. Proof of Theorem 2.3

6.1. Existence of solutions of Problem 2.2. To prove Theorem 2.3, it will
be necessary to obtain estimates independent of ε. For this, we proceeding as in
(4.62)-(4.64), to obtain∫

Ω

(1
6

(θε(t))2 +
1
2

(χε(t))2
)

+
1
2

∫ t

0

∫
Ω

(|∇θε|2 + |∇χε|2)

≤
∫ t

0

‖g‖2L2(Ω) + C

∫ t

0

(‖θε‖2L2(Ω) + ‖χε‖2L2(Ω) + ‖uε‖2H1(Ω))

+ C(‖θ0‖2L2(Ω) + ‖χ0‖2L2(Ω)).

(6.1)

We test now (3.4) by uεt and integrate in time to obtain, in view of (2.4), (2.6)
and (2.2), and that 0 ≤ χε ≤ 1,

1
2

∫
Ω

|uεt(t)|2 + C

∫ t

0

‖uεt‖Hα(Ω)

≤ 1
2
‖v0‖L2(Ω) + ε

∫ t

0

‖uεt‖2H1(Ω) + Cε

(∫ t

0

‖uε‖H1(Ω) +
∫ t

0

‖f‖2L2(Ω)

)
.

(6.2)

Adding (6.1) and (6.2), choosing ε > 0 small enough and using Gronwall’s lemma,
we obtain

uε bounded in W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;D(Aα/2)). (6.3)

and
θε, χε bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Next, from (4.66) and (6.3), we have

χεt is bounded in L2(0, T ;L2(Ω)). (6.4)

Estimates (4.68) and (6.4) thus gives that

θεt is bounded in L2(0, T ;L2(Ω)).
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Hence, we have

θε, χε is bounded in H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Finally, we test equation (3.3) of the Problem 3.3 by ANχ
ε + ξε and integrate in

time to obtain∫ t

0

‖ANχε + ξε‖2L2(Ω) ≤ ε
∫ t

0

‖ANχε + ξε‖2L2(Ω) + Cε

(∫ t

0

‖χεt‖2L2(Ω)

+
∫ t

0

‖χε‖2L2(Ω) +
∫ t

0

‖θε‖2L2(Ω) +
∫ t

0

‖uε‖4W 1,4(Ω)

)
.

In view of estimates getting above and monotony properties of the operator β, we
obtain

ξε is bounded in L2(0, T ;L2(Ω)).
Therefore, by Simon [24, Theorem 5, Corollary 4], we obtain the following con-

vergences:

θε ⇀ θ in H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (6.5)

θε → θ in L2(0, T ;L2(Ω)), (6.6)

χε ⇀ χ in H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (6.7)

χε → χ in L2(0, T ;L2(Ω)), (6.8)

ξε ⇀ ξ in L2(0, T ;L2(Ω)), (6.9)

uε ⇀∗ u in W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;D(Aα/2)), (6.10)

uε → u in C(0, T ;H1(Ω)). (6.11)

Next, for g ∈ L1(Q), by using the dominated convergence theorem, we easily
get that T1/εg → g in L1(Q). Moreover, when gε → g, by using the facts that
|g(x, t)−T1/ε(uε)(x, t)| ≤ |g(x, t)−T1/ε(g)(x, t)|+ |T1/ε(g)(x, t)−T1/ε(gε)(x, t)| and
that |T1/ε(g)(x, t)−T1/ε(gε)(x, t)| ≤ |g(x, t)− gε(x, t)|, we obtain that T1/ε(gε)→ g

in L1(Q).
Since convergence (6.11) implies that |η(uε)|2/2 → |η(u)|2/2 in C(0, T ;L1(Ω)),

we can use the previous arguments to get that

T1/ε(|η(uε)|2/2)→ |η(u)|2/2 in L1(Q).

The just obtained convergences are enough to pass to the limit as ε→ 0+ in all the
terms of the equations (3.2)-(3.4). Moreover, using (6.8) and (6.9), and proceeding
exactly as we did to obtain (5.8), we obtain ξ ∈ β(χ). Also, we the obtained
convergences it is standard to check that the initial conditions are met. Thus, we
have all the required conditions for a solution and the existence result of our main
theorem is proved.

6.2. Uniqueness of solution of Problem 2.2. We prove the uniqueness of so-
lution for the Problem 2.2. Let us consider two solutions (θi, χi, ξi, ui), i = 1, 2, of
the Problem 2.2. Define θ := θ1 − θ2, χ := χ1 − χ2, ξ := ξ1 − ξ2 and u := u1 − u2;
these functions satisfies the equations

θt + lχt +ANθ = 0, (6.12)

χt +ANχ+ ξ + (γ(χ1)− γ(χ2)) = h(θ1)− h(θ2) +
η(u1) : η(u)

2
+
η(u) : η(u2)

2
,

(6.13)
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utt +H((1− χ1)u)−H(χu2) +K(χ1ut) +K(χ∂tu2) + νAαut = 0. (6.14)

We test equation (1.2) by χ and integrate in time to get∫
Ω

|χ(t)|2 +
∫ t

0

∫
Ω

|∇χ|2 +
∫ t

0

∫
Ω

ξχ+
∫ t

0

∫
Ω

(γ(χ1)− γ(χ2))χ

=
∫ t

0

∫
Ω

(h(θ1)− h(θ2))χ+
1
2

∫ t

0

∫
Ω

[η(u1) : η(u) + η(u) : η(u2)]χ.

By using the monotonicity of β and Lipschitz condition on γ and h, we obtain∫
Ω

|χ(t)|2 +
∫ t

0

∫
Ω

|∇χ|2

≤ C
∫ t

0

∫
Ω

|χ|2 + C

∫ t

0

∫
Ω

|θ‖χ|

+ C ′
∫ t

0

(‖u2‖Hα(Ω) + ‖∂tu2‖Hα(Ω))‖χ‖L2(Ω)‖u‖Hα(Ω).

(6.15)

Next, we test equation (6.12) by θ + lχ and integrated in time to conclude that

1
2

∫ t

0

|θ(t) + lχ(t)|2 +
∫ t

0

∫
Ω

|∇θ|2 + l

∫ t

0

∫
Ω

∇θ∇χ = 0. (6.16)

By multiplying (6.15) by 1 + 1
2 l

2 and adding with (6.16), we easily obtain∫
Ω

(1
6

(θ(t))2 +
1
2

(χ(t))2
)

+
1
2

∫ t

0

∫
Ω

(|∇θ|2 + |∇χ|2)

≤ C
∫ t

0

(‖θ‖2L2(Ω) + ‖χ‖2L2(Ω) + ‖u‖2Hα(Ω)).
(6.17)

Finally, we test equation (6.14) by ut and integrate in time to obtain

1
2

∫
Ω

|ut(t)|2 + ν

∫ t

0

‖ut‖2Hα(Ω) ≤ I5 + I6, (6.18)

where

I5 = −
∫ t

0

〈H((1− χ1)u), ut〉 ≤ C
∫ t

0

‖1− χ1‖L∞(Ω)‖u‖H1(Ω)‖ut‖H1(Ω) (6.19)

and

I6 =
∫ t

0

〈H(χu2)−K(χ∂tu2), ut〉

≤ C
∫ t

0

(‖u2‖Hα(Ω) + ‖∂tu2‖Hα(Ω))‖χ‖L2(Ω)‖ut‖Hα(Ω).

(6.20)

From (6.18)-(6.20), we easily obtain

1
2

∫
Ω

|ut(t)|2 + C

∫ t

0

‖ut‖2Hα(Ω)

≤ ε
∫ t

0

‖ut‖2Hα(Ω) + Cε

∫ t

0

(‖u2‖2Hα(Ω) + ‖∂tu2‖2Hα(Ω))‖χ‖
2
L2(Ω)

+ Cε

∫ t

0

‖u‖2Hα(Ω).

(6.21)
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Now, by adding (6.17) and (6.21) and choosing ε > 0 small enough and also
using Gronwall’s lemma and inequality (4.14), we obtain

‖θ‖L∞(0,T ;L2(Ω)∩L2(0,T ;H1(Ω) + ‖χ‖L∞(0,T ;L2(Ω)∩L2(0,T ;H1(Ω)

+ ‖u‖W 1,∞(0,T ;L2(Ω)∩H1(0,T ;Hα(Ω) ≤ 0.

and therefore θ = χ = u = 0. To proof that ξ = 0, we just note that

ξ = h(θ1)− h(θ2) +
η(u1) : η(u)

2
+
η(u) : η(u2)

2
− χt −ANχ− (γ(χ1)− γ(χ2)).

We conclude with these results that the Problem 2.2 has a unique solution, and
therefore Theorem 2.3 is proved.

Remark 6.1. When the solidification process occur in a constant gravitational
field ~a, one may include the action of the buoyancy forces resulting from the small
variations in the density due to differences in temperature. This is usually done by
adding a further force in the momentum equation using the Boussinesq approxima-
tion θχ~a (with the reference temperature taken as zero). In this case, the equations
for the problem are substituted by the following equations:

θt + lχt −∆θ = g in Ω× (0, T ),

χt −∆χ+W ′(χ) 3 h(θ − θc) +
|η(u)|2

2
in Ω× (0, T ),

utt − div((1− χ)η(u) + χη(ut)) + ν(−∆)2ut + θχ~a = f in Ω× (0, T ),

subjected to the same boundary and an initial conditions as before.

The same sort of generalizations could be considered in this case, and exactly
the same results as before hold true. In fact, the Boussinesq term θχ~a brings no
further difficulties in the derivation of the estimates.

7. Considerations concerning modeling

In this section we comment on modeling aspects by following arguments that are
very similar to the ones presented in Rocca and Rossi [21, pp. 3332-335]; specifically,
by using the generalized Principle of Virtual Power introduced by Frémond (cf.
[13] ), we derive a model closely related to the one considered in this article . For
simplicity of exposition and to ease the comparison with the model in [21], in this
section we take h(θ) = θ in equation (1.2).

We start by taking a free energy functional of form

ψ(u(·), χ(·), θ(·)) =
∫

Ω

Ψ(η(u), χ,∇χ, θ) dx,

where the volumetric free energy density Ψ is exactly as in Rocca and Rossi [21,
p. 3332]:

Ψ(η(u), χ,∇χ, θ) = cV θ(1− log θ)− λ

θC
(θ − θC)χ+

(1− χ)η(u)Reη(u)
2

+W (χ) +
ν

2
|∇χ|2,

where for simplicity of exposition we assume that ∂W () is univalent.
Next, we take a pseudo-potential of dissipation as

φ(u(·), χ(·), θ(·)) =
∫

Ω

Φ(η(ut), χt,∇θ) dx,
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where the density of the pseudo-potential of dissipation Φ is of the form

Φ(η(ut), χt,∇θ) = ΦRR(η(ut), χt,∇θ) +
1
2
|L(η(ut))|2,

where L : D(L) ⊂ (L2(Ω))n → (L2(Ω))n is a linear operator, and ΦRR is exactly
the the density of the pseudo-potential of dissipation used by Rocca and Rossi in
[21, p. 3332]:

ΦRR(η(ut), χt,∇θ) =
1
2
|χt|2 +

χ

2
η(ut)Rvη(ut) +

|∇θ|2

2θ
Also as in [21], hereafter, for simplicity in notations, we set cV = ν = λ/θC = 1
and incorporate the term χθC in W (χ).

To derive the equations for the model, we recall that the equation for the macro-
scopic motion (momentum equation) can be obtained by the principle of virtual
power, which gives

utt − div σ = f in Ω× (0, T ), (7.1)

where f is the exterior volume force and σ is the stress tensor given by the sum of
the non dissipative stress given by the constitutive law σnd = Dη(u)Ψ and the dissi-
pative stress given by the constitutive law σd = Dη(u)Φ = Dη(u)ΦRR +L∗L(η(ut)),
where L∗ is the adjoint of L. Thus, we obtain the stress tensor as

σ = σnd + σd = Dη(u)Ψ +Dη(u)Φ

= (1− χ)Reη(u) +
(
χRvη(ut) + L∗L(η(ut))

)
.

Thus, the momentum equation (7.1) becomes

utt − div((1− χ)Reη(u) + χRvη(ut))− div(L∗L(η(ut))) = f

Next, according to the generalized principle of virtual power [13], the equation for
the microscopic motions is given by

B − div(H) = 0, (7.2)

where B is the sum of the a non dissipative part, Bnd = DχΨ and a dissipative
part, Bd = DχtΦ = DχtΦRR. Then, B is given by

B = Bnd +Bd = DχΨ +DχtΦ =
(
− θ − η(u)Reη(u)

2
+W ′(χ)

)
+ χt,

and H is the sum of the a non dissipative part, Hnd = D∇χΨ, and a dissipative
part, Hd = D∇χΦ = D∇χΦRR. Thus, H is given by

H = Hnd + Hd = D∇χΨ +D∇χΦ = ∇χ+ 0.

Therefore, the equation for the microscopic motions (7.2) is reduced to

χt −∆χ+W ′(χ) = θ +
η(u)Reη(u)

2
Next, the internal energy equation is

et + div q = g + σ : η(ut) +Bχt + H · ∇χt, (7.3)

where the internal energy density is

e = Ψ + θs,
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where s = −DθΨ = − log θ − χ is the entropy density of the system, and the heat
flux q is given by the constitutive relation

q = −θD∇θΦ = −θD∇θΦRR = −∇θ.

Thus, the internal energy balance equation (7.3) becomes

θt + θχt −∆θ = g + χη(ut)Rvη(ut) + L∗L(η(ut)) : η(ut) + |χt|2

Then, the model derived from the previous potentials is associated with the system
of equations

θt + θχt −∆θ = g + χη(ut)Rvη(ut) + L∗L(η(ut)) : η(ut) + |χt|2 in Ω× (0, T ),

χt −∆χ+W ′(χ) = θ +
η(u)Reη(u)

2
in Ω× (0, T ),

utt − div((1− χ)η(u) + χη(ut))− div(L∗L(η(ut))) = f in Ω× (0, T ),
(7.4)

We are not able to prove that this model (7.4) is locally thermodynamically
consistent in the sense that the entropy production is nonnegative at any point;
however, its total entropy production, weighted by the absolute temperature, is
in fact nonnegative; that is, the model satisfies the following global temperature-
weighted Clausius-Duhem inequality:∫

Ω

θ Π dx ≥ 0,

where θ is the absolute (positive) temperature and Π denotes the density of the
entropy production given by

Π = st + div(
q
θ

)− g

θ
.

In fact, we observe that the internal energy equation (7.3) can be rewritten in terms
of the entropy s as

θ
(
st + div(

q
θ

)− g

θ

)
= σd : η(ut) +Bdχt −

q
θ
· ∇θ.

Thus, by using this last identity and the previous definitions, we can write∫
Ω

θΠ dx =
∫

Ω

θ
(
st + div(

q
θ

)− g

θ

)
dx

=
∫

Ω

(
Dη(u)ΦRR : η(ut) +DχtΦRRχt +D∇θΦRR · ∇θ

)
dx

+ (L∗L(η(ut))), η(ut))L2(Ω)

=
∫

Ω

(
Dη(u)ΦRR : η(ut) +DχtΦRRχt +D∇θΦRR · ∇θ

)
dx

+ |L(η(ut))|2L2(Ω) ≥ 0

because by construction

(DχtΦRR, D∇θΦRR, D∇θΦRR) ∈ ∂ΦRR(η(ut), χt,∇θ),

(0, 0, 0) ∈ ∂ΦRR(0, 0, 0) and ΦRR is convex in all its variables; that is, the expression
in the integral at the right-hand side of the last inequality is nonnegative.

As in Rocca and Rossi [21], by using the small perturbation assumption, see
Germani [14], that the dissipative heat sources in the energy balance are small with
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respect to the external heating g; the higher order dissipative terms on the right-
hand side of the first equation in (7.4) can be neglected. Assuming also that the
latent heat is approximately constant l (take for instance l = θM , where θM is the
melting temperature), from (7.4) we derive the following perturbed model:

θt + lχt −∆θ = g in Ω× (0, T ),

χt −∆χ+W ′(χ) = θ +
η(u)Reη(u)

2
in Ω× (0, T ),

utt − div((1− χ)η(u) + χη(ut))− div(L∗L(η(ut))) = f in Ω× (0, T ),

(7.5)

The total entropy production, weighted by the absolute temperature is also non-
negative for this approximate model for slow solutions in the sense that χt is small
enough such that∫

Ω

θΠ dx =
∫

Ω

θ
(
st + div(

q
θ

)− g

θ

)
=
∫

Ω

( |∇θ|2
θ2

+ (θM − θ)χt dx
)
≥ 0.

Next, we compare model (7.5) with the one analyzed in this paper. First, takeRe
andRv as identities and L(·) = ν1/2(−∆)1/2(·), then the last term in the right-hand
side of the third equation in (7.4) becomes div(L∗L(η(ut))) = −ν div(∆η(ut)) =
−ν∆ div(η(ut)). In this case, (7.5) becomes

θt + lχt −∆θ = g in Ω× (0, T ),

χt −∆χ+W ′(χ) = θ +
|η(u)|2

2
in Ω× (0, T ),

utt − div((1− χ)η(u) + χη(ut)) + ν∆ div(η(ut)) = f in Ω× (0, T ),

(7.6)

which is expected to be mathematically related to the system presented in the
Introduction. In fact, the term hθc can be incorporated in W (χ) by adding hθcχ
to it, and, since η(ut) is the symmetric part of ∇ut, the term ν∆ div(η(ut)) in the
third equation of (7.6) is mathematically related to the term ν(−∆)2ut in equation
(1.3). Currently we are analyzing system (7.6); we remark, however, that the term
ν∆ div(η(ut)) is harder to handle than the one present in (1.3).
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et Cie, Éditeurs, Paris, 1973.

[15] K. H. Hoffman, L. Jiang; Optimal control of a phase field model for solidification, Numer.
Funct. Anal. Optimiz. 13 (1 & 2), 1992, pp. 11-27.

[16] K. L. Kuttler; Quasistatic evolution of damage in an elastic-viscoplastic material, Electron.

J. Differential Equations 2005 (147) (2005), 25 pp. (electronic).
[17] O. A. Ladyzhenskaya, N. N. Ural’tseva; Linear and Quasilinear Elliptic Equations, Academic

Press, New York, 1968.

[18] O. A. Ladyzhenskaya, V. Solonnikov, N. N. Ural’tseva; Linear and Quasilinear Equations of
Parabolic Type, American Mathematical Society, 1968.
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